SlideShare a Scribd company logo
Programming SQL Server Data Mining
overviewData Mining APIsProgramming AMO Data Mining ObjectsStored ProceduresCreating Stored ProceduresExecuting Stored ProceduresDeploying and Debugging Stored Procedure AssembliesSummary
Data Mining APIsThe major APIs used in Analysis Services programming.
Data Mining APIsThe major APIs used in Analysis Services programming.
Data Mining APIs
Programming AMO Data Mining Objects steps in programming data mining objects by using AMO create the data structure model.
create the data mining model that supports the mining algorithm you want to use in order to predict or to find the relationships underlying your data.
process the mining models to obtain the trained models that you will use later when querying and predicting from the client application.Note: AMO is not for querying; AMO is for managing and administering your mining structures and models.          To query your data, use ADOMD.NET
Mining Structure Objects     A mining structure contains a binding to a data source view that is defined in the database, and contains definitions for all columns participating in the mining models Steps followed to Creating a MiningStructure object are:Create the MiningStructure object and populate the basic attributes
Create columns for the model. Each column needs a name and internal ID, a type, a content definition, and a binding.
Update the MiningStructure object to the server, by using the Update method of the object.MiningModel ObjectsSteps  to create a MiningModel object :Create the MiningModel object and populate the basic attributes. (object name, object ID, and mining algorithm specification)
Add the columns of the mining model.       One of the columns must be defined as the case key.Update the MiningModel object to the server, by using the Update method of the object.MiningModel objects can be processed independently of other models in the parent MiningStructure.Stored ProceduresStored procedures can be used to call external routines from Microsoft SQL Server Analysis Services
 You can write an external routines called by a stored procedure in any common language runtime (CLR) language, such as C, C++, C#, Visual Basic, or Visual Basic .NET.
Stored procedures can be used to add business functionality to your applications that is not provided by the native functionality of MDXCreating Stored ProceduresAll stored procedures must be associated with a common language runtime (CLR) or Component Object Model (COM) class in order to be used. The class must be installed on the server — usually in the form of a Microsoft ActiveX® dynamic link library (DLL) — and registered as an assembly on the server or in an Analysis Services database.Server stored procedures can be called from any query context. Database stored procedures can only be accessed if the database context is the database under which the stored procedure is defined. For a server or a deployed Microsoft SQL Server Analysis Services database on a server, you can use SQL Server Management Studio to register an assembly. For an Analysis Services project, you can use Analysis Services Designer to register an assembly in the project.
Executing Stored ProceduresServer ADOMD.NET allows you to execute DMX queries using the same objects that you would use with ADOMD.NET.The only exception is that you do not have to specify a connection, because you are already connected. You can copy the results from the query into a DataTable, or you can simply return the DataReader returned by ExecuteReader.

More Related Content

What's hot (20)

5\9 SSIS 2008R2_Training - DataFlow Basics
5\9 SSIS 2008R2_Training - DataFlow Basics5\9 SSIS 2008R2_Training - DataFlow Basics
5\9 SSIS 2008R2_Training - DataFlow Basics
Pramod Singla
 
6.2\9 SSIS 2008R2_Training - DataFlow Transformations
6.2\9 SSIS 2008R2_Training - DataFlow Transformations6.2\9 SSIS 2008R2_Training - DataFlow Transformations
6.2\9 SSIS 2008R2_Training - DataFlow Transformations
Pramod Singla
 
Introduction to ADO.NET
Introduction to ADO.NETIntroduction to ADO.NET
Introduction to ADO.NET
rchakra
 
Chap14 ado.net
Chap14 ado.netChap14 ado.net
Chap14 ado.net
mentorrbuddy
 
Ado .net
Ado .netAdo .net
Ado .net
Manish Singh
 
Ado.net
Ado.netAdo.net
Ado.net
dina1985vlr
 
SQL Server 2008 for Developers
SQL Server 2008 for DevelopersSQL Server 2008 for Developers
SQL Server 2008 for Developers
llangit
 
Tech Days09 Sqldev
Tech Days09 SqldevTech Days09 Sqldev
Tech Days09 Sqldev
llangit
 
