SlideShare a Scribd company logo
14SQL SERVER: INTRODUCTION TO DATA MINING USING SQL SERVER
What is a Data Mining?Data mining is the process of analyzing a data set to find patternsData mining can also defined as deriving of knowledge from raw-data
AliasesData mining is also known  by the following terms:
Importance of Data miningThe Amount of data in the contemporary world is humungous. By studying this data and understanding the trend and patterns, one can understand the system better. Due to data mining, conclusions which are profitable for an organization  or decisions which may help a librarian manage books better: may be arrived at. Pervasiveness of data:CRM(Customer Relationship Management)ERP(Enterprise Resource Planning)Database serversData PoolWeb Server Logs
Data MiningThe traditional SQL queries that we learnt till now follow the method of ‘querying’ and based upon the response, ‘explore’ the system more. Query and Exploration MethodData Mining MethodThe Data mining methodology hence takes the opposite direction as that of query methodsHere, the important attribute on which the analysis is based is the ‘name’. Hence, it is called as the class
ApplicationsThe Application of data mining covers a wide domain. Any place where data is involved can be operated upon using data mining. Some of the real world applications of data mining are as follows:
Algorithms for Data miningThe Data mining systems utilize a wide variety of algorithms. The Four common algorithm types are:
Tasks involved in Data MiningThe Process of data mining is divided into various steps as follows:  Classification
  Clustering
  Association
  Regression
  ForecastingLet us have a look at them
ClassificationClassification is the process of grouping items into meaningful groups. The Groups are later treated as a single element and the relation between the groups are analyzed. Simply put, it is the task of assigning a group to each case.Example:Data Set
ClusteringClustering is the process of grouping data items based on some attributesExample:Data SetClustered based on nearness
Data mining algorithmsData Mining is a complex methodology which needs advanced algorithms operating on useful data.The Data mining algorithms are mainly divided into 2 types:Supervising algorithmUnsupervising algorithmIn a supervising algorithm, the system needs a target(may be a set of attributes) to learn againstWhereas the Unsupervising algorithm, iterates till the boundaries of the problem are reached

More Related Content

What's hot (17)

Data pre processing
Data pre processingData pre processing
Data pre processing
pommurajopt
 
data mining
data miningdata mining
data mining
manasa polu
 
Data mining nouman javed
Data mining   nouman javedData mining   nouman javed
Data mining nouman javed
nouman javed
 
Data Mining Technniques
Data Mining TechnniquesData Mining Technniques
Data Mining Technniques
Livares Technologies Pvt Ltd
 
Data reduction
Data reductionData reduction
Data reduction
kalavathisugan
 
Manage your Datasets
Manage your DatasetsManage your Datasets
Manage your Datasets
Eng Teong Cheah
 
Data mining
Data miningData mining
Data mining
snegacmr
 
Data preprocessing
Data preprocessingData preprocessing
Data preprocessing
ankur bhalla
 
XL-MINER: Associations
XL-MINER: AssociationsXL-MINER: Associations
XL-MINER: Associations
DataminingTools Inc
 
Data Mining: Data processing
Data Mining: Data processingData Mining: Data processing
Data Mining: Data processing
DataminingTools Inc
 
Elementary data organisation
Elementary data organisationElementary data organisation
Elementary data organisation
Muzamil Hussain
 
Knowledge Discovery & Representation
Knowledge Discovery & RepresentationKnowledge Discovery & Representation
Knowledge Discovery & Representation
Darshan Patil
 
Exploratory data analysis with Python
Exploratory data analysis with PythonExploratory data analysis with Python
Exploratory data analysis with Python
Davis David
 
A random decision tree frameworkfor privacy preserving data mining
A random decision tree frameworkfor privacy preserving data miningA random decision tree frameworkfor privacy preserving data mining
A random decision tree frameworkfor privacy preserving data mining
Venkat Projects
 
Data Dictionary in System Analysis and Design
Data Dictionary in System Analysis and DesignData Dictionary in System Analysis and Design
Data Dictionary in System Analysis and Design
Arafat Hossan
 
Data warehouse logical design
Data warehouse logical designData warehouse logical design
Data warehouse logical design
Er. Nawaraj Bhandari
 
Data Mining: Classification and analysis
Data Mining: Classification and analysisData Mining: Classification and analysis
Data Mining: Classification and analysis
DataminingTools Inc
 
