Module III
Stochastic Processes
1
Vector Random Variable
• Assigning a vector of real numbers to each outcome of
Sample Space of a random experiment.
• Example: Random Experiment consists of selecting student’s
name from an urn based on the Height, Weight and Age of
the student.
• - Height of student in inches• - Height of student in inches
• - Age of student in years
• - Weight of student in Kg
• Then the vector is the vector random
variable.
)(H
)(A
)(W
       WAH ,,
2Vijaya Laxmi, Dept. of EEE
• We have
y
y2
   221 yYxXx 
x1 x2 x
x
y1
y2
y
x2x1
   2121 yYyxXx 
3Vijaya Laxmi, Dept. of EEE
y
y2
y1
   211 yYyxX 
x1 y2
y
y2
y1
y2x1-x1
   211 yYyxX 
4Vijaya Laxmi, Dept. of EEE
MULTIPLE RANDOM VARIABLESMULTIPLE RANDOM VARIABLES
5Vijaya Laxmi, Dept. of EEE
Joint Distribution
• If there are two RVs X and Y and the sets and are
events with probabilities
consisting of all outcomes ξ such that
is also an event, then
 xX   yY 
   
    yYxXyYxX
producttheandyFyYPandxFxXP YX


,
)()(
yYandxX  )()( 
is also an event, then
is called the Joint Distribution of the RVs X and Y.
• It is given by
•
 yYxXP  ,
 yYxXPyxFXY  ,),(
6Vijaya Laxmi, Dept. of EEE
Discrete Random Variable
• For discrete RV,
 


iyxfWhere
yxfyYxXP
).....(..........0),(,
),(,
 

x y
iiyxf
iyxfWhere
).....(..........1),(
).....(..........0),(,
7Vijaya Laxmi, Dept. of EEE
• Let X be a RV which assumes any one value of
• And, Y be a RV which assumes any one of
mxxx .,..........,, 21
nyyy .,..........,, 21
• Then, the probability of an event that X=xj and Y=yk
is given by
n21
  ),(, kjkj yxfyYxXP 
8Vijaya Laxmi, Dept. of EEE
X Y y1 y2 . . yn Total
f(x1,y1) f(x1,y2) . . f(x1,yn) f1(x1)
x2 f(x2,y1) f(x2,y2) . . f(x2,yn) f1(x2)
x3 f(x3,y1) f(x3,y2) . . f(x3,yn) f1(x3)
x1
. . . . . . .
. . . . . . .
xm f(xm,y1) f(xm,y2) . . f(xm,yn) f1(xm)
Total f2(y1) f2(y2) . . f2(yn) 1
Grand Total
9Vijaya Laxmi, Dept. of EEE
• The probability that X=xj is obtained by adding all
entries in the row corresponding to xj is given by
• The probability that Y=yk is obtained by adding all
   

n
k
kjjj yxfxfxXP
1
1 ,)(
• The probability that Y=yk is obtained by adding all
entries in the row corresponding to yk is given by
   

m
j
kjkk yxfyfyYP
1
2 ,)(
10Vijaya Laxmi, Dept. of EEE
• f1(xj) and f2(yk) or simply f1(x) and f2(y) are obtained from the
margins of table, hence called Marginal Probability function of
X and Y
• Or,
which, can be written as
    11
1 1
21   
m
j
n
k
kj yfandxf
  1,  
m n
yxf
which, can be written as
• i.e., Total probability of all entries is 1.
• Joint distribution function of X and Y is given by
• This is the sum of all entries for which
  1,
1 1
  j k
kj yxf
      

xu yv
vufyYxXPyxF ),(,,
yyandxx kj 
11Vijaya Laxmi, Dept. of EEE
Continuous Random Variables
• The properties of joint PDF for the continuous RVs
are
  )..(....................0, iyxf   )..(....................0, iyxf 
12
)........(1),( iidxdyyxf 





Vijaya Laxmi, Dept. of EEE
Joint Distribution function for
Continuous RV
• The joint distribution function of two RVs X
and Y is given by
 
 
dudvvufyYxXPyxF
x
u
y
v
 

),(,),(
  FunctionDensityyxf
yx
yxF



),(
,2
13Vijaya Laxmi, Dept. of EEE
Marginal Distribution Function
• The marginal distribution function of X is given by
• The marginal distribution function of Y is given by
   



x
u v
dudvvufxFxXP ),()(1
• The marginal distribution function of Y is given by
   

 

u
y
v
dudvvufyFyYP ),()(2
14Vijaya Laxmi, Dept. of EEE
Marginal Density Function
• The marginal density function of RV X is given by
• The marginal density function of RV Y is given by
  



v
dvvxfxF
dx
d
xf ),()(11
• The marginal density function of RV Y is given by
  



u
duyufxF
dy
d
yf ),()(22
15Vijaya Laxmi, Dept. of EEE
• Or, If for all x and y, f(x,y) is the product of a function
of x alone and a function of y alone (which are the
marginal probability of X and Y), then, X and Y are
independent.
• If, f(x,y) cannot be expressed as function of x and y,
then, X and Y are dependent.
16Vijaya Laxmi, Dept. of EEE
Independence
• If X and Y are two independent random variables, events that
involve only X should be independent of the events that
involve only Y.
• If A1 is any event that involve X only and A2 is any event that
involve only Y, then for discrete RVs,
     , yYPxXPyYxXP 
• In general, n random variables are independent,
when
• Knowledge about probabilities of RVs in isolation is sufficient to specify
the probabilities of joint events.
     
)()(),(,
,
21 yfxfyxfor
yYPxXPyYxXP


nXXX ,......, 21
       nnnn xXPxXPxXPxXxXxXP  ............,,, 22112211
17Vijaya Laxmi, Dept. of EEE
• X and Y (continuous RVs)
• If, the events are independent events for
all x and y,
   yYandxX 
     , yYPxXPyYxXP 
)()(),(
),()(),(
21
21
yfxfyxf
andyFxFyxF


18Vijaya Laxmi, Dept. of EEE
Properties of Joint CDF
• The joint CDF is non-decreasing in the
‘northeast’ direction, i.e.,
),(),( yyandxxifyxFyxF  21212211 ),(),( yyandxxifyxFyxF XYXY 
(x1,y1)
(x2,y2)
x
y
19Vijaya Laxmi, Dept. of EEE
x
y
x1
  YxXPxFX ,)( 11
20Vijaya Laxmi, Dept. of EEE
x
y
y1
 11 ,)( yYXPyFY 
21Vijaya Laxmi, Dept. of EEE
• It is impossible for either X or Y to assume a value less than -
∞, therefore
• It is certain that X and Y will assume values less than infinity,
therefore
    0,, ,,  xFyF YXYX
therefore
• If, one of the variables approach infinity while keeping the
other fixed, marginal cumulative distribution functions are
obtained as
1),(, YXF
   
   yYPyYXPyxFyF
and
xXPYxXPyxFxF
YXY
YXX


,),()(
,),()(
,
,
22Vijaya Laxmi, Dept. of EEE
• The joint CDF is continuous from the north and from
the east, i.e.,


ax
YXYX
and
yaFyxF ),(),(lim ,,


by
YXYX bxFyxF
and
),(),(lim ,,
23Vijaya Laxmi, Dept. of EEE
Problem
• If X and Y are two discrete RVs, whose joint PDF
is given by
 
0
3020,2
),(


 

otherwise
yandxwhereyxc
yxf
 
 2,1)(
1,2)(
)(
0



YXPc
YXPb
caFind
otherwise
24Vijaya Laxmi, Dept. of EEE
Solution: (a)
• We haveX Y 0 1 2 3 Total
0 0 C 2c 3c 6c
1 2c 3c 4c 5c 14c
2 4c 5c 6c 7c 22c2 4c 5c 6c 7c 22c
Total 6c 9c 12c 15c 42c
C=1/42
25Vijaya Laxmi, Dept. of EEE
• (b)
• (c)
 
42
5
51,2  cYXP
  ),(2,1
1 2

  
yxfYXP
X Y
7
4
42
24
24
)654()432(


c
cccccc
26Vijaya Laxmi, Dept. of EEE
Problem
• Find the marginal probability of (a) X and (b) Y
27Vijaya Laxmi, Dept. of EEE
Solution
• Marginal Prob. function of X,
 













2
21
11
22
1
3
1
14
0
7
1
6
)()(1
xforc
xforc
xforc
xfxfxXP X
• Marginal Prob. function of Y,
 
















3
14
5
15
2
7
2
12
1
14
3
9
0
7
1
6
)()(2
yforc
yforc
yforc
yforc
yfyfyYP Y
28Vijaya Laxmi, Dept. of EEE
Problem
• Show that the RVs X and Y are dependent
29Vijaya Laxmi, Dept. of EEE
Solution
• If x and y are independent, then for all x and y
     yYPxXPyYxXP  ,
 
42
5
1,2  YXP
30
   
14
3
1,
21
11
2,  YPandXPBut
dependentareYandX

14
3
.
21
11
42
5
Vijaya Laxmi, Dept. of EEE
Problem
• If X and Y are two cont. RV, whose joint density
function is given by
0
51,40
),(


 

otherwise
yxforcxy
yxf
 
 2,3)(
32,21)(
)(


YXPc
YXPb
caFind
31Vijaya Laxmi, Dept. of EEE
Solution
• (a)
• (b) 96
1
96
1),(
4
0
5
1
4
0
5
1











  
 
  




cc
dxxydyccxydxdy
dxdyyxf
x yx y
• (c)
 
128
5
96
32,21
2
1
3
2

   x y
dxdy
xy
YXP
 
128
7
96
2,3
4
3
2
1

   x y
dxdy
xy
YXP
32Vijaya Laxmi, Dept. of EEE
Problem
• Find the Marginal distribution function of X
and Y
33Vijaya Laxmi, Dept. of EEE
Solution
• Marginal Distribution function of X
 
1696
1
96
),()(
2
0
5
10
5
1
x
duuvdvdudv
uv
dudvvufxXPxF
x
u v
x
u v
x
u v
X

















  
 