ADO.NET
ADO.NETADO.NET
ADO.NET
Farzad Wadia
 
ASP.NET 08 - Data Binding And Representation
ASP.NET 08 - Data Binding And RepresentationASP.NET 08 - Data Binding And Representation
ASP.NET 08 - Data Binding And Representation
Randy Connolly
 
6.1\9 SSIS 2008R2_Training - DataFlow Transformations
6.1\9 SSIS 2008R2_Training - DataFlow Transformations6.1\9 SSIS 2008R2_Training - DataFlow Transformations
6.1\9 SSIS 2008R2_Training - DataFlow Transformations
Pramod Singla
 
GRID VIEW PPT
GRID VIEW PPTGRID VIEW PPT
GRID VIEW PPT
bon secours college for women,
 
Database Connection
Database ConnectionDatabase Connection
Database Connection
John Joseph San Juan
 
Stored procedure tuning and optimization t sql
Stored procedure tuning and optimization t sqlStored procedure tuning and optimization t sql
Stored procedure tuning and optimization t sql
nishantdavid9
 
Web based database application design using vb.net and sql server
Web based database application design using vb.net and sql serverWeb based database application design using vb.net and sql server
Web based database application design using vb.net and sql server
Ammara Arooj
 
Database programming in vb net
Database programming in vb netDatabase programming in vb net
Database programming in vb net
Zishan yousaf
 
Ado.net
Ado.netAdo.net
Ado.net
Iblesoft
 
U-SQL Does SQL (SQLBits 2016)
U-SQL Does SQL (SQLBits 2016)U-SQL Does SQL (SQLBits 2016)
U-SQL Does SQL (SQLBits 2016)
Michael Rys
 
Ado.Net Tutorial
Ado.Net TutorialAdo.Net Tutorial
Ado.Net Tutorial
prabhu rajendran
 
MS SQL Server
MS SQL ServerMS SQL Server
MS SQL Server
Md. Mahedee Hasan
 
5\9 SSIS 2008R2_Training - DataFlow Basics
5\9 SSIS 2008R2_Training - DataFlow Basics5\9 SSIS 2008R2_Training - DataFlow Basics
5\9 SSIS 2008R2_Training - DataFlow Basics
Pramod Singla
 
6.2\9 SSIS 2008R2_Training - DataFlow Transformations
6.2\9 SSIS 2008R2_Training - DataFlow Transformations6.2\9 SSIS 2008R2_Training - DataFlow Transformations
6.2\9 SSIS 2008R2_Training - DataFlow Transformations
Pramod Singla
 
Introduction to ADO.NET
Introduction to ADO.NETIntroduction to ADO.NET
Introduction to ADO.NET
rchakra
 
SQL Server 2008 for Developers
SQL Server 2008 for DevelopersSQL Server 2008 for Developers
SQL Server 2008 for Developers
llangit
 
Tech Days09 Sqldev
Tech Days09 SqldevTech Days09 Sqldev
Tech Days09 Sqldev
llangit
 
ASP.NET 08 - Data Binding And Representation
ASP.NET 08 - Data Binding And RepresentationASP.NET 08 - Data Binding And Representation
ASP.NET 08 - Data Binding And Representation
Randy Connolly
 
6.1\9 SSIS 2008R2_Training - DataFlow Transformations
6.1\9 SSIS 2008R2_Training - DataFlow Transformations6.1\9 SSIS 2008R2_Training - DataFlow Transformations
6.1\9 SSIS 2008R2_Training - DataFlow Transformations
Pramod Singla
 
Stored procedure tuning and optimization t sql
Stored procedure tuning and optimization t sqlStored procedure tuning and optimization t sql
Stored procedure tuning and optimization t sql
nishantdavid9
 
Web based database application design using vb.net and sql server
Web based database application design using vb.net and sql serverWeb based database application design using vb.net and sql server
Web based database application design using vb.net and sql server
Ammara Arooj
 
Database programming in vb net
Database programming in vb netDatabase programming in vb net
Database programming in vb net
Zishan yousaf
 
U-SQL Does SQL (SQLBits 2016)
U-SQL Does SQL (SQLBits 2016)U-SQL Does SQL (SQLBits 2016)
U-SQL Does SQL (SQLBits 2016)
Michael Rys
 