Data pre processing
Data pre processingData pre processing
Data pre processing
pommurajopt
 
Data mining nouman javed
Data mining   nouman javedData mining   nouman javed
Data mining nouman javed
nouman javed
 
Data mining
Data miningData mining
Data mining
snegacmr
 
Data preprocessing
Data preprocessingData preprocessing
Data preprocessing
ankur bhalla
 
Elementary data organisation
Elementary data organisationElementary data organisation
Elementary data organisation
Muzamil Hussain
 
Knowledge Discovery & Representation
Knowledge Discovery & RepresentationKnowledge Discovery & Representation
Knowledge Discovery & Representation
Darshan Patil
 
Exploratory data analysis with Python
Exploratory data analysis with PythonExploratory data analysis with Python
Exploratory data analysis with Python
Davis David
 
A random decision tree frameworkfor privacy preserving data mining
A random decision tree frameworkfor privacy preserving data miningA random decision tree frameworkfor privacy preserving data mining
A random decision tree frameworkfor privacy preserving data mining
Venkat Projects
 
Data Dictionary in System Analysis and Design
Data Dictionary in System Analysis and DesignData Dictionary in System Analysis and Design
Data Dictionary in System Analysis and Design
Arafat Hossan
 
Data Mining: Classification and analysis
Data Mining: Classification and analysisData Mining: Classification and analysis
Data Mining: Classification and analysis
DataminingTools Inc
 

Viewers also liked (7)

Commands of DML in SQL
Commands of DML in SQLCommands of DML in SQL
Commands of DML in SQL
Ashish Gaurkhede
 
SQL for interview
SQL for interviewSQL for interview
SQL for interview
Aditya Kumar Tripathy
 
Database Systems - SQL - DDL Statements (Chapter 3/2)
Database Systems - SQL - DDL Statements (Chapter 3/2)Database Systems - SQL - DDL Statements (Chapter 3/2)
Database Systems - SQL - DDL Statements (Chapter 3/2)
Vidyasagar Mundroy
 
MS Sql Server: Introduction To Database Concepts
MS Sql Server: Introduction To Database ConceptsMS Sql Server: Introduction To Database Concepts
MS Sql Server: Introduction To Database Concepts
DataminingTools Inc
 
DML, DDL, DCL ,DRL/DQL and TCL Statements in SQL with Examples
DML, DDL, DCL ,DRL/DQL and TCL Statements in SQL with ExamplesDML, DDL, DCL ,DRL/DQL and TCL Statements in SQL with Examples
DML, DDL, DCL ,DRL/DQL and TCL Statements in SQL with Examples
LGS, GBHS&IC, University Of South-Asia, TARA-Technologies
 
Sql Server Basics
Sql Server BasicsSql Server Basics
Sql Server Basics
rainynovember12
 
Ad

Similar to MS SQL SERVER: Introduction To Datamining Suing Sql Server (20)

Data mining introduction
Data mining introductionData mining introduction
Data mining introduction
Basma Gamal
 
Data mining
Data miningData mining
Data mining
hardavishah56
 
Overview of Data Mining
Overview of Data MiningOverview of Data Mining
Overview of Data Mining
ijtsrd
 
Seminar Report Vaibhav
Seminar Report VaibhavSeminar Report Vaibhav
Seminar Report Vaibhav
Vaibhav Dhattarwal
 
DWDM_UNIT4.pptx ddddddddddddddddddddddddddddd
DWDM_UNIT4.pptx dddddddddddddddddddddddddddddDWDM_UNIT4.pptx ddddddddddddddddddddddddddddd
DWDM_UNIT4.pptx ddddddddddddddddddddddddddddd
GangeshSawarkar
 
Introduction to-data-mining chapter 1
Introduction to-data-mining  chapter 1Introduction to-data-mining  chapter 1
Introduction to-data-mining chapter 1
Mahmoud Alfarra
 
Business Intelligence and Analytics Unit-2 part-A .pptx
Business Intelligence and Analytics Unit-2 part-A .pptxBusiness Intelligence and Analytics Unit-2 part-A .pptx
Business Intelligence and Analytics Unit-2 part-A .pptx
RupaRani28
 
Lecture2 (1).ppt
Lecture2 (1).pptLecture2 (1).ppt
Lecture2 (1).ppt
Minakshee Patil
 