  



34
.0)(,0
1)(,4
40,



xFx
xFxFor
xBecause
X
X











41
40
16
00
)(
2
xfor
xfor
x
xfor
xFX
Vijaya Laxmi, Dept. of EEE
• Marginal Prob. function of Y,
   

 


u
y
v
Y
y
dudvvufyYPyF
24
1
),()(
2
51,  yBecause
35
.0)(,1
1)(,5


yFy
yFyFor
Y
Y












51
51
24
1
10
)(
2
yfor
yfor
y
yfor
yFY
Vijaya Laxmi, Dept. of EEE
Change of Variables (Discrete RVs)
• Theorem 1: If X is a discrete RV having Prob. Function
f(x) and another RV U is defined by U=ø(X)
• For each value of X there corresponds one and only
one value of U,one value of U,
• Proof:
 )()(,..,
)(
ufugUoffnprobThen
UX




   
    UfuXP
uXPuUPug




)(
)()(
36Vijaya Laxmi, Dept. of EEE
• Theorem 2: If X and Y is discrete RVs having joint
prob. Function f(x,y)
• Another RV U and V defined by
   YXVandYXU ,, 21  
• For each pair of values of X and Y there corresponds
one and only one pair of values of U & V
• Then, joint Prob. Function of U & V is given by
   VUYandVUX ,, 21  
    vuvufvug ,,,),( 21 
37Vijaya Laxmi, Dept. of EEE
• Proof:
      
    
    vuvuf
vuYvuXP
vYXuYXPvVuUPvug
,,,
,,,
,,,,),(
21
21
21






38Vijaya Laxmi, Dept. of EEE
Change of Variables (Continuous RVs)
• Theorem 1: If X is a continuous RV having Prob.
Function f(x) and another RV U is defined by U=ø(X),
where
• Then, prob. Density function of U is given by g(u),
)(UX 
Then, prob. Density function of U is given by g(u),
where
   uuf
du
dx
xfug
dxxfduug
'
)()()(
)()(


39Vijaya Laxmi, Dept. of EEE
• Proof: If u is an increasing function i.e., if x increases
then u increases.
u
u2
u1
   
)()(
2 2
2121


  dxxfduug
xXxPuUuP
u
u
v
v
x1 x2
u1
x
   
    0)('')()(
)()(
2
1
2
1
1 1
'

 
 
uhereuufug
duuufduug
u
u
u
u
u v


This can be proved for 0)('0)('  uoru 
40Vijaya Laxmi, Dept. of EEE
• Theorem 2:
• The joint density function g(u,v) of U and V is given
by
   
   VUYVUXwhere
YXVYXUDefine
,,,,
,,,
21
21




by
• Where,
    Jvuvufvug
dxdyyxfdudvvug
,,,),(
),(),(
21 

 
 
v
y
u
y
v
x
u
x
vu
yx
J












,
,
41Vijaya Laxmi, Dept. of EEE
• Proof:
• If x and y increases then, u and v also increases
   21212121 ,, yYyxXxPvVvuUuP 
2 22 2 x yu v
This can be proved also for 0J
42
    
 


2
1
2
1
2
1
2
1
2
1
2
1
,,,
),(),(
21
u
u
v
v
x
x
y
y
u
u
v
v
Jdudvvuvuf
dxdyyxfdudvvug

     0,,,),( 21  JhereJvuvufvug 
Vijaya Laxmi, Dept. of EEE
Problem
• If X is a discrete RV with prob. Function
• Find the prob. Function of RV


 


otherwise
xfor
xf
x
0
....3,2,12
)(
14
XU
• Find the prob. Function of RV
43Vijaya Laxmi, Dept. of EEE
Solution


uwhereuxgives
xu
.......,82,17,2,1
,1
4
4



 



otherwise
u
ug
uwhereuxgives
u
0
.....,82,17,2,2
)(
.......,82,17,2,1
4
1
4
44Vijaya Laxmi, Dept. of EEE
Problem
• If X is a Cont. RV with density function
• Find the prob. Density Function for


 

otherwise
xforx
xf
0
6381/
)(
2
 XU  12
3
1
• Find the prob. Density Function for 3
45Vijaya Laxmi, Dept. of EEE
Solution
 
2,6
,5,3
3'



ux
anduxFor
dx
du
u 
uxux
xu
312312
12
3
1


Check:
 
 

5
2
2
.1
27
312
du
u
46
 








otherwise
u
u
ug
0
52,
27
312
)(
2
Vijaya Laxmi, Dept. of EEE
Problem
• If X and Y are two cont. RVs whose joint density
function is given by






otherwise
yandx
xy
yxf
0
5140
96),(
• Find the density function of U=X+2Y
 otherwise0
47Vijaya Laxmi, Dept. of EEE
Solution
 
102,4051,40
2
1
,
)(2



vuvyxrangethe
vuyvx
chosenyarbitrarilxvandyxu
v
u-v=2
u
u-v=2
u-v=10
v=4
v=0 102
I
II
III
2
1
2
1
2
1
10












v
y
u
y
v
x
u
x
J
 
otherwise
vvuvuvvug
0
40,102384/),( 
48Vijaya Laxmi, Dept. of EEE
• Marginal density function of U is given by
ufordv
vuv
ufordv
vuv
ug
v
u
v
106
384
)(
62
384
)(
)(
4
0
2
0
1










 




   
 
 
otherwise
u
uu
u
u
u
uu
ufordv
vuv
uv
v
,0
1410,
2304
2128348
106,
144
83
62,
2304
42
1410
384
)(
384
3
2
4
10
0







 










49Vijaya Laxmi, Dept. of EEE
Expected Value of function of random variables
• The expected value of Z=g(X,Y) can be obtained by
 



 
 
continuouslyjoYXdxdyyxfyxg
ZE
YX int,,),(
)(
,
   






  
RVsdiscreteYXyxpyxg
ZE
i
niYX
n
ni ,,,
)(
,
50Vijaya Laxmi, Dept. of EEE
Sum of Random Variables
• Let Z=X+Y, Find E(Z)
    






''','''
)()(
, dydxyxfyx
YXEZE
YX
     








 ''',''''','' ,, dydxyxfydydxyxfx YXYX
The expected value of the sum of two random variables is equal to
the sum of individual expected values.
X and Y need not be independent.
51
     
  








  













 ''',''''','' ,, dydxyxfydxdyyxfx YXYX
   
)()(
''''''
YEXE
dyyfydxxfx YX

 




Vijaya Laxmi, Dept. of EEE
• The expected values of sum of n random variables is
equal to the sum of the expected values.
       nn XEXEXEXXXE  ........ 2121       nn XEXEXEXXXE  ........ 2121
52Vijaya Laxmi, Dept. of EEE
Sum of Discrete RVs
• If X and Y are two discrete RVs
   
yxyfyxxf
yxfyxYXE
x y




),(),(
),(
   YEXE
yxyfyxxf
x yx y

  ),(),(
53Vijaya Laxmi, Dept. of EEE
Expected value of Product of Two RVs
• If X and Y are two independent RVs
• Proof: (continuous RV)
     YEXEXYE 
   
 
   
 
   
   YEXE
dyyfydxxfx
dydxyfxfyx
dydxyxfyxXYE
YX
YX
YX

















 
 












''''''
'''()'''
''',''' ,
54Vijaya Laxmi, Dept. of EEE
Product of two discrete RVs
• If X and Y are two independent RVs
)()(),( 21 yfxfyxf 
 
 
 


x y
yfxxyf
yxxyfXYE
)()(
),(
 
x y
yfxxyf )()( 21
55
  
   YEXE
YExxf
yyfxxf
x
x y










 
)(
)()(
1
21
Vijaya Laxmi, Dept. of EEE
Product of functions of Random variables
• If X and Y are two independent RVs and g(X,Y)=g1(X)g2(Y)
• Find
• Solution:
             dydxyfxfygxgYgXgE YX2121 ''''''  
 
       YgEXgEYXgE 21),( 
            
       
     YgEXgE
dyyfygdxxfxg
dydxyfxfygxgYgXgE
YX
YX
21
21
2121
''''''
''''''
















 




 
56Vijaya Laxmi, Dept. of EEE
• In general, for n independent RVs,
nXXX ,........, 21
               nnnn XgEXgEXgEXgXgXgE ................. 22112211                nnnn 22112211
57Vijaya Laxmi, Dept. of EEE
Conditional Probability Distribution
• For P(A)>0, Probability of event B given that A has
occurred
        )(|
)(
| APABPBAPor
AP
BAP
ABP 


• If X and Y are discrete RVs with events (A:X=x) and
(B:Y=y)
  Xofprobinalmtheisxfwhere
xf
yxf
xyf .arg)(,
)(
),(
| 1
1

58Vijaya Laxmi, Dept. of EEE
• Conditional prob. function of Y given X is given by
• Conditional prob. function of X given Y is given by
 
)(
),(
|(
xf
yxf
xyf
X

• Conditional prob. function of X given Y is given by
 
)(
),(
|
yf
yxf
yxf
Y

59Vijaya Laxmi, Dept. of EEE
Conditional Probability Distribution for
Cont. RV
• If X and Y are two cont. RVs, the conditional prob.
Density function of Y given X is given by
 
)(
),(
|
xf
yxf
xyf 
)( xf X
60Vijaya Laxmi, Dept. of EEE
Problem
• The joint density function of two cont. RVs X and Y
are given by






otherwise
yxxy
yxf
0
10,10,
4
3
),3(
• Find (a)
• (b)
 otherwise0
 xyf






 dxXYP
2
1
2
1
2
1
61Vijaya Laxmi, Dept. of EEE
Solution
• (a) For 0<x<1
  











 
10,
43
),(
4
23
24
3
4
3
)(
1
0
1
y
xy
yxf
xx
dyxyxf
• (b)
 