Viewers also liked (20)

Classification
ClassificationClassification
Classification
DataminingTools Inc
 
Oratoria E RetóRica Latinas
Oratoria E RetóRica LatinasOratoria E RetóRica Latinas
Oratoria E RetóRica Latinas
lara
 
Survival Strategies For Testers
Survival Strategies For TestersSurvival Strategies For Testers
Survival Strategies For Testers
Erik Altena
 
SPSS: Data Editor
SPSS: Data EditorSPSS: Data Editor
SPSS: Data Editor
DataminingTools Inc
 
MS Sql Server: Manipulating Database
MS Sql Server: Manipulating DatabaseMS Sql Server: Manipulating Database
MS Sql Server: Manipulating Database
DataminingTools Inc
 
LíRica Latina 2ºBac Lara Lozano
LíRica Latina 2ºBac Lara LozanoLíRica Latina 2ºBac Lara Lozano
LíRica Latina 2ºBac Lara Lozano
lara
 
Direct-services portfolio
Direct-services portfolioDirect-services portfolio
Direct-services portfolio
vlastakolaja
 
R: Apply Functions
R: Apply FunctionsR: Apply Functions
R: Apply Functions
DataminingTools Inc
 
Control Statements in Matlab
Control Statements in  MatlabControl Statements in  Matlab
Control Statements in Matlab
DataminingTools Inc
 
LISP: Scope and extent in lisp
LISP: Scope and extent in lispLISP: Scope and extent in lisp
LISP: Scope and extent in lisp
DataminingTools Inc
 
Procedures And Functions in Matlab
Procedures And Functions in MatlabProcedures And Functions in Matlab
Procedures And Functions in Matlab
DataminingTools Inc
 
Festivals Refuerzo
Festivals RefuerzoFestivals Refuerzo
Festivals Refuerzo
guest9536ef5
 
Cinnamonhotel saigon 2013_01
Cinnamonhotel saigon 2013_01Cinnamonhotel saigon 2013_01
Cinnamonhotel saigon 2013_01
cinnamonhotel
 
Introduction To Programming in Matlab
Introduction To Programming in MatlabIntroduction To Programming in Matlab
Introduction To Programming in Matlab
DataminingTools Inc
 
MySql:Introduction
MySql:IntroductionMySql:Introduction
MySql:Introduction
DataminingTools Inc
 
RapidMiner: Nested Subprocesses
RapidMiner:   Nested SubprocessesRapidMiner:   Nested Subprocesses
RapidMiner: Nested Subprocesses
DataminingTools Inc
 
Ontwikkeling In Eigen Handen Nl Web
Ontwikkeling In Eigen Handen Nl WebOntwikkeling In Eigen Handen Nl Web
Ontwikkeling In Eigen Handen Nl Web
Infirmiers de rue ASBL
 
LISP: Declarations In Lisp
LISP: Declarations In LispLISP: Declarations In Lisp
LISP: Declarations In Lisp
DataminingTools Inc
 
Drc 2010 D.J.Pawlik
Drc 2010 D.J.PawlikDrc 2010 D.J.Pawlik
Drc 2010 D.J.Pawlik
slrommel
 
Oratoria E RetóRica Latinas
Oratoria E RetóRica LatinasOratoria E RetóRica Latinas
Oratoria E RetóRica Latinas
lara
 
Survival Strategies For Testers
Survival Strategies For TestersSurvival Strategies For Testers
Survival Strategies For Testers
Erik Altena
 
MS Sql Server: Manipulating Database
MS Sql Server: Manipulating DatabaseMS Sql Server: Manipulating Database
MS Sql Server: Manipulating Database
DataminingTools Inc
 
LíRica Latina 2ºBac Lara Lozano
LíRica Latina 2ºBac Lara LozanoLíRica Latina 2ºBac Lara Lozano
LíRica Latina 2ºBac Lara Lozano
lara
 
Direct-services portfolio
Direct-services portfolioDirect-services portfolio
Direct-services portfolio
vlastakolaja
 
Procedures And Functions in Matlab
Procedures And Functions in MatlabProcedures And Functions in Matlab
Procedures And Functions in Matlab
DataminingTools Inc
 