Unit 4 Advanced Data Analytics
Unit 4 Advanced Data AnalyticsUnit 4 Advanced Data Analytics
Unit 4 Advanced Data Analytics
Rani Channamma University, Sangolli Rayanna First Grade Constituent College, Belagavi
 
G045033841
G045033841G045033841
G045033841
IJERA Editor
 
Data Mining
Data MiningData Mining
Data Mining
Gary Stefan
 
Data Mining Presentation.pptx
Data Mining Presentation.pptxData Mining Presentation.pptx
Data Mining Presentation.pptx
ChingChingErm
 
Data mining concepts
Data mining conceptsData mining concepts
Data mining concepts
Basit Rafiq
 
2 introductory slides
2 introductory slides2 introductory slides
2 introductory slides
tafosepsdfasg
 
Data mining
Data miningData mining
Data mining
Ahmed Moussa
 
Data mining and privacy preserving in data mining
Data mining and privacy preserving in data miningData mining and privacy preserving in data mining
Data mining and privacy preserving in data mining
Needa Multani
 
Introduction to Data Mining
Introduction to Data Mining Introduction to Data Mining
Introduction to Data Mining
Sushil Kulkarni
 
01 Introduction to Data Mining
01 Introduction to Data Mining01 Introduction to Data Mining
01 Introduction to Data Mining
Valerii Klymchuk
 
Introduction to Data Mining and Data Warehousing
Introduction to Data Mining and Data WarehousingIntroduction to Data Mining and Data Warehousing
Introduction to Data Mining and Data Warehousing
yokeshmca
 
Data mining
Data miningData mining
Data mining
Alisha Korpal
 
Ad

More from sqlserver content (20)

MS SQL SERVER: Using the data mining tools
MS SQL SERVER: Using the data mining toolsMS SQL SERVER: Using the data mining tools
MS SQL SERVER: Using the data mining tools
sqlserver content
 
MS SQL SERVER: SSIS and data mining
MS SQL SERVER: SSIS and data miningMS SQL SERVER: SSIS and data mining
MS SQL SERVER: SSIS and data mining
sqlserver content
 
MS SQL SERVER: Programming sql server data mining
MS SQL SERVER:  Programming sql server data miningMS SQL SERVER:  Programming sql server data mining
MS SQL SERVER: Programming sql server data mining
sqlserver content
 
MS SQL SERVER: Olap cubes and data mining
MS SQL SERVER:  Olap cubes and data miningMS SQL SERVER:  Olap cubes and data mining
MS SQL SERVER: Olap cubes and data mining
sqlserver content
 
MS SQL SERVER: Microsoft time series algorithm
MS SQL SERVER: Microsoft time series algorithmMS SQL SERVER: Microsoft time series algorithm
MS SQL SERVER: Microsoft time series algorithm
sqlserver content
 
MS SQL SERVER: Microsoft sequence clustering and association rules
MS SQL SERVER: Microsoft sequence clustering and association rulesMS SQL SERVER: Microsoft sequence clustering and association rules
MS SQL SERVER: Microsoft sequence clustering and association rules
sqlserver content
 
MS SQL SERVER: Neural network and logistic regression
MS SQL SERVER: Neural network and logistic regressionMS SQL SERVER: Neural network and logistic regression
MS SQL SERVER: Neural network and logistic regression
sqlserver content
 
MS SQL SERVER: Microsoft naive bayes algorithm
MS SQL SERVER: Microsoft naive bayes algorithmMS SQL SERVER: Microsoft naive bayes algorithm
MS SQL SERVER: Microsoft naive bayes algorithm
sqlserver content
 
MS SQL SERVER: Decision trees algorithm
MS SQL SERVER: Decision trees algorithmMS SQL SERVER: Decision trees algorithm
MS SQL SERVER: Decision trees algorithm
sqlserver content
 
MS SQL Server: Data mining concepts and dmx
MS SQL Server: Data mining concepts and dmxMS SQL Server: Data mining concepts and dmx
MS SQL Server: Data mining concepts and dmx
sqlserver content
 
MS Sql Server: Reporting models
MS Sql Server: Reporting modelsMS Sql Server: Reporting models
MS Sql Server: Reporting models
sqlserver content
 
MS Sql Server: Reporting manipulating data
MS Sql Server: Reporting manipulating dataMS Sql Server: Reporting manipulating data
MS Sql Server: Reporting manipulating data
sqlserver content
 