)(0
10,
23
)(
),(
1
definednototherwise
y
x
xf
yxf
xyf
16
9
4
23
2
1
2
1
2
1
2
1
2/1
2/1




















dy
y
dyyfdxXYP
62Vijaya Laxmi, Dept. of EEE
Variance of Sum of Two RVs
• For two independent RVs X and Y,
Var(X+Y)=Var(X)+Var(Y)
• Proof:
     
     
)(
2
YXEYXVar YX  
     
       
         
           
     
)()(
2
2
2
22
22
22
22
2
YVarXVar
YEXE
YEYEXEXE
YEYXEXE
YYXXE
YXE
YX
YYXX
YYXX
YYXX
YX











63Vijaya Laxmi, Dept. of EEE
• Var(X-Y)=Var(X)+Var(Y)
• Proof:
     
     
)(
2
2
YXE
YXEYXVar
YX
YX




     
       
         
     
)()(
2
2
22
22
22
YVarXVar
YEXE
YEYEXEXE
YYXXE
YXE
YX
YYXX
YYXX
YX









64Vijaya Laxmi, Dept. of EEE
Variance of Sum of Two RVs
• In general,
XYYXYXor
YXCovYVarXVarYXVar
 2,
),(2)()()(
222



65Vijaya Laxmi, Dept. of EEE
Correlation and Covariance of Two RVs
• The jkth joint moment of two RVs X and Y is defined
as
   
 
 









kj
YX
kjKj
ContinuouslyjoYandXFordxdyyxfyxYXE int,,
 
i n
niYX
k
n
j
i RVsdiscreteYandXyxpyx ,,
If j=0, moments of Y are obtained
If k=0, moments of X are obtained
If j=k=1, E[XY] gives the correlation of X and Y
IF E[XY]=0, X and Y are orthogonal
66Vijaya Laxmi, Dept. of EEE
Jkth central moment about the mean
• The jkth central moment of X and Y about the mean is
given by
    k
Y
j
X YXE  
If j=2, k=0, variance of X is obtained
If j=0, k=2, variance of Y is obtained
If j=k=1, Covariance of X and Y is obtained
    YandXofianceCoYXCovYXE YX var),(  
67Vijaya Laxmi, Dept. of EEE
Covariance of Two RVs
   
 
     
         YEXEYEXEXYE
YEXEXYE
YXXYE
YXEYXCov
YXXY
YXXY
YX




2
),(



         
     YEXEXYE
YEXEYEXEXYE

 2
Hence,
Cov(X,Y)=E[XY], if either of the RVs has mean value equal to zero
68Vijaya Laxmi, Dept. of EEE
Problem
• If X and Y are two independent RVs each having
density function


 


otherwise
ufore
uf
u
0
02
)(
2
• Find
     XYEYXEYXE ,, 22

69Vijaya Laxmi, Dept. of EEE
Solution
     
1
2.2.
0
2
0
2








dyeydxex
YEXEYXE
yx
  1
4 22
  
 

dxdyexyeXYE yx
Check E[X+Y]=E[X]+E[Y]
E[XY]=E[X]E[Y]
70
 
4
4
0 0
22
  

dxdyexyeXYE yx
  122
0
22
0
2222
 




dyeydxexYXE yx
Vijaya Laxmi, Dept. of EEE
Problem
• If X and Y are two discrete independent RVs







4/3.2
3/2.0
3/1.1
probwith
Y
probwith
probwith
X
• Find





4/1.3 probwith
Y
       YXEXYEYXEYXE 222
,,2,23 
71Vijaya Laxmi, Dept. of EEE
Solution
     
3
1
0
3
2
1
3
1
XE
     
4
3
3
4
1
2
4
3
YE
72
     
2
5
4
3
2
3
1
3
2323













 YEXEYXE
Vijaya Laxmi, Dept. of EEE
     22
 YEXEYXE
     
4
1
4
3
.
3
1

 YEXEXYE
     
4
1
4
3
.
3
1

 YEXEYXE
73Vijaya Laxmi, Dept. of EEE
     
3
1
0
3
2
1
3
1 22
XE
     
4
21
4
9
33
4
1
2
4
3 222
YE
74
     
12
55
4
21
3
2
4
21
3
1
2
22 2222













 YEXEYXE
Vijaya Laxmi, Dept. of EEE
Problem
• If X and Y are two independent RVs, find the Covariance
• Solution:
   
     
0
),(



YX
YX
YEXE
YXEYXCov


0
For the pairs of independent RVs, Covariance is zero.
75Vijaya Laxmi, Dept. of EEE
Correlation Coefficient of X and Y
• The correlation coefficient between the two RVs, X and Y is
given by
     YEXEXYEYXCov
YXYX
YX
),(
,






deviationdardSYVarandXVarwhere YX tan)()(,  
11 ,  YX
X and Y are uncorrelated, if 0, YX
If X and Y are independent, Cov(X,Y)=0, 0,  YX
If X and Y are independent, they are uncorrelated.
-------From Theorem 4
76Vijaya Laxmi, Dept. of EEE
Theorems on Covariance
• Theorem 1:
• Theorem 2: If X and Y are independent RVs
• Theorem 3:
     YEXEXYEXY 
0),(  YXCovXY
• Theorem 3:
• Theorem 4:
 
XYYXYXor
YXCovYVarXVarYXVar
 2,
),(2)()(
222



YXXY  
If X and Y are independent, Theorem 3 reduces to Theorem 4.
The converse of Theorem 3 is not necessarily true.
77Vijaya Laxmi, Dept. of EEE
Problem
• If X and Y are two discrete RVs, whose joint density function is
given by
• Find E[X], E[Y], E[XY], E[X2], E[Y2], Var(X), Var(Y), Cov(X,Y) and
 
otherwise
yxforyxcyxf
0
30,202),( 
• Find E[X], E[Y], E[XY], E[X2], E[Y2], Var(X), Var(Y), Cov(X,Y) and
correlation coeff.
78Vijaya Laxmi, Dept. of EEE
Solution
• We have
X Y 0 1 2 3 Total
0 0 C 2c 3c 6c
1 2c 3c 4c 5c 14c1 2c 3c 4c 5c 14c
2 4c 5c 6c 7c 22c
Total 6c 9c 12c 15c 42c
79Vijaya Laxmi, Dept. of EEE
   
cccc
xfxyxfxyxxfXE
x y xx y
5822.214.16.0
)(,),(







   
      yyfyxfyyxyfYE
x y yy x
)(,, 





   
80
ccccc
x y yy x
7815.312.29.16.0 

   
c
ccc
yxxyfXYE
x y
102
........3.3.02.2.0.1.00.0.0
,


 
Vijaya Laxmi, Dept. of EEE
     
                ccccc
yxfyyxfyYE
x y y x
1921531229160
,,
2222
222







   
     
            cccc
yxfxyxfxXE
x y x y
10222214160
,,
222
222







   
81
      
      2222
2222
78192)(
58102)(
ccYEYEYVar
ccXEXEXVar
Y
X




     
YX
YX
YXCov
ccc
YEXEXYEYXCov



),(
78.58102
),(,



Vijaya Laxmi, Dept. of EEE
Problem
• If X and Y are two Cont. RVs
• Find (a) c
• (b) E[X]
 
 


 

otherwise
yxforyxc
yxf
0
50,622
,
• (c) E[Y]
• (d) E[XY]
• (e) E[Y2]
• (f) Var(X)
• (g) Var(Y)
• (h) Cov(X,Y)
• (i) Correlation Coeff.
82Vijaya Laxmi, Dept. of EEE
Solution
 
 
210
1
12
1,sin
6
2
5
0



 
 
 




c
dxdyyxc
dxdyyxfgU
x y
    2681
6 5
 
83
   
63
268
2
210
1
6
2
5
0
   x y
dxdyyxxXE
   
7
80
2
210
1
  




dxdyyxxyXYE
   
63
170
2
210
1
  




dxdyyxyYE
Vijaya Laxmi, Dept. of EEE
  63
12202
XE
    
3969
5036
)(
222
 XEXEXVarX
7938
16225
)(2
 YVarY
  126
11752
YE
84
     
3969
200
),(  YEXEXYEYXCov
03129.0
YX
XY



7938
Y
Vijaya Laxmi, Dept. of EEE
Problem
• Let Ɵ be uniformly distributed RV in the interval
(0,2π) and X and Y are two RVs defined as X=Cos Ɵ,
Y=SinƟ.
• Show that X and Y are uncorrelated.Show that X and Y are uncorrelated.
85Vijaya Laxmi, Dept. of EEE
Solution
• The marginal PDF of X and Y are arcsine functions which are
nonzero in the interval
• So, if X and Y were independent the point (X,Y) would assume
all values in the square.
• But, this is not the case, hence X and Y are dependent.
1111  yandx
• But, this is not the case, hence X and Y are dependent.
(CosƟ, SinƟ)
Ɵ
y
x
1
-1
-1
1
86Vijaya Laxmi, Dept. of EEE
   
02
4
1
2
1
2
0
2
0











dSin
dCosSinCosSinEXYE
Since E[X]=E[Y]=0, X and Y are uncorrelated
Uncorrelated but dependent Random Variables
87Vijaya Laxmi, Dept. of EEE
Conditional Expectation, Variance and
Moments
• The conditional expectation of a RV Y given X is expressed as
• Properties:
 If X and Y are independent,
    dxxXxmeansxXwheredyxyyfxXYE  


,
 If X and Y are independent,

   YExXYE 
        XYEEdxxfxXYEYE  


1
88Vijaya Laxmi, Dept. of EEE
• Hence,
         YoffunctionaisYhwhereXYhEEYhE ,
    
and
thKKK
,

89
     origintheaboutmomentktheisYwhereXYEEYE thKKK
,
Vijaya Laxmi, Dept. of EEE
Theorem
    XYEEYE 
Proof:
      
   






dxxfXYE
dxxfXYEXYEERHS
X
:
   
 dxxfXYE X
90
   
 
 
  
 










dxdyxf
xf
yxf
y
dxxfdyxyyf
XY
XY
,
 
   YEdyyyf
dxdyyxfy



 