Festivals Refuerzo
Festivals RefuerzoFestivals Refuerzo
Festivals Refuerzo
guest9536ef5
 
Cinnamonhotel saigon 2013_01
Cinnamonhotel saigon 2013_01Cinnamonhotel saigon 2013_01
Cinnamonhotel saigon 2013_01
cinnamonhotel
 
Introduction To Programming in Matlab
Introduction To Programming in MatlabIntroduction To Programming in Matlab
Introduction To Programming in Matlab
DataminingTools Inc
 
Drc 2010 D.J.Pawlik
Drc 2010 D.J.PawlikDrc 2010 D.J.Pawlik
Drc 2010 D.J.Pawlik
slrommel
 
Ad

Similar to MS SQL SERVER: Programming sql server data mining (20)

Data Mining With SQL Server
Data Mining With SQL ServerData Mining With SQL Server
Data Mining With SQL Server
Hoan Phuc
 
Document Classification using DMX in SQL Server Analysis Services
Document Classification using DMX in SQL Server Analysis ServicesDocument Classification using DMX in SQL Server Analysis Services
Document Classification using DMX in SQL Server Analysis Services
Mark Tabladillo
 
SQL Server: Data Mining
SQL Server: Data MiningSQL Server: Data Mining
SQL Server: Data Mining
DataminingTools Inc
 
MS Sql Server: Datamining Introduction
MS Sql Server: Datamining IntroductionMS Sql Server: Datamining Introduction
MS Sql Server: Datamining Introduction
sqlserver content
 
MS SQL SERVER: Using the data mining tools
MS SQL SERVER: Using the data mining toolsMS SQL SERVER: Using the data mining tools
MS SQL SERVER: Using the data mining tools
sqlserver content
 
MS SQL SERVER: Using the data mining tools
MS SQL SERVER: Using the data mining toolsMS SQL SERVER: Using the data mining tools
MS SQL SERVER: Using the data mining tools
DataminingTools Inc
 
Introduction To Sql Server Data Mining
Introduction To Sql Server Data MiningIntroduction To Sql Server Data Mining
Introduction To Sql Server Data Mining
Hugo Olivera Alonso
 
24 Hours of PASS -- Enterprise Data Mining with SQL Server
24 Hours of PASS -- Enterprise Data Mining with SQL Server24 Hours of PASS -- Enterprise Data Mining with SQL Server
24 Hours of PASS -- Enterprise Data Mining with SQL Server
Mark Tabladillo
 
MS SQL Server: Data mining concepts and dmx
MS SQL Server: Data mining concepts and dmxMS SQL Server: Data mining concepts and dmx
MS SQL Server: Data mining concepts and dmx
sqlserver content
 
MS SQL SERVER: Data mining concepts and dmx
MS SQL SERVER: Data mining concepts and dmxMS SQL SERVER: Data mining concepts and dmx
MS SQL SERVER: Data mining concepts and dmx
DataminingTools Inc
 
Data Mining for Developers
Data Mining for DevelopersData Mining for Developers
Data Mining for Developers
llangit
 
SQL Saturday 119 Chicago -- Enterprise Data Mining with SQL Server
SQL Saturday 119 Chicago -- Enterprise Data Mining with SQL ServerSQL Saturday 119 Chicago -- Enterprise Data Mining with SQL Server
SQL Saturday 119 Chicago -- Enterprise Data Mining with SQL Server
Mark Tabladillo
 
SQL Saturday 86 -- Enterprise Data Mining with SQL Server
SQL Saturday 86 -- Enterprise Data Mining with SQL ServerSQL Saturday 86 -- Enterprise Data Mining with SQL Server
SQL Saturday 86 -- Enterprise Data Mining with SQL Server
Mark Tabladillo
 
Minería de Datos en Sql Server 2008
Minería de Datos en Sql Server 2008Minería de Datos en Sql Server 2008
Minería de Datos en Sql Server 2008
Eduardo Castro
 
SQL Saturday 108 -- Enterprise Data Mining with SQL Server
SQL Saturday 108 -- Enterprise Data Mining with SQL ServerSQL Saturday 108 -- Enterprise Data Mining with SQL Server
SQL Saturday 108 -- Enterprise Data Mining with SQL Server
Mark Tabladillo
 