MS Sql Server: Reporting introduction
MS Sql Server: Reporting introductionMS Sql Server: Reporting introduction
MS Sql Server: Reporting introduction
sqlserver content
 
MS Sql Server: Reporting basics
MS Sql  Server: Reporting basicsMS Sql  Server: Reporting basics
MS Sql Server: Reporting basics
sqlserver content
 
MS Sql Server: Datamining Introduction
MS Sql Server: Datamining IntroductionMS Sql Server: Datamining Introduction
MS Sql Server: Datamining Introduction
sqlserver content
 
MS Sql Server: Business Intelligence
MS Sql Server: Business IntelligenceMS Sql Server: Business Intelligence
MS Sql Server: Business Intelligence
sqlserver content
 
MS SQLSERVER:Feeding Data Into Database
MS SQLSERVER:Feeding Data Into DatabaseMS SQLSERVER:Feeding Data Into Database
MS SQLSERVER:Feeding Data Into Database
sqlserver content
 
MS SQLSERVER:Doing Calculations With Functions
MS SQLSERVER:Doing Calculations With FunctionsMS SQLSERVER:Doing Calculations With Functions
MS SQLSERVER:Doing Calculations With Functions
sqlserver content
 
MS SQLSERVER:Deleting A Database
MS SQLSERVER:Deleting A DatabaseMS SQLSERVER:Deleting A Database
MS SQLSERVER:Deleting A Database
sqlserver content
 
MS SQLSERVER:Customizing Your D Base Design
MS SQLSERVER:Customizing Your D Base DesignMS SQLSERVER:Customizing Your D Base Design
MS SQLSERVER:Customizing Your D Base Design
sqlserver content
 
MS SQL SERVER: Using the data mining tools
MS SQL SERVER: Using the data mining toolsMS SQL SERVER: Using the data mining tools
MS SQL SERVER: Using the data mining tools
sqlserver content
 
MS SQL SERVER: SSIS and data mining
MS SQL SERVER: SSIS and data miningMS SQL SERVER: SSIS and data mining
MS SQL SERVER: SSIS and data mining
sqlserver content
 
MS SQL SERVER: Programming sql server data mining
MS SQL SERVER:  Programming sql server data miningMS SQL SERVER:  Programming sql server data mining
MS SQL SERVER: Programming sql server data mining
sqlserver content
 
MS SQL SERVER: Olap cubes and data mining
MS SQL SERVER:  Olap cubes and data miningMS SQL SERVER:  Olap cubes and data mining
MS SQL SERVER: Olap cubes and data mining
sqlserver content
 
MS SQL SERVER: Microsoft time series algorithm
MS SQL SERVER: Microsoft time series algorithmMS SQL SERVER: Microsoft time series algorithm
MS SQL SERVER: Microsoft time series algorithm
sqlserver content
 
MS SQL SERVER: Microsoft sequence clustering and association rules
MS SQL SERVER: Microsoft sequence clustering and association rulesMS SQL SERVER: Microsoft sequence clustering and association rules
MS SQL SERVER: Microsoft sequence clustering and association rules
sqlserver content
 
MS SQL SERVER: Neural network and logistic regression
MS SQL SERVER: Neural network and logistic regressionMS SQL SERVER: Neural network and logistic regression
MS SQL SERVER: Neural network and logistic regression
sqlserver content
 
MS SQL SERVER: Microsoft naive bayes algorithm
MS SQL SERVER: Microsoft naive bayes algorithmMS SQL SERVER: Microsoft naive bayes algorithm
MS SQL SERVER: Microsoft naive bayes algorithm
sqlserver content
 
MS SQL SERVER: Decision trees algorithm
MS SQL SERVER: Decision trees algorithmMS SQL SERVER: Decision trees algorithm
MS SQL SERVER: Decision trees algorithm
sqlserver content
 
MS SQL Server: Data mining concepts and dmx
MS SQL Server: Data mining concepts and dmxMS SQL Server: Data mining concepts and dmx
MS SQL Server: Data mining concepts and dmx
sqlserver content
 
MS Sql Server: Reporting models
MS Sql Server: Reporting modelsMS Sql Server: Reporting models
MS Sql Server: Reporting models
sqlserver content
 
MS Sql Server: Reporting manipulating data
MS Sql Server: Reporting manipulating dataMS Sql Server: Reporting manipulating data
MS Sql Server: Reporting manipulating data
sqlserver content
 