,
Vijaya Laxmi, Dept. of EEE
Problem
• If X and Y are two RVs whose density function is
given by
   
otherwise
yxforyxcyxf
0
30,202, 
• Find E[Y|X=2]
91Vijaya Laxmi, Dept. of EEE
Solution
• The marginal density function of RV X is given by
• And, marginal density function of Y is given by
 









222
114
06
1
xforc
xforc
xforc
xf
• And, marginal density function of Y is given by
 












315
212
19
06
2
yforc
yforc
yforc
yforc
yf
92Vijaya Laxmi, Dept. of EEE
• The conditional density function of Y given X=2 is
obtained as
   
 
 
22
4
42/22
42/2,
2
1
yyx
xf
yxf
yf




93
     




 

yy
y
yyyfXYE
22
4
22
       
11
19
22
7
3
22
6
2
22
5
1
22
4
0 
























Vijaya Laxmi, Dept. of EEE
Problem
• The average time of travel from city ‘A’ to city ‘B’ is ‘c’
hours by car and ‘b’ hours by bus. A man cannot
decide whether to drive the car or to take bus, so he
tosses a coin. What is the expected time of travel?
94Vijaya Laxmi, Dept. of EEE
Solution
• X is RV, which is the outcome of toss
• Y is travel time 
1
0


XifY
XifYY car
The RVs X and Y are independent, because Ycar and Ybus
are independent of X
• Using Property 1,
• Using Property 2, (for discrete RVs)
•
1XifYbus
     
      bYEXYEXYE
cYEXYEXYE
busbus
carcar


11
00
         
2
1100
bc
XPXYEXPXYEYE



95Vijaya Laxmi, Dept. of EEE
Conditional Variance
• The conditional variance of Y given X is defined
as
• The rth conditional moment of Y about any value
a is given as
      
 xXYEwhere
ydxyfyxXYE

 


2
2
2
2
2


a is given as
      


 dyxyfayxXaYE
rr
The usual theorems for variance and moments extend to conditional
variance and moments.
96Vijaya Laxmi, Dept. of EEE
Gaussian PDF and CDF
 
 
2
2
2
2
1
: 

mx
X exfXofPDF


 
 



x mx
dxexXPCDF '
2
1
:
2
2
2
'


FX(x) is the CDF of Gaussian RV with zero mean and unit variance.
97
 

mxtLet  '
 
 





 

 







mx
dtexFThen
mx
t
X
2
2
2
1
,
  


x
t
dtexwhere 2
2
2
1


Vijaya Laxmi, Dept. of EEE
Gaussian PDF
• Show that Gaussian PDF integrates to one.
• Solution:
• Take Square of PDF of Gaussian RV











dyedxedxe
yxx
22
2
2
222
11

 
 












dxdye
dyedxedxe
yx
2
22
2
1
22


98
1
2
1
,
0
2
0
2
0
2
22



 




drrerdrde
rSinyrCosxLet
rr




Vijaya Laxmi, Dept. of EEE
Joint Characteristic Function
• The Joint Ch. Fn of n RVs, is given by
• And, the joint ch. fn. of two RVs X and Y is given by
   
 nn
n
XXXj
nXXX eE 
 
 ...
21.....
2211
21
,...,,
nXXX ,...,, 21
   
 
 eE YXj
YX
21
, 21,


   
 





 dxdyeyxf yxj
YX
21
,,

Joint Characteristic function is the 2-dimensional Fourier
transform of joint PDF of X and Y
     
 





 2121,2,
21
,
4
1
, 


ddeyxf yxj
YXYX
99Vijaya Laxmi, Dept. of EEE
Marginal Characteristic Function
   
   

,0
0,
XYY
XYX


If X and Y are independent
   
   
       21
21
21
2121
,




YX
YjXj
YjXjYXj
XY
eEeE
eeEeE

 
100Vijaya Laxmi, Dept. of EEE
   
   
    


 













21
0
2
0
1
21
!!
, 21
ki
ki
k
k
i
i
YjXj
XY
jj
YXE
k
Yj
i
Xj
E
eeE


 
    
 

0 0
21
!!i k
ki
k
j
i
j
YXE

101
    0,021
21
21
|,
1
,



 

XYki
ki
ki
ki
j
YXE
And
Vijaya Laxmi, Dept. of EEE
Problem
• If Z=aX+bY, find the ch. Fn. Of Z
• Solution:
   
   
 
 
 
ba
eEeE
XY
bYaXjbYaXj
Z
,
 
• If X and Y are independent
        baba YXXYZ  ,
102Vijaya Laxmi, Dept. of EEE
Problem
• If U and V are independent zero mean, unit
variance Gaussian RV, and
• X=U+V and Y=2U+V
• Find the joint ch. Fn of X and Y and find E[XY]• Find the joint ch. Fn of X and Y and find E[XY]
103Vijaya Laxmi, Dept. of EEE
Solution
• The joint Ch. Fn. Of X and Y is given by
• The joint Ch. Fn. Of U and V is given by
   
      
 
   
 )2(
2
21
2121
2121
,
VUj
VUVUjYXj
XY
eE
eEeE







   
   
 2
, 
 
 eEeE VjUj
   
   
 
   
   2
21
2
21
2121
2
1
2
2
1
2121
2
21
2
,









ee
eEeE
VU
VjUj
XY
  2/22

 
 jm
X e
104
   
3
|,
1
0,021
21
2
2 21



  
 XY
j
XYE
We have
Vijaya Laxmi, Dept. of EEE
Jointly Gaussian RV
• The RVs X and Y are said to be jointly Gaussian, if
their joint PDF has the form
 
 
2
2
2
2
2
2
1
1
,
2
1
1
2
,
12
2
12
1
exp
,
YX
YX
XY
mymymxmx
yxf


























 





 





 





 



• for
•
2
,21 12 YX 
 yandx
105Vijaya Laxmi, Dept. of EEE
Problem
• The PDF for jointly Gaussian RVs is given by
 








16168
3
8
3
16
3
4
2
1
,
22
2
1
,
yx
xy
yx
YX eyxf

• Find E[X], E[Y], Var(X), Var(Y) and Cov(X,Y)
106Vijaya Laxmi, Dept. of EEE
Problem
• The joint PDF of X and Y is given by
• Find the marginal PDF.
      

 
yxeyxf yxyx
YX ,,
12
1
,
222
12/2
2,


• Find the marginal PDF.
107Vijaya Laxmi, Dept. of EEE
Solution
• The marginal PDF of X is obtained by integrating f(x,y) over y as
 
 
   
 
     






2,
12
12
2222212/
2
12/
12/2
2
12/
2222
22
22
22
xxy
x
xyy
x
X
xxxyyHeredye
e
dye
e
xf














   
 





2
122
2,
12
2
2
12/2
2
2
22
2
x
xy
x
e
dy
ee
xxxyyHeredye













108Vijaya Laxmi, Dept. of EEE
• Hence
 The last integral equals one because its integrand is a Gaussian
PDF with mean and variance
 The marginal PDF of X is a one-dimensional Gaussian PDF with mean
x 2
1 
 The marginal PDF of X is a one-dimensional Gaussian PDF with mean
0 and variance 1. Form symmetry, the marginal PDF of Y will also be a
Gaussian PDF with mean 0 and variance 1.
109Vijaya Laxmi, Dept. of EEE
N jointly Gaussian RV
• The RVs are said to be jointly Gaussian RVs
if their joint PDF is given by
•
nXXX ,...,, 21
 
   
 
 









n
T
nXXXX
bydefinedvectorscolumnaremandXwhere
K
mXKmX
xxxfXf n
,
2
2
1
exp
,...,,)(
2
1
2
1
21,...,, 21

•
 
 
 
     
     
      



































































nnn
n
n
nnn
XVarXXCovXXCov
XXCovXVarXXCov
XXCovXXCovXVar
Kand
XE
XE
XE
m
m
m
m
x
x
x
X
..,,
.....
.....
,..,
,..,
,
.
.
.
.,
.
.
21
2212
1211
2
1
2
1
2
1
Where, K is called the Covariance Matrix 110Vijaya Laxmi, Dept. of EEE

More Related Content

PDF
CDC18 Jin Gyu Lee
PDF
Regularized Estimation of Spatial Patterns
PDF
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
PDF
QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...
PDF
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
PDF
Universal Prediction without assuming either Discrete or Continuous
PDF
Estimation and Prediction of Complex Systems: Progress in Weather and Climate
PDF
Mi ordenador, de mayor, quiere ser cuántico (curso acelerado de simulación ...
CDC18 Jin Gyu Lee
Regularized Estimation of Spatial Patterns
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Universal Prediction without assuming either Discrete or Continuous
Estimation and Prediction of Complex Systems: Progress in Weather and Climate
Mi ordenador, de mayor, quiere ser cuántico (curso acelerado de simulación ...