11 qmds2005 session16
11 qmds2005 session1611 qmds2005 session16
11 qmds2005 session16
Niit Care
 
BI 2008 Simple
BI 2008 SimpleBI 2008 Simple
BI 2008 Simple
llangit
 
Data mining extensions dmx - reference
Data mining extensions   dmx - referenceData mining extensions   dmx - reference
Data mining extensions dmx - reference
Steve Xu
 
SQL Saturday 109 -- Enterprise Data Mining with SQL Server
SQL Saturday 109 -- Enterprise Data Mining with SQL ServerSQL Saturday 109 -- Enterprise Data Mining with SQL Server
SQL Saturday 109 -- Enterprise Data Mining with SQL Server
Mark Tabladillo
 
Developing with SQL Server Analysis Services 201310
Developing with SQL Server Analysis Services 201310Developing with SQL Server Analysis Services 201310
Developing with SQL Server Analysis Services 201310
Mark Tabladillo
 
Data Mining With SQL Server
Data Mining With SQL ServerData Mining With SQL Server
Data Mining With SQL Server
Hoan Phuc
 
Document Classification using DMX in SQL Server Analysis Services
Document Classification using DMX in SQL Server Analysis ServicesDocument Classification using DMX in SQL Server Analysis Services
Document Classification using DMX in SQL Server Analysis Services
Mark Tabladillo
 
MS Sql Server: Datamining Introduction
MS Sql Server: Datamining IntroductionMS Sql Server: Datamining Introduction
MS Sql Server: Datamining Introduction
sqlserver content
 
MS SQL SERVER: Using the data mining tools
MS SQL SERVER: Using the data mining toolsMS SQL SERVER: Using the data mining tools
MS SQL SERVER: Using the data mining tools
sqlserver content
 
MS SQL SERVER: Using the data mining tools
MS SQL SERVER: Using the data mining toolsMS SQL SERVER: Using the data mining tools
MS SQL SERVER: Using the data mining tools
DataminingTools Inc
 
Introduction To Sql Server Data Mining
Introduction To Sql Server Data MiningIntroduction To Sql Server Data Mining
Introduction To Sql Server Data Mining
Hugo Olivera Alonso
 
24 Hours of PASS -- Enterprise Data Mining with SQL Server
24 Hours of PASS -- Enterprise Data Mining with SQL Server24 Hours of PASS -- Enterprise Data Mining with SQL Server
24 Hours of PASS -- Enterprise Data Mining with SQL Server
Mark Tabladillo
 
MS SQL Server: Data mining concepts and dmx
MS SQL Server: Data mining concepts and dmxMS SQL Server: Data mining concepts and dmx
MS SQL Server: Data mining concepts and dmx
sqlserver content
 
MS SQL SERVER: Data mining concepts and dmx
MS SQL SERVER: Data mining concepts and dmxMS SQL SERVER: Data mining concepts and dmx
MS SQL SERVER: Data mining concepts and dmx
DataminingTools Inc
 
Data Mining for Developers
Data Mining for DevelopersData Mining for Developers
Data Mining for Developers
llangit
 
SQL Saturday 119 Chicago -- Enterprise Data Mining with SQL Server
SQL Saturday 119 Chicago -- Enterprise Data Mining with SQL ServerSQL Saturday 119 Chicago -- Enterprise Data Mining with SQL Server
SQL Saturday 119 Chicago -- Enterprise Data Mining with SQL Server
Mark Tabladillo
 
SQL Saturday 86 -- Enterprise Data Mining with SQL Server
SQL Saturday 86 -- Enterprise Data Mining with SQL ServerSQL Saturday 86 -- Enterprise Data Mining with SQL Server
SQL Saturday 86 -- Enterprise Data Mining with SQL Server
Mark Tabladillo
 
Minería de Datos en Sql Server 2008
Minería de Datos en Sql Server 2008Minería de Datos en Sql Server 2008
Minería de Datos en Sql Server 2008
Eduardo Castro
 
SQL Saturday 108 -- Enterprise Data Mining with SQL Server
SQL Saturday 108 -- Enterprise Data Mining with SQL ServerSQL Saturday 108 -- Enterprise Data Mining with SQL Server
SQL Saturday 108 -- Enterprise Data Mining with SQL Server
Mark Tabladillo
 