MS Sql Server: Reporting introduction
MS Sql Server: Reporting introductionMS Sql Server: Reporting introduction
MS Sql Server: Reporting introduction
sqlserver content
 
MS Sql Server: Reporting basics
MS Sql  Server: Reporting basicsMS Sql  Server: Reporting basics
MS Sql Server: Reporting basics
sqlserver content
 
MS Sql Server: Datamining Introduction
MS Sql Server: Datamining IntroductionMS Sql Server: Datamining Introduction
MS Sql Server: Datamining Introduction
sqlserver content
 
MS Sql Server: Business Intelligence
MS Sql Server: Business IntelligenceMS Sql Server: Business Intelligence
MS Sql Server: Business Intelligence
sqlserver content
 
MS SQLSERVER:Feeding Data Into Database
MS SQLSERVER:Feeding Data Into DatabaseMS SQLSERVER:Feeding Data Into Database
MS SQLSERVER:Feeding Data Into Database
sqlserver content
 
MS SQLSERVER:Doing Calculations With Functions
MS SQLSERVER:Doing Calculations With FunctionsMS SQLSERVER:Doing Calculations With Functions
MS SQLSERVER:Doing Calculations With Functions
sqlserver content
 
MS SQLSERVER:Deleting A Database
MS SQLSERVER:Deleting A DatabaseMS SQLSERVER:Deleting A Database
MS SQLSERVER:Deleting A Database
sqlserver content
 
MS SQLSERVER:Customizing Your D Base Design
MS SQLSERVER:Customizing Your D Base DesignMS SQLSERVER:Customizing Your D Base Design
MS SQLSERVER:Customizing Your D Base Design
sqlserver content
 

Recently uploaded (20)

Floods in Valencia: Two FME-Powered Stories of Data Resilience
Floods in Valencia: Two FME-Powered Stories of Data ResilienceFloods in Valencia: Two FME-Powered Stories of Data Resilience
Floods in Valencia: Two FME-Powered Stories of Data Resilience
Safe Software
 
AI Agents in Logistics and Supply Chain Applications Benefits and Implementation
AI Agents in Logistics and Supply Chain Applications Benefits and ImplementationAI Agents in Logistics and Supply Chain Applications Benefits and Implementation
AI Agents in Logistics and Supply Chain Applications Benefits and Implementation
Christine Shepherd
 
National Fuels Treatments Initiative: Building a Seamless Map of Hazardous Fu...
National Fuels Treatments Initiative: Building a Seamless Map of Hazardous Fu...National Fuels Treatments Initiative: Building a Seamless Map of Hazardous Fu...
National Fuels Treatments Initiative: Building a Seamless Map of Hazardous Fu...
Safe Software
 
Precisely Demo Showcase: Powering ServiceNow Discovery with Precisely Ironstr...
Precisely Demo Showcase: Powering ServiceNow Discovery with Precisely Ironstr...Precisely Demo Showcase: Powering ServiceNow Discovery with Precisely Ironstr...
Precisely Demo Showcase: Powering ServiceNow Discovery with Precisely Ironstr...
Precisely
 
cnc-drilling-dowel-inserting-machine-drillteq-d-510-english.pdf
cnc-drilling-dowel-inserting-machine-drillteq-d-510-english.pdfcnc-drilling-dowel-inserting-machine-drillteq-d-510-english.pdf
cnc-drilling-dowel-inserting-machine-drillteq-d-510-english.pdf
AmirStern2
 
Azure vs AWS Which Cloud Platform Is Best for Your Business in 2025
Azure vs AWS  Which Cloud Platform Is Best for Your Business in 2025Azure vs AWS  Which Cloud Platform Is Best for Your Business in 2025
Azure vs AWS Which Cloud Platform Is Best for Your Business in 2025
Infrassist Technologies Pvt. Ltd.
 