What's hot (19)

PDF
presentazione
PDF
Journey to structure from motion
PDF
Kernel based models for geo- and environmental sciences- Alexei Pozdnoukhov –...
PPT
Symmetrical2
PPT
L02 datacentres observables
PDF
Simple Comparison of Convergence of GeneralIterations and Effect of Variation...
PDF
Thesis defense
PDF
2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...
PDF
2018 MUMS Fall Course - Sampling-based techniques for uncertainty propagation...
PDF
Evolutionary Dynamics, Games and Graphs
PDF
Particle filter
PDF
CVPR2010: Sparse Coding and Dictionary Learning for Image Analysis: Part 1: S...
PDF
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
PDF
Eight Regression Algorithms
PDF
Thesis defense improved
PPT
Artificial neural netwoks2
PDF
Andreas Eberle
PDF
Lecture10 outilier l0_svdd
PDF
Robust Control of Uncertain Switched Linear Systems based on Stochastic Reach...
presentazione
Journey to structure from motion
Kernel based models for geo- and environmental sciences- Alexei Pozdnoukhov –...
Symmetrical2
L02 datacentres observables
Simple Comparison of Convergence of GeneralIterations and Effect of Variation...
Thesis defense
2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...
2018 MUMS Fall Course - Sampling-based techniques for uncertainty propagation...
Evolutionary Dynamics, Games and Graphs
Particle filter
CVPR2010: Sparse Coding and Dictionary Learning for Image Analysis: Part 1: S...
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
Eight Regression Algorithms
Thesis defense improved
Artificial neural netwoks2
Andreas Eberle
Lecture10 outilier l0_svdd
Robust Control of Uncertain Switched Linear Systems based on Stochastic Reach...
Ad

Similar to Module iii sp (20)

PPT
Admissions in india 2015
PPTX
C.v.n.m (m.e. 130990119004-06)
PPT
Top School in Delhi NCR
PDF
QMC: Operator Splitting Workshop, A Splitting Method for Nonsmooth Nonconvex ...
PPT
PDF
Module v sp
PPT
Probability statistics assignment help
PPT
Support Vector Machine using machin learning
PDF
A direct method for estimating linear non-Gaussian acyclic models
PDF
Phase Retrieval: Motivation and Techniques
PDF
Limits and Continuity of Functions
PPT
Schrodinger equation in QM Reminders.ppt
PDF
Lecture cochran
PPTX
Seismic data processing lecture 3
PDF
Test Problems in Optimization
PDF
Inverse circular function
PDF
UNIT I_5.pdf
PDF
IVR - Chapter 5 - Bayesian methods
PPTX
Artificial neural network
PDF
Properties of fuzzy inner product spaces
Admissions in india 2015
C.v.n.m (m.e. 130990119004-06)
Top School in Delhi NCR
QMC: Operator Splitting Workshop, A Splitting Method for Nonsmooth Nonconvex ...
Module v sp
Probability statistics assignment help
Support Vector Machine using machin learning
A direct method for estimating linear non-Gaussian acyclic models
Phase Retrieval: Motivation and Techniques
Limits and Continuity of Functions
Schrodinger equation in QM Reminders.ppt
Lecture cochran
Seismic data processing lecture 3
Test Problems in Optimization
Inverse circular function
UNIT I_5.pdf
IVR - Chapter 5 - Bayesian methods
Artificial neural network
Properties of fuzzy inner product spaces
Ad

More from Vijaya79 (7)

PDF
Ist module 3
PDF
IST module 4
PDF
IST module 2
PDF
IST module 1
PDF
Module iv sp
PPTX
Module ii sp
PDF
Module 1 sp
Ist module 3
IST module 4
IST module 2
IST module 1
Module iv sp
Module ii sp
Module 1 sp

Recently uploaded (20)

PPTX
Management Information system : MIS-e-Business Systems.pptx
PPTX
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
PPTX
mechattonicsand iotwith sensor and actuator
PPTX
CN_Unite_1 AI&DS ENGGERING SPPU PUNE UNIVERSITY
PPTX
tack Data Structure with Array and Linked List Implementation, Push and Pop O...
PDF
20250617 - IR - Global Guide for HR - 51 pages.pdf
PDF
Applications of Equal_Area_Criterion.pdf
PDF
Introduction to Power System StabilityPS
PDF
UEFA_Carbon_Footprint_Calculator_Methology_2.0.pdf
PDF
August 2025 - Top 10 Read Articles in Network Security & Its Applications
PPTX
A Brief Introduction to IoT- Smart Objects: The "Things" in IoT
PDF
Prof. Dr. KAYIHURA A. SILAS MUNYANEZA, PhD..pdf
PPTX
Chapter 2 -Technology and Enginerring Materials + Composites.pptx
PDF
Unit I -OPERATING SYSTEMS_SRM_KATTANKULATHUR.pptx.pdf
PPTX
CyberSecurity Mobile and Wireless Devices
PDF
Exploratory_Data_Analysis_Fundamentals.pdf
PDF
Java Basics-Introduction and program control
PDF
Cryptography and Network Security-Module-I.pdf
PPTX
Measurement Uncertainty and Measurement System analysis
PPTX
ai_satellite_crop_management_20250815030350.pptx
Management Information system : MIS-e-Business Systems.pptx
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
mechattonicsand iotwith sensor and actuator
CN_Unite_1 AI&DS ENGGERING SPPU PUNE UNIVERSITY
tack Data Structure with Array and Linked List Implementation, Push and Pop O...
20250617 - IR - Global Guide for HR - 51 pages.pdf
Applications of Equal_Area_Criterion.pdf
Introduction to Power System StabilityPS
UEFA_Carbon_Footprint_Calculator_Methology_2.0.pdf
August 2025 - Top 10 Read Articles in Network Security & Its Applications
A Brief Introduction to IoT- Smart Objects: The "Things" in IoT
Prof. Dr. KAYIHURA A. SILAS MUNYANEZA, PhD..pdf
Chapter 2 -Technology and Enginerring Materials + Composites.pptx
Unit I -OPERATING SYSTEMS_SRM_KATTANKULATHUR.pptx.pdf
CyberSecurity Mobile and Wireless Devices
Exploratory_Data_Analysis_Fundamentals.pdf
Java Basics-Introduction and program control
Cryptography and Network Security-Module-I.pdf
Measurement Uncertainty and Measurement System analysis
ai_satellite_crop_management_20250815030350.pptx