11 qmds2005 session16
11 qmds2005 session1611 qmds2005 session16
11 qmds2005 session16
Niit Care
 
BI 2008 Simple
BI 2008 SimpleBI 2008 Simple
BI 2008 Simple
llangit
 
Data mining extensions dmx - reference
Data mining extensions   dmx - referenceData mining extensions   dmx - reference
Data mining extensions dmx - reference
Steve Xu
 
SQL Saturday 109 -- Enterprise Data Mining with SQL Server
SQL Saturday 109 -- Enterprise Data Mining with SQL ServerSQL Saturday 109 -- Enterprise Data Mining with SQL Server
SQL Saturday 109 -- Enterprise Data Mining with SQL Server
Mark Tabladillo
 
Developing with SQL Server Analysis Services 201310
Developing with SQL Server Analysis Services 201310Developing with SQL Server Analysis Services 201310
Developing with SQL Server Analysis Services 201310
Mark Tabladillo
 
Ad

More from DataminingTools Inc (20)

Terminology Machine Learning
Terminology Machine LearningTerminology Machine Learning
Terminology Machine Learning
DataminingTools Inc
 
Techniques Machine Learning
Techniques Machine LearningTechniques Machine Learning
Techniques Machine Learning
DataminingTools Inc
 
Machine learning Introduction
Machine learning IntroductionMachine learning Introduction
Machine learning Introduction
DataminingTools Inc
 
Areas of machine leanring
Areas of machine leanringAreas of machine leanring
Areas of machine leanring
DataminingTools Inc
 
AI: Planning and AI
AI: Planning and AIAI: Planning and AI
AI: Planning and AI
DataminingTools Inc
 
AI: Logic in AI 2
AI: Logic in AI 2AI: Logic in AI 2
AI: Logic in AI 2
DataminingTools Inc
 
AI: Logic in AI
AI: Logic in AIAI: Logic in AI
AI: Logic in AI
DataminingTools Inc
 
AI: Learning in AI 2
AI: Learning in AI 2AI: Learning in AI 2
AI: Learning in AI 2
DataminingTools Inc
 
AI: Learning in AI
AI: Learning in AI AI: Learning in AI
AI: Learning in AI
DataminingTools Inc
 
AI: Introduction to artificial intelligence
AI: Introduction to artificial intelligenceAI: Introduction to artificial intelligence
AI: Introduction to artificial intelligence
DataminingTools Inc
 
AI: Belief Networks
AI: Belief NetworksAI: Belief Networks
AI: Belief Networks
DataminingTools Inc
 
AI: AI & Searching
AI: AI & SearchingAI: AI & Searching
AI: AI & Searching
DataminingTools Inc
 
AI: AI & Problem Solving
AI: AI & Problem SolvingAI: AI & Problem Solving
AI: AI & Problem Solving
DataminingTools Inc
 
Data Mining: Text and web mining
Data Mining: Text and web miningData Mining: Text and web mining
Data Mining: Text and web mining
DataminingTools Inc
 
Data Mining: Outlier analysis
Data Mining: Outlier analysisData Mining: Outlier analysis
Data Mining: Outlier analysis
DataminingTools Inc
 
Data Mining: Mining stream time series and sequence data
Data Mining: Mining stream time series and sequence dataData Mining: Mining stream time series and sequence data
Data Mining: Mining stream time series and sequence data
DataminingTools Inc
 
Data Mining: Mining ,associations, and correlations
Data Mining: Mining ,associations, and correlationsData Mining: Mining ,associations, and correlations
Data Mining: Mining ,associations, and correlations
DataminingTools Inc
 
Data Mining: Graph mining and social network analysis
Data Mining: Graph mining and social network analysisData Mining: Graph mining and social network analysis
Data Mining: Graph mining and social network analysis
DataminingTools Inc
 
Data warehouse and olap technology
Data warehouse and olap technologyData warehouse and olap technology
Data warehouse and olap technology
DataminingTools Inc
 
Data Mining: Data processing
Data Mining: Data processingData Mining: Data processing
Data Mining: Data processing
DataminingTools Inc
 