TrustArc Webinar - 2025 Global Privacy Survey
TrustArc Webinar - 2025 Global Privacy SurveyTrustArc Webinar - 2025 Global Privacy Survey
TrustArc Webinar - 2025 Global Privacy Survey
TrustArc
 
“State-space Models vs. Transformers for Ultra-low-power Edge AI,” a Presenta...
“State-space Models vs. Transformers for Ultra-low-power Edge AI,” a Presenta...“State-space Models vs. Transformers for Ultra-low-power Edge AI,” a Presenta...
“State-space Models vs. Transformers for Ultra-low-power Edge AI,” a Presenta...
Edge AI and Vision Alliance
 
Domino IQ – What to Expect, First Steps and Use Cases
Domino IQ – What to Expect, First Steps and Use CasesDomino IQ – What to Expect, First Steps and Use Cases
Domino IQ – What to Expect, First Steps and Use Cases
panagenda
 
Enabling BIM / GIS integrations with Other Systems with FME
Enabling BIM / GIS integrations with Other Systems with FMEEnabling BIM / GIS integrations with Other Systems with FME
Enabling BIM / GIS integrations with Other Systems with FME
Safe Software
 
Oracle Cloud and AI Specialization Program
Oracle Cloud and AI Specialization ProgramOracle Cloud and AI Specialization Program
Oracle Cloud and AI Specialization Program
VICTOR MAESTRE RAMIREZ
 
Introduction to Internet of things .ppt.
Introduction to Internet of things .ppt.Introduction to Internet of things .ppt.
Introduction to Internet of things .ppt.
hok12341073
 
“Solving Tomorrow’s AI Problems Today with Cadence’s Newest Processor,” a Pre...
“Solving Tomorrow’s AI Problems Today with Cadence’s Newest Processor,” a Pre...“Solving Tomorrow’s AI Problems Today with Cadence’s Newest Processor,” a Pre...
“Solving Tomorrow’s AI Problems Today with Cadence’s Newest Processor,” a Pre...
Edge AI and Vision Alliance
 
Can We Use Rust to Develop Extensions for PostgreSQL? (POSETTE: An Event for ...
Can We Use Rust to Develop Extensions for PostgreSQL? (POSETTE: An Event for ...Can We Use Rust to Develop Extensions for PostgreSQL? (POSETTE: An Event for ...
Can We Use Rust to Develop Extensions for PostgreSQL? (POSETTE: An Event for ...
NTT DATA Technology & Innovation
 
June Patch Tuesday
June Patch TuesdayJune Patch Tuesday
June Patch Tuesday
Ivanti
 
If You Use Databricks, You Definitely Need FME
If You Use Databricks, You Definitely Need FMEIf You Use Databricks, You Definitely Need FME
If You Use Databricks, You Definitely Need FME
Safe Software
 
Oracle Cloud Infrastructure Generative AI Professional
Oracle Cloud Infrastructure Generative AI ProfessionalOracle Cloud Infrastructure Generative AI Professional
Oracle Cloud Infrastructure Generative AI Professional
VICTOR MAESTRE RAMIREZ
 
Kubernetes Security Act Now Before It’s Too Late
Kubernetes Security Act Now Before It’s Too LateKubernetes Security Act Now Before It’s Too Late
Kubernetes Security Act Now Before It’s Too Late
Michael Furman
 
TimeSeries Machine Learning - PyData London 2025
TimeSeries Machine Learning - PyData London 2025TimeSeries Machine Learning - PyData London 2025
TimeSeries Machine Learning - PyData London 2025
Suyash Joshi
 
How to Detect Outliers in IBM SPSS Statistics.pptx
How to Detect Outliers in IBM SPSS Statistics.pptxHow to Detect Outliers in IBM SPSS Statistics.pptx
How to Detect Outliers in IBM SPSS Statistics.pptx
Version 1 Analytics
 
Floods in Valencia: Two FME-Powered Stories of Data Resilience
Floods in Valencia: Two FME-Powered Stories of Data ResilienceFloods in Valencia: Two FME-Powered Stories of Data Resilience
Floods in Valencia: Two FME-Powered Stories of Data Resilience
Safe Software
 
AI Agents in Logistics and Supply Chain Applications Benefits and Implementation
AI Agents in Logistics and Supply Chain Applications Benefits and ImplementationAI Agents in Logistics and Supply Chain Applications Benefits and Implementation
AI Agents in Logistics and Supply Chain Applications Benefits and Implementation
Christine Shepherd
 
National Fuels Treatments Initiative: Building a Seamless Map of Hazardous Fu...
National Fuels Treatments Initiative: Building a Seamless Map of Hazardous Fu...National Fuels Treatments Initiative: Building a Seamless Map of Hazardous Fu...
National Fuels Treatments Initiative: Building a Seamless Map of Hazardous Fu...
Safe Software
 