Module iii sp

  • 2. Vector Random Variable • Assigning a vector of real numbers to each outcome of Sample Space of a random experiment. • Example: Random Experiment consists of selecting student’s name from an urn based on the Height, Weight and Age of the student. • - Height of student in inches• - Height of student in inches • - Age of student in years • - Weight of student in Kg • Then the vector is the vector random variable. )(H )(A )(W        WAH ,, 2Vijaya Laxmi, Dept. of EEE
  • 3. • We have y y2    221 yYxXx  x1 x2 x x y1 y2 y x2x1    2121 yYyxXx  3Vijaya Laxmi, Dept. of EEE
  • 4. y y2 y1    211 yYyxX  x1 y2 y y2 y1 y2x1-x1    211 yYyxX  4Vijaya Laxmi, Dept. of EEE
  • 5. MULTIPLE RANDOM VARIABLESMULTIPLE RANDOM VARIABLES 5Vijaya Laxmi, Dept. of EEE
  • 6. Joint Distribution • If there are two RVs X and Y and the sets and are events with probabilities consisting of all outcomes ξ such that is also an event, then  xX   yY          yYxXyYxX producttheandyFyYPandxFxXP YX   , )()( yYandxX  )()(  is also an event, then is called the Joint Distribution of the RVs X and Y. • It is given by •  yYxXP  ,  yYxXPyxFXY  ,),( 6Vijaya Laxmi, Dept. of EEE
  • 7. Discrete Random Variable • For discrete RV,     iyxfWhere yxfyYxXP ).....(..........0),(, ),(,    x y iiyxf iyxfWhere ).....(..........1),( ).....(..........0),(, 7Vijaya Laxmi, Dept. of EEE
  • 8. • Let X be a RV which assumes any one value of • And, Y be a RV which assumes any one of mxxx .,..........,, 21 nyyy .,..........,, 21 • Then, the probability of an event that X=xj and Y=yk is given by n21   ),(, kjkj yxfyYxXP  8Vijaya Laxmi, Dept. of EEE
  • 9. X Y y1 y2 . . yn Total f(x1,y1) f(x1,y2) . . f(x1,yn) f1(x1) x2 f(x2,y1) f(x2,y2) . . f(x2,yn) f1(x2) x3 f(x3,y1) f(x3,y2) . . f(x3,yn) f1(x3) x1 . . . . . . . . . . . . . . xm f(xm,y1) f(xm,y2) . . f(xm,yn) f1(xm) Total f2(y1) f2(y2) . . f2(yn) 1 Grand Total 9Vijaya Laxmi, Dept. of EEE
  • 10. • The probability that X=xj is obtained by adding all entries in the row corresponding to xj is given by • The probability that Y=yk is obtained by adding all      n k kjjj yxfxfxXP 1 1 ,)( • The probability that Y=yk is obtained by adding all entries in the row corresponding to yk is given by      m j kjkk yxfyfyYP 1 2 ,)( 10Vijaya Laxmi, Dept. of EEE
  • 11. • f1(xj) and f2(yk) or simply f1(x) and f2(y) are obtained from the margins of table, hence called Marginal Probability function of X and Y • Or, which, can be written as     11 1 1 21    m j n k kj yfandxf   1,   m n yxf which, can be written as • i.e., Total probability of all entries is 1. • Joint distribution function of X and Y is given by • This is the sum of all entries for which   1, 1 1   j k kj yxf         xu yv vufyYxXPyxF ),(,, yyandxx kj  11Vijaya Laxmi, Dept. of EEE
  • 12. Continuous Random Variables • The properties of joint PDF for the continuous RVs are   )..(....................0, iyxf   )..(....................0, iyxf  12 )........(1),( iidxdyyxf       Vijaya Laxmi, Dept. of EEE
  • 13. Joint Distribution function for Continuous RV • The joint distribution function of two RVs X and Y is given by     dudvvufyYxXPyxF x u y v    ),(,),(   FunctionDensityyxf yx yxF    ),( ,2 13Vijaya Laxmi, Dept. of EEE
  • 14. Marginal Distribution Function • The marginal distribution function of X is given by • The marginal distribution function of Y is given by        x u v dudvvufxFxXP ),()(1 • The marginal distribution function of Y is given by         u y v dudvvufyFyYP ),()(2 14Vijaya Laxmi, Dept. of EEE
  • 15. Marginal Density Function • The marginal density function of RV X is given by • The marginal density function of RV Y is given by       v dvvxfxF dx d xf ),()(11 • The marginal density function of RV Y is given by       u duyufxF dy d yf ),()(22 15Vijaya Laxmi, Dept. of EEE
  • 16. • Or, If for all x and y, f(x,y) is the product of a function of x alone and a function of y alone (which are the marginal probability of X and Y), then, X and Y are independent. • If, f(x,y) cannot be expressed as function of x and y, then, X and Y are dependent. 16Vijaya Laxmi, Dept. of EEE
  • 17. Independence • If X and Y are two independent random variables, events that involve only X should be independent of the events that involve only Y. • If A1 is any event that involve X only and A2 is any event that involve only Y, then for discrete RVs,      , yYPxXPyYxXP  • In general, n random variables are independent, when • Knowledge about probabilities of RVs in isolation is sufficient to specify the probabilities of joint events.       )()(),(, , 21 yfxfyxfor yYPxXPyYxXP   nXXX ,......, 21        nnnn xXPxXPxXPxXxXxXP  ............,,, 22112211 17Vijaya Laxmi, Dept. of EEE
  • 18. • X and Y (continuous RVs) • If, the events are independent events for all x and y,    yYandxX       , yYPxXPyYxXP  )()(),( ),()(),( 21 21 yfxfyxf andyFxFyxF   18Vijaya Laxmi, Dept. of EEE
  • 19. Properties of Joint CDF • The joint CDF is non-decreasing in the ‘northeast’ direction, i.e., ),(),( yyandxxifyxFyxF  21212211 ),(),( yyandxxifyxFyxF XYXY  (x1,y1) (x2,y2) x y 19Vijaya Laxmi, Dept. of EEE
  • 20. x y x1   YxXPxFX ,)( 11 20Vijaya Laxmi, Dept. of EEE
  • 21. x y y1  11 ,)( yYXPyFY  21Vijaya Laxmi, Dept. of EEE
  • 22. • It is impossible for either X or Y to assume a value less than - ∞, therefore • It is certain that X and Y will assume values less than infinity, therefore     0,, ,,  xFyF YXYX therefore • If, one of the variables approach infinity while keeping the other fixed, marginal cumulative distribution functions are obtained as 1),(, YXF        yYPyYXPyxFyF and xXPYxXPyxFxF YXY YXX   ,),()( ,),()( , , 22Vijaya Laxmi, Dept. of EEE
  • 23. • The joint CDF is continuous from the north and from the east, i.e.,   ax YXYX and yaFyxF ),(),(lim ,,   by YXYX bxFyxF and ),(),(lim ,, 23Vijaya Laxmi, Dept. of EEE
  • 24. Problem • If X and Y are two discrete RVs, whose joint PDF is given by   0 3020,2 ),(      otherwise yandxwhereyxc yxf    2,1)( 1,2)( )( 0    YXPc YXPb caFind otherwise 24Vijaya Laxmi, Dept. of EEE
  • 25. Solution: (a) • We haveX Y 0 1 2 3 Total 0 0 C 2c 3c 6c 1 2c 3c 4c 5c 14c 2 4c 5c 6c 7c 22c2 4c 5c 6c 7c 22c Total 6c 9c 12c 15c 42c C=1/42 25Vijaya Laxmi, Dept. of EEE
  • 26. • (b) • (c)   42 5 51,2  cYXP   ),(2,1 1 2     yxfYXP X Y 7 4 42 24 24 )654()432(   c cccccc 26Vijaya Laxmi, Dept. of EEE
  • 27. Problem • Find the marginal probability of (a) X and (b) Y 27Vijaya Laxmi, Dept. of EEE
  • 28. Solution • Marginal Prob. function of X,                2 21 11 22 1 3 1 14 0 7 1 6 )()(1 xforc xforc xforc xfxfxXP X • Marginal Prob. function of Y,                   3 14 5 15 2 7 2 12 1 14 3 9 0 7 1 6 )()(2 yforc yforc yforc yforc yfyfyYP Y 28Vijaya Laxmi, Dept. of EEE
  • 29. Problem • Show that the RVs X and Y are dependent 29Vijaya Laxmi, Dept. of EEE
  • 30. Solution • If x and y are independent, then for all x and y      yYPxXPyYxXP  ,   42 5 1,2  YXP 30     14 3 1, 21 11 2,  YPandXPBut dependentareYandX  14 3 . 21 11 42 5 Vijaya Laxmi, Dept. of EEE
  • 31. Problem • If X and Y are two cont. RV, whose joint density function is given by 0 51,40 ),(      otherwise yxforcxy yxf    2,3)( 32,21)( )(   YXPc YXPb caFind 31Vijaya Laxmi, Dept. of EEE
  • 32. Solution • (a) • (b) 96 1 96 1),( 4 0 5 1 4 0 5 1                        cc dxxydyccxydxdy dxdyyxf x yx y • (c)   128 5 96 32,21 2 1 3 2     x y dxdy xy YXP   128 7 96 2,3 4 3 2 1     x y dxdy xy YXP 32Vijaya Laxmi, Dept. of EEE
  • 33. Problem • Find the Marginal distribution function of X and Y 33Vijaya Laxmi, Dept. of EEE
  • 34. Solution • Marginal Distribution function of X   1696 1 96 ),()( 2 0 5 10 5 1 x duuvdvdudv uv dudvvufxXPxF x u v x u v x u v X                             34 .0)(,0 1)(,4 40,    xFx xFxFor xBecause X X            41 40 16 00 )( 2 xfor xfor x xfor xFX Vijaya Laxmi, Dept. of EEE
  • 35. • Marginal Prob. function of Y,          u y v Y y dudvvufyYPyF 24 1 ),()( 2 51,  yBecause 35 .0)(,1 1)(,5   yFy yFyFor Y Y             51 51 24 1 10 )( 2 yfor yfor y yfor yFY Vijaya Laxmi, Dept. of EEE
  • 36. Change of Variables (Discrete RVs) • Theorem 1: If X is a discrete RV having Prob. Function f(x) and another RV U is defined by U=ø(X) • For each value of X there corresponds one and only one value of U,one value of U, • Proof:  )()(,.., )( ufugUoffnprobThen UX             UfuXP uXPuUPug     )( )()( 36Vijaya Laxmi, Dept. of EEE
  • 37. • Theorem 2: If X and Y is discrete RVs having joint prob. Function f(x,y) • Another RV U and V defined by    YXVandYXU ,, 21   • For each pair of values of X and Y there corresponds one and only one pair of values of U & V • Then, joint Prob. Function of U & V is given by    VUYandVUX ,, 21       vuvufvug ,,,),( 21  37Vijaya Laxmi, Dept. of EEE
  • 38. • Proof:                 vuvuf vuYvuXP vYXuYXPvVuUPvug ,,, ,,, ,,,,),( 21 21 21       38Vijaya Laxmi, Dept. of EEE
  • 39. Change of Variables (Continuous RVs) • Theorem 1: If X is a continuous RV having Prob. Function f(x) and another RV U is defined by U=ø(X), where • Then, prob. Density function of U is given by g(u), )(UX  Then, prob. Density function of U is given by g(u), where    uuf du dx xfug dxxfduug ' )()()( )()(   39Vijaya Laxmi, Dept. of EEE