AI: Introduction to artificial intelligence
AI: Introduction to artificial intelligenceAI: Introduction to artificial intelligence
AI: Introduction to artificial intelligence
DataminingTools Inc
 
Data Mining: Text and web mining
Data Mining: Text and web miningData Mining: Text and web mining
Data Mining: Text and web mining
DataminingTools Inc
 
Data Mining: Mining stream time series and sequence data
Data Mining: Mining stream time series and sequence dataData Mining: Mining stream time series and sequence data
Data Mining: Mining stream time series and sequence data
DataminingTools Inc
 
Data Mining: Mining ,associations, and correlations
Data Mining: Mining ,associations, and correlationsData Mining: Mining ,associations, and correlations
Data Mining: Mining ,associations, and correlations
DataminingTools Inc
 
Data Mining: Graph mining and social network analysis
Data Mining: Graph mining and social network analysisData Mining: Graph mining and social network analysis
Data Mining: Graph mining and social network analysis
DataminingTools Inc
 
Data warehouse and olap technology
Data warehouse and olap technologyData warehouse and olap technology
Data warehouse and olap technology
DataminingTools Inc
 

Recently uploaded (20)

AI Emotional Actors: “When Machines Learn to Feel and Perform"
AI Emotional Actors:  “When Machines Learn to Feel and Perform"AI Emotional Actors:  “When Machines Learn to Feel and Perform"
AI Emotional Actors: “When Machines Learn to Feel and Perform"
AkashKumar809858
 
6th Power Grid Model Meetup - 21 May 2025
6th Power Grid Model Meetup - 21 May 20256th Power Grid Model Meetup - 21 May 2025
6th Power Grid Model Meetup - 21 May 2025
DanBrown980551
 
Evaluation Challenges in Using Generative AI for Science & Technical Content
Evaluation Challenges in Using Generative AI for Science & Technical ContentEvaluation Challenges in Using Generative AI for Science & Technical Content
Evaluation Challenges in Using Generative AI for Science & Technical Content
Paul Groth
 
Contributing to WordPress With & Without Code.pptx
Contributing to WordPress With & Without Code.pptxContributing to WordPress With & Without Code.pptx
Contributing to WordPress With & Without Code.pptx
Patrick Lumumba
 
Maxx nft market place new generation nft marketing place
Maxx nft market place new generation nft marketing placeMaxx nft market place new generation nft marketing place
Maxx nft market place new generation nft marketing place
usersalmanrazdelhi
 
Kubernetes Cloud Native Indonesia Meetup - May 2025
Kubernetes Cloud Native Indonesia Meetup - May 2025Kubernetes Cloud Native Indonesia Meetup - May 2025
Kubernetes Cloud Native Indonesia Meetup - May 2025
Prasta Maha
 
New Ways to Reduce Database Costs with ScyllaDB
New Ways to Reduce Database Costs with ScyllaDBNew Ways to Reduce Database Costs with ScyllaDB
New Ways to Reduce Database Costs with ScyllaDB
ScyllaDB
 
Improving Developer Productivity With DORA, SPACE, and DevEx
Improving Developer Productivity With DORA, SPACE, and DevExImproving Developer Productivity With DORA, SPACE, and DevEx
Improving Developer Productivity With DORA, SPACE, and DevEx
Justin Reock
 
Nix(OS) for Python Developers - PyCon 25 (Bologna, Italia)
Nix(OS) for Python Developers - PyCon 25 (Bologna, Italia)Nix(OS) for Python Developers - PyCon 25 (Bologna, Italia)
Nix(OS) for Python Developers - PyCon 25 (Bologna, Italia)
Peter Bittner
 
UiPath Community Zurich: Release Management and Build Pipelines
UiPath Community Zurich: Release Management and Build PipelinesUiPath Community Zurich: Release Management and Build Pipelines
UiPath Community Zurich: Release Management and Build Pipelines
UiPathCommunity
 
Agentic AI Explained: The Next Frontier of Autonomous Intelligence & Generati...
Agentic AI Explained: The Next Frontier of Autonomous Intelligence & Generati...Agentic AI Explained: The Next Frontier of Autonomous Intelligence & Generati...
Agentic AI Explained: The Next Frontier of Autonomous