Precisely Demo Showcase: Powering ServiceNow Discovery with Precisely Ironstr...
Precisely Demo Showcase: Powering ServiceNow Discovery with Precisely Ironstr...Precisely Demo Showcase: Powering ServiceNow Discovery with Precisely Ironstr...
Precisely Demo Showcase: Powering ServiceNow Discovery with Precisely Ironstr...
Precisely
 
cnc-drilling-dowel-inserting-machine-drillteq-d-510-english.pdf
cnc-drilling-dowel-inserting-machine-drillteq-d-510-english.pdfcnc-drilling-dowel-inserting-machine-drillteq-d-510-english.pdf
cnc-drilling-dowel-inserting-machine-drillteq-d-510-english.pdf
AmirStern2
 
Azure vs AWS Which Cloud Platform Is Best for Your Business in 2025
Azure vs AWS  Which Cloud Platform Is Best for Your Business in 2025Azure vs AWS  Which Cloud Platform Is Best for Your Business in 2025
Azure vs AWS Which Cloud Platform Is Best for Your Business in 2025
Infrassist Technologies Pvt. Ltd.
 
TrustArc Webinar - 2025 Global Privacy Survey
TrustArc Webinar - 2025 Global Privacy SurveyTrustArc Webinar - 2025 Global Privacy Survey
TrustArc Webinar - 2025 Global Privacy Survey
TrustArc
 
“State-space Models vs. Transformers for Ultra-low-power Edge AI,” a Presenta...
“State-space Models vs. Transformers for Ultra-low-power Edge AI,” a Presenta...“State-space Models vs. Transformers for Ultra-low-power Edge AI,” a Presenta...
“State-space Models vs. Transformers for Ultra-low-power Edge AI,” a Presenta...
Edge AI and Vision Alliance
 
Domino IQ – What to Expect, First Steps and Use Cases
Domino IQ – What to Expect, First Steps and Use CasesDomino IQ – What to Expect, First Steps and Use Cases
Domino IQ – What to Expect, First Steps and Use Cases
panagenda
 
Enabling BIM / GIS integrations with Other Systems with FME
Enabling BIM / GIS integrations with Other Systems with FMEEnabling BIM / GIS integrations with Other Systems with FME
Enabling BIM / GIS integrations with Other Systems with FME
Safe Software
 
Oracle Cloud and AI Specialization Program
Oracle Cloud and AI Specialization ProgramOracle Cloud and AI Specialization Program
Oracle Cloud and AI Specialization Program
VICTOR MAESTRE RAMIREZ
 
Introduction to Internet of things .ppt.
Introduction to Internet of things .ppt.Introduction to Internet of things .ppt.
Introduction to Internet of things .ppt.
hok12341073
 
“Solving Tomorrow’s AI Problems Today with Cadence’s Newest Processor,” a Pre...
“Solving Tomorrow’s AI Problems Today with Cadence’s Newest Processor,” a Pre...“Solving Tomorrow’s AI Problems Today with Cadence’s Newest Processor,” a Pre...
“Solving Tomorrow’s AI Problems Today with Cadence’s Newest Processor,” a Pre...
Edge AI and Vision Alliance
 
Can We Use Rust to Develop Extensions for PostgreSQL? (POSETTE: An Event for ...
Can We Use Rust to Develop Extensions for PostgreSQL? (POSETTE: An Event for ...Can We Use Rust to Develop Extensions for PostgreSQL? (POSETTE: An Event for ...
Can We Use Rust to Develop Extensions for PostgreSQL? (POSETTE: An Event for ...
NTT DATA Technology & Innovation
 
June Patch Tuesday
June Patch TuesdayJune Patch Tuesday
June Patch Tuesday
Ivanti
 
If You Use Databricks, You Definitely Need FME
If You Use Databricks, You Definitely Need FMEIf You Use Databricks, You Definitely Need FME
If You Use Databricks, You Definitely Need FME
Safe Software
 
Oracle Cloud Infrastructure Generative AI Professional
Oracle Cloud Infrastructure Generative AI ProfessionalOracle Cloud Infrastructure Generative AI Professional
Oracle Cloud Infrastructure Generative AI Professional
VICTOR MAESTRE RAMIREZ
 
Kubernetes Security Act Now Before It’s Too Late
Kubernetes Security Act Now Before It’s Too LateKubernetes Security Act Now Before It’s Too Late
Kubernetes Security Act Now Before It’s Too Late
Michael Furman
 