  • 40. • Proof: If u is an increasing function i.e., if x increases then u increases. u u2 u1     )()( 2 2 2121     dxxfduug xXxPuUuP u u v v x1 x2 u1 x         0)('')()( )()( 2 1 2 1 1 1 '      uhereuufug duuufduug u u u u u v   This can be proved for 0)('0)('  uoru  40Vijaya Laxmi, Dept. of EEE
  • 41. • Theorem 2: • The joint density function g(u,v) of U and V is given by        VUYVUXwhere YXVYXUDefine ,,,, ,,, 21 21     by • Where,     Jvuvufvug dxdyyxfdudvvug ,,,),( ),(),( 21       v y u y v x u x vu yx J             , , 41Vijaya Laxmi, Dept. of EEE
  • 42. • Proof: • If x and y increases then, u and v also increases    21212121 ,, yYyxXxPvVvuUuP  2 22 2 x yu v This can be proved also for 0J 42          2 1 2 1 2 1 2 1 2 1 2 1 ,,, ),(),( 21 u u v v x x y y u u v v Jdudvvuvuf dxdyyxfdudvvug       0,,,),( 21  JhereJvuvufvug  Vijaya Laxmi, Dept. of EEE
  • 43. Problem • If X is a discrete RV with prob. Function • Find the prob. Function of RV       otherwise xfor xf x 0 ....3,2,12 )( 14 XU • Find the prob. Function of RV 43Vijaya Laxmi, Dept. of EEE
  • 45. Problem • If X is a Cont. RV with density function • Find the prob. Density Function for      otherwise xforx xf 0 6381/ )( 2  XU  12 3 1 • Find the prob. Density Function for 3 45Vijaya Laxmi, Dept. of EEE
  • 46. Solution   2,6 ,5,3 3'    ux anduxFor dx du u  uxux xu 312312 12 3 1   Check:      5 2 2 .1 27 312 du u 46           otherwise u u ug 0 52, 27 312 )( 2 Vijaya Laxmi, Dept. of EEE
  • 47. Problem • If X and Y are two cont. RVs whose joint density function is given by       otherwise yandx xy yxf 0 5140 96),( • Find the density function of U=X+2Y  otherwise0 47Vijaya Laxmi, Dept. of EEE
  • 49. • Marginal density function of U is given by ufordv vuv ufordv vuv ug v u v 106 384 )( 62 384 )( )( 4 0 2 0 1                         otherwise u uu u u u uu ufordv vuv uv v ,0 1410, 2304 2128348 106, 144 83 62, 2304 42 1410 384 )( 384 3 2 4 10 0                    49Vijaya Laxmi, Dept. of EEE
  • 50. Expected Value of function of random variables • The expected value of Z=g(X,Y) can be obtained by          continuouslyjoYXdxdyyxfyxg ZE YX int,,),( )( ,              RVsdiscreteYXyxpyxg ZE i niYX n ni ,,, )( , 50Vijaya Laxmi, Dept. of EEE
  • 51. Sum of Random Variables • Let Z=X+Y, Find E(Z)            ''',''' )()( , dydxyxfyx YXEZE YX                ''',''''','' ,, dydxyxfydydxyxfx YXYX The expected value of the sum of two random variables is equal to the sum of individual expected values. X and Y need not be independent. 51                                   ''',''''','' ,, dydxyxfydxdyyxfx YXYX     )()( '''''' YEXE dyyfydxxfx YX        Vijaya Laxmi, Dept. of EEE
  • 52. • The expected values of sum of n random variables is equal to the sum of the expected values.        nn XEXEXEXXXE  ........ 2121       nn XEXEXEXXXE  ........ 2121 52Vijaya Laxmi, Dept. of EEE
  • 53. Sum of Discrete RVs • If X and Y are two discrete RVs     yxyfyxxf yxfyxYXE x y     ),(),( ),(    YEXE yxyfyxxf x yx y    ),(),( 53Vijaya Laxmi, Dept. of EEE
  • 54. Expected value of Product of Two RVs • If X and Y are two independent RVs • Proof: (continuous RV)      YEXEXYE                     YEXE dyyfydxxfx dydxyfxfyx dydxyxfyxXYE YX YX YX                                  '''''' '''()''' ''',''' , 54Vijaya Laxmi, Dept. of EEE
  • 55. Product of two discrete RVs • If X and Y are two independent RVs )()(),( 21 yfxfyxf          x y yfxxyf yxxyfXYE )()( ),(   x y yfxxyf )()( 21 55       YEXE YExxf yyfxxf x x y             )( )()( 1 21 Vijaya Laxmi, Dept. of EEE
  • 56. Product of functions of Random variables • If X and Y are two independent RVs and g(X,Y)=g1(X)g2(Y) • Find • Solution:              dydxyfxfygxgYgXgE YX2121 ''''''            YgEXgEYXgE 21),(                            YgEXgE dyyfygdxxfxg dydxyfxfygxgYgXgE YX YX 21 21 2121 '''''' ''''''                         56Vijaya Laxmi, Dept. of EEE
  • 57. • In general, for n independent RVs, nXXX ,........, 21                nnnn XgEXgEXgEXgXgXgE ................. 22112211                nnnn 22112211 57Vijaya Laxmi, Dept. of EEE
  • 58. Conditional Probability Distribution • For P(A)>0, Probability of event B given that A has occurred         )(| )( | APABPBAPor AP BAP ABP    • If X and Y are discrete RVs with events (A:X=x) and (B:Y=y)   Xofprobinalmtheisxfwhere xf yxf xyf .arg)(, )( ),( | 1 1  58Vijaya Laxmi, Dept. of EEE
  • 59. • Conditional prob. function of Y given X is given by • Conditional prob. function of X given Y is given by   )( ),( |( xf yxf xyf X  • Conditional prob. function of X given Y is given by   )( ),( | yf yxf yxf Y  59Vijaya Laxmi, Dept. of EEE
  • 60. Conditional Probability Distribution for Cont. RV • If X and Y are two cont. RVs, the conditional prob. Density function of Y given X is given by   )( ),( | xf yxf xyf  )( xf X 60Vijaya Laxmi, Dept. of EEE
  • 61. Problem • The joint density function of two cont. RVs X and Y are given by       otherwise yxxy yxf 0 10,10, 4 3 ),3( • Find (a) • (b)  otherwise0  xyf        dxXYP 2 1 2 1 2 1 61Vijaya Laxmi, Dept. of EEE
  • 62. Solution • (a) For 0<x<1                 10, 43 ),( 4 23 24 3 4 3 )( 1 0 1 y xy yxf xx dyxyxf • (b)        )(0 10, 23 )( ),( 1 definednototherwise y x xf yxf xyf 16 9 4 23 2 1 2 1 2 1 2 1 2/1 2/1                     dy y dyyfdxXYP 62Vijaya Laxmi, Dept. of EEE
  • 63. Variance of Sum of Two RVs • For two independent RVs X and Y, Var(X+Y)=Var(X)+Var(Y) • Proof:             )( 2 YXEYXVar YX                                             )()( 2 2 2 22 22 22 22 2 YVarXVar YEXE YEYEXEXE YEYXEXE YYXXE YXE YX YYXX YYXX YYXX YX            63Vijaya Laxmi, Dept. of EEE
  • 64. • Var(X-Y)=Var(X)+Var(Y) • Proof:             )( 2 2 YXE YXEYXVar YX YX                                   )()( 2 2 22 22 22 YVarXVar YEXE YEYEXEXE YYXXE YXE YX YYXX YYXX YX          64Vijaya Laxmi, Dept. of EEE
  • 65. Variance of Sum of Two RVs • In general, XYYXYXor YXCovYVarXVarYXVar  2, ),(2)()()( 222    65Vijaya Laxmi, Dept. of EEE
  • 66. Correlation and Covariance of Two RVs • The jkth joint moment of two RVs X and Y is defined as                  kj YX kjKj ContinuouslyjoYandXFordxdyyxfyxYXE int,,   i n niYX k n j i RVsdiscreteYandXyxpyx ,, If j=0, moments of Y are obtained If k=0, moments of X are obtained If j=k=1, E[XY] gives the correlation of X and Y IF E[XY]=0, X and Y are orthogonal 66Vijaya Laxmi, Dept. of EEE
  • 67. Jkth central moment about the mean • The jkth central moment of X and Y about the mean is given by     k Y j X YXE   If j=2, k=0, variance of X is obtained If j=0, k=2, variance of Y is obtained If j=k=1, Covariance of X and Y is obtained     YandXofianceCoYXCovYXE YX var),(   67Vijaya Laxmi, Dept. of EEE
  • 68. Covariance of Two RVs                      YEXEYEXEXYE YEXEXYE YXXYE YXEYXCov YXXY YXXY YX     2 ),(                   YEXEXYE YEXEYEXEXYE   2 Hence, Cov(X,Y)=E[XY], if either of the RVs has mean value equal to zero 68Vijaya Laxmi, Dept. of EEE
  • 69. Problem • If X and Y are two independent RVs each having density function       otherwise ufore uf u 0 02 )( 2 • Find      XYEYXEYXE ,, 22  69Vijaya Laxmi, Dept. of EEE
  • 70. Solution       1 2.2. 0 2 0 2         dyeydxex YEXEYXE yx   1 4 22       dxdyexyeXYE yx Check E[X+Y]=E[X]+E[Y] E[XY]=E[X]E[Y] 70   4 4 0 0 22     dxdyexyeXYE yx   122 0 22 0 2222       dyeydxexYXE yx Vijaya Laxmi, Dept. of EEE
  • 71. Problem • If X and Y are two discrete independent RVs        4/3.2 3/2.0 3/1.1 probwith Y probwith probwith X • Find      4/1.3 probwith Y        YXEXYEYXEYXE 222 ,,2,23  71Vijaya Laxmi, Dept. of EEE
  • 72. Solution       3 1 0 3 2 1 3 1 XE       4 3 3 4 1 2 4 3 YE 72       2 5 4 3 2 3 1 3 2323               YEXEYXE Vijaya Laxmi, Dept. of EEE
  • 73.      22  YEXEYXE       4 1 4 3 . 3 1   YEXEXYE       4 1 4 3 . 3 1   YEXEYXE 73Vijaya Laxmi, Dept. of EEE
  • 74.       3 1 0 3 2 1 3 1 22 XE       4 21 4 9 33 4 1 2 4 3 222 YE 74       12 55 4 21 3 2 4 21 3 1 2 22 2222               YEXEYXE Vijaya Laxmi, Dept. of EEE
  • 75. Problem • If X and Y are two independent RVs, find the Covariance • Solution:           0 ),(    YX YX YEXE YXEYXCov   0 For the pairs of independent RVs, Covariance is zero. 75Vijaya Laxmi, Dept. of EEE
  • 76. Correlation Coefficient of X and Y • The correlation coefficient between the two RVs, X and Y is given by      YEXEXYEYXCov YXYX YX ),( ,       deviationdardSYVarandXVarwhere YX tan)()(,   11 ,  YX X and Y are uncorrelated, if 0, YX If X and Y are independent, Cov(X,Y)=0, 0,  YX If X and Y are independent, they are uncorrelated. -------From Theorem 4 76Vijaya Laxmi, Dept. of EEE
  • 77. Theorems on Covariance • Theorem 1: • Theorem 2: If X and Y are independent RVs • Theorem 3:      YEXEXYEXY  0),(  YXCovXY • Theorem 3: • Theorem 4:   XYYXYXor YXCovYVarXVarYXVar  2, ),(2)()( 222    YXXY   If X and Y are independent, Theorem 3 reduces to Theorem 4. The converse of Theorem 3 is not necessarily true. 77Vijaya Laxmi, Dept. of EEE
  • 78. Problem • If X and Y are two discrete RVs, whose joint density function is given by • Find E[X], E[Y], E[XY], E[X2], E[Y2], Var(X), Var(Y), Cov(X,Y) and   otherwise yxforyxcyxf 0 30,202),(  • Find E[X], E[Y], E[XY], E[X2], E[Y2], Var(X), Var(Y), Cov(X,Y) and correlation coeff. 78Vijaya Laxmi, Dept. of EEE
  • 79. Solution • We have X Y 0 1 2 3 Total 0 0 C 2c 3c 6c 1 2c 3c 4c 5c 14c1 2c 3c 4c 5c 14c 2 4c 5c 6c 7c 22c Total 6c 9c 12c 15c 42c 79Vijaya Laxmi, Dept. of EEE
  • 80.     cccc xfxyxfxyxxfXE x y xx y 5822.214.16.0 )(,),(                  yyfyxfyyxyfYE x y yy x )(,,           80 ccccc x y yy x 7815.312.29.16.0       c ccc yxxyfXYE x y 102 ........3.3.02.2.0.1.00.0.0 ,     Vijaya Laxmi, Dept. of EEE
  • 81.                       ccccc yxfyyxfyYE x y y x 1921531229160 ,, 2222 222                              cccc yxfxyxfxXE x y x y 10222214160 ,, 222 222            81              2222 2222 78192)( 58102)( ccYEYEYVar ccXEXEXVar Y X           YX YX YXCov ccc YEXEXYEYXCov    ),( 78.58102 ),(,    Vijaya Laxmi, Dept. of EEE
  • 82. Problem • If X and Y are two Cont. RVs • Find (a) c • (b) E[X]          otherwise yxforyxc yxf 0 50,622 , • (c) E[Y] • (d) E[XY] • (e) E[Y2] • (f) Var(X) • (g) Var(Y) • (h) Cov(X,Y) • (i) Correlation Coeff. 82Vijaya Laxmi, Dept. of EEE
  • 83. Solution     210 1 12 1,sin 6 2 5 0              c dxdyyxc dxdyyxfgU x y     2681 6 5   83     63 268 2 210 1 6 2 5 0    x y dxdyyxxXE     7 80 2 210 1        dxdyyxxyXYE     63 170 2 210 1        dxdyyxyYE Vijaya Laxmi, Dept. of EEE
  • 84.   63 12202 XE      3969 5036 )( 222  XEXEXVarX 7938 16225 )(2  YVarY   126 11752 YE 84       3969 200 ),(  YEXEXYEYXCov 03129.0 YX XY    7938 Y Vijaya Laxmi, Dept. of EEE
  • 85. Problem • Let Ɵ be uniformly distributed RV in the interval (0,2π) and X and Y are two RVs defined as X=Cos Ɵ, Y=SinƟ. • Show that X and Y are uncorrelated.Show that X and Y are uncorrelated. 85Vijaya Laxmi, Dept. of EEE
  • 86. Solution • The marginal PDF of X and Y are arcsine functions which are nonzero in the interval • So, if X and Y were independent the point (X,Y) would assume all values in the square. • But, this is not the case, hence X and Y are dependent. 1111  yandx • But, this is not the case, hence X and Y are dependent. (CosƟ, SinƟ) Ɵ y x 1 -1 -1 1 86Vijaya Laxmi, Dept. of EEE
  • 87.     02 4 1 2 1 2 0 2 0            dSin dCosSinCosSinEXYE Since E[X]=E[Y]=0, X and Y are uncorrelated Uncorrelated but dependent Random Variables 87Vijaya Laxmi, Dept. of EEE
  • 88. Conditional Expectation, Variance and Moments • The conditional expectation of a RV Y given X is expressed as • Properties:  If X and Y are independent,     dxxXxmeansxXwheredyxyyfxXYE     ,  If X and Y are independent,     YExXYE          XYEEdxxfxXYEYE     1 88Vijaya Laxmi, Dept. of EEE
  • 89. • Hence,          YoffunctionaisYhwhereXYhEEYhE ,      and thKKK ,  89      origintheaboutmomentktheisYwhereXYEEYE thKKK , Vijaya Laxmi, Dept. of EEE
  • 90. Theorem     XYEEYE  Proof:                  dxxfXYE dxxfXYEXYEERHS X :      dxxfXYE X 90                        dxdyxf xf yxf y dxxfdyxyyf XY XY ,      YEdyyyf dxdyyxfy            , Vijaya Laxmi, Dept. of EEE
  • 91. Problem • If X and Y are two RVs whose density function is given by     otherwise yxforyxcyxf 0 30,202,  • Find E[Y|X=2] 91Vijaya Laxmi, Dept. of EEE
  • 92. Solution • The marginal density function of RV X is given by • And, marginal density function of Y is given by            222 114 06 1 xforc xforc xforc xf • And, marginal density function of Y is given by               315 212 19 06 2 yforc yforc yforc yforc yf 92Vijaya Laxmi, Dept. of EEE
  • 93. • The conditional density function of Y given X=2 is obtained as         22 4 42/22 42/2, 2 1 yyx xf yxf yf     93              yy y yyyfXYE 22 4 22         11 19 22 7 3 22 6 2 22 5 1 22 4 0                          Vijaya Laxmi, Dept. of EEE
  • 94. Problem • The average time of travel from city ‘A’ to city ‘B’ is ‘c’ hours by car and ‘b’ hours by bus. A man cannot decide whether to drive the car or to take bus, so he tosses a coin. What is the expected time of travel? 94Vijaya Laxmi, Dept. of EEE
  • 95. Solution • X is RV, which is the outcome of toss • Y is travel time  1 0   XifY XifYY car The RVs X and Y are independent, because Ycar and Ybus are independent of X • Using Property 1, • Using Property 2, (for discrete RVs) • 1XifYbus             bYEXYEXYE cYEXYEXYE busbus carcar   11 00           2 1100 bc XPXYEXPXYEYE    95Vijaya Laxmi, Dept. of EEE
  • 96. Conditional Variance • The conditional variance of Y given X is defined as • The rth conditional moment of Y about any value a is given as         xXYEwhere ydxyfyxXYE      2 2 2 2 2   a is given as           dyxyfayxXaYE rr The usual theorems for variance and moments extend to conditional variance and moments. 96Vijaya Laxmi, Dept. of EEE
  • 97. Gaussian PDF and CDF     2 2 2 2 1 :   mx X exfXofPDF          x mx dxexXPCDF ' 2 1 : 2 2 2 '   FX(x) is the CDF of Gaussian RV with zero mean and unit variance. 97    mxtLet  '                      mx dtexFThen mx t X 2 2 2 1 ,      x t dtexwhere 2 2 2 1   Vijaya Laxmi, Dept. of EEE
  • 98. Gaussian PDF • Show that Gaussian PDF integrates to one. • Solution: • Take Square of PDF of Gaussian RV            dyedxedxe yxx 22 2 2 222 11                  dxdye dyedxedxe yx 2 22 2 1 22   98 1 2 1 , 0 2 0 2 0 2 22          drrerdrde rSinyrCosxLet rr     Vijaya Laxmi, Dept. of EEE
  • 99. Joint Characteristic Function • The Joint Ch. Fn of n RVs, is given by • And, the joint ch. fn. of two RVs X and Y is given by      nn n XXXj nXXX eE     ... 21..... 2211 21 ,...,, nXXX ,...,, 21        eE YXj YX 21 , 21,               dxdyeyxf yxj YX 21 ,,  Joint Characteristic function is the 2-dimensional Fourier transform of joint PDF of X and Y               2121,2, 21 , 4 1 ,    ddeyxf yxj YXYX 99Vijaya Laxmi, Dept. of EEE
  • 100. Marginal Characteristic Function          ,0 0, XYY XYX   If X and Y are independent                21 21 21 2121 ,     YX YjXj YjXjYXj XY eEeE eeEeE    100Vijaya Laxmi, Dept. of EEE
  • 101.                               21 0 2 0 1 21 !! , 21 ki ki k k i i YjXj XY jj YXE k Yj i Xj E eeE             0 0 21 !!i k ki k j i j YXE  101     0,021 21 21 |, 1 ,       XYki ki ki ki j YXE And Vijaya Laxmi, Dept. of EEE
  • 102. Problem • If Z=aX+bY, find the ch. Fn. Of Z • Solution:               ba eEeE XY bYaXjbYaXj Z ,   • If X and Y are independent         baba YXXYZ  , 102Vijaya Laxmi, Dept. of EEE
  • 103. Problem • If U and V are independent zero mean, unit variance Gaussian RV, and • X=U+V and Y=2U+V • Find the joint ch. Fn of X and Y and find E[XY]• Find the joint ch. Fn of X and Y and find E[XY] 103Vijaya Laxmi, Dept. of EEE
  • 104. Solution • The joint Ch. Fn. Of X and Y is given by • The joint Ch. Fn. Of U and V is given by                   )2( 2 21 2121 2121 , VUj VUVUjYXj XY eE eEeE                 2 ,     eEeE VjUj                  2 21 2 21 2121 2 1 2 2 1 2121 2 21 2 ,          ee eEeE VU VjUj XY   2/22     jm X e 104     3 |, 1 0,021 21 2 2 21        XY j XYE We have Vijaya Laxmi, Dept. of EEE
  • 105. Jointly Gaussian RV • The RVs X and Y are said to be jointly Gaussian, if their joint PDF has the form     2 2 2 2 2 2 1 1 , 2 1 1 2 , 12 2 12 1 exp , YX YX XY mymymxmx yxf                                                     • for • 2 ,21 12 YX   yandx 105Vijaya Laxmi, Dept. of EEE
  • 106. Problem • The PDF for jointly Gaussian RVs is given by           16168 3 8 3 16 3 4 2 1 , 22 2 1 , yx xy yx YX eyxf  • Find E[X], E[Y], Var(X), Var(Y) and Cov(X,Y) 106Vijaya Laxmi, Dept. of EEE
  • 107. Problem • The joint PDF of X and Y is given by • Find the marginal PDF.           yxeyxf yxyx YX ,, 12 1 , 222 12/2 2,   • Find the marginal PDF. 107Vijaya Laxmi, Dept. of EEE
  • 108. Solution • The marginal PDF of X is obtained by integrating f(x,y) over y as                       2, 12 12 2222212/ 2 12/ 12/2 2 12/ 2222 22 22 22 xxy x xyy x X xxxyyHeredye e dye e xf                          2 122 2, 12 2 2 12/2 2 2 22 2 x xy x e dy ee xxxyyHeredye              108Vijaya Laxmi, Dept. of EEE
  • 109. • Hence  The last integral equals one because its integrand is a Gaussian PDF with mean and variance  The marginal PDF of X is a one-dimensional Gaussian PDF with mean x 2 1   The marginal PDF of X is a one-dimensional Gaussian PDF with mean 0 and variance 1. Form symmetry, the marginal PDF of Y will also be a Gaussian PDF with mean 0 and variance 1. 109Vijaya Laxmi, Dept. of EEE
  • 110. N jointly Gaussian RV • The RVs are said to be jointly Gaussian RVs if their joint PDF is given by • nXXX ,...,, 21                    n T nXXXX bydefinedvectorscolumnaremandXwhere K mXKmX xxxfXf n , 2 2 1 exp ,...,,)( 2 1 2 1 21,...,, 21  •                                                                                             nnn n n nnn XVarXXCovXXCov XXCovXVarXXCov XXCovXXCovXVar Kand XE XE XE m m m m x x x X ..,, ..... ..... ,.., ,.., , . . . ., . . 21 2212 1211 2 1 2 1 2 1 Where, K is called the Covariance Matrix 110Vijaya Laxmi, Dept. of EEE