TimeSeries Machine Learning - PyData London 2025
TimeSeries Machine Learning - PyData London 2025TimeSeries Machine Learning - PyData London 2025
TimeSeries Machine Learning - PyData London 2025
Suyash Joshi
 
How to Detect Outliers in IBM SPSS Statistics.pptx
How to Detect Outliers in IBM SPSS Statistics.pptxHow to Detect Outliers in IBM SPSS Statistics.pptx
How to Detect Outliers in IBM SPSS Statistics.pptx
Version 1 Analytics
 

MS SQL SERVER: Introduction To Datamining Suing Sql Server

  • 1. 14SQL SERVER: INTRODUCTION TO DATA MINING USING SQL SERVER
  • 2. What is a Data Mining?Data mining is the process of analyzing a data set to find patternsData mining can also defined as deriving of knowledge from raw-data
  • 3. AliasesData mining is also known by the following terms:
  • 4. Importance of Data miningThe Amount of data in the contemporary world is humungous. By studying this data and understanding the trend and patterns, one can understand the system better. Due to data mining, conclusions which are profitable for an organization or decisions which may help a librarian manage books better: may be arrived at. Pervasiveness of data:CRM(Customer Relationship Management)ERP(Enterprise Resource Planning)Database serversData PoolWeb Server Logs
  • 5. Data MiningThe traditional SQL queries that we learnt till now follow the method of ‘querying’ and based upon the response, ‘explore’ the system more. Query and Exploration MethodData Mining MethodThe Data mining methodology hence takes the opposite direction as that of query methodsHere, the important attribute on which the analysis is based is the ‘name’. Hence, it is called as the class
  • 6. ApplicationsThe Application of data mining covers a wide domain. Any place where data is involved can be operated upon using data mining. Some of the real world applications of data mining are as follows:
  • 7. Algorithms for Data miningThe Data mining systems utilize a wide variety of algorithms. The Four common algorithm types are:
  • 8. Tasks involved in Data MiningThe Process of data mining is divided into various steps as follows: Classification
  • 12. ForecastingLet us have a look at them
  • 13. ClassificationClassification is the process of grouping items into meaningful groups. The Groups are later treated as a single element and the relation between the groups are analyzed. Simply put, it is the task of assigning a group to each case.Example:Data Set
  • 14. ClusteringClustering is the process of grouping data items based on some attributesExample:Data SetClustered based on nearness
  • 15. Data mining algorithmsData Mining is a complex methodology which needs advanced algorithms operating on useful data.The Data mining algorithms are mainly divided into 2 types:Supervising algorithmUnsupervising algorithmIn a supervising algorithm, the system needs a target(may be a set of attributes) to learn againstWhereas the Unsupervising algorithm, iterates till the boundaries of the problem are reached
  • 16. Regression and ForecastingREGRESSION:In some problems, the analysis, instead of looking for patterns that describe prime attributes (classes), we look for patterns in numerical valuesThere are 2 types of regression: 1.Linear regression 2. Logostic RegressionRegression is used to solve many business problems like predicting sea-wave patterns, temperature, air pressure, and humidity.FORECASTING:As the name suggests, it is the fore telling of data from that which currently exists.Eg: Election results forecast
  • 17. Steps to takeThe Process of data mining consists of various steps which are listed below:Data Collection: Collect dataData Cleaning: Eliminate unwanted, irrelevant and wrong dataData Transformation: Change data into a word that can be used for data mining. The Types of data transformations are:Numerical TransformationGroupingAggregation: Form groups of minute data items and handle them as aggregates. It makes the process much easier.Missing Value handling: Predict missing values or eliminate all such valuesRemoving Outliers: Remove invalid dataModel Building: Build the data mining model.Model Assessment Test with a large amount of data. If a model needs change, make it immediately.
  • 18. What to do next?The Microsoft Office 2007 supports a wide variety of data mining tools. Visit the site www.sqlserverdatamining.com and download the MS Access 2007 Add-on for data mining. Install the add-on.Working with the Access 07 Data mining tools will be handled in the next set of presentations.Summary Data mining
  • 24. Steps involvedVisit more self help tutorialsPick a tutorial of your choice and browse through it at your own pace.The tutorials section is free, self-guiding and will not involve any additional support.Visit us at www.dataminingtools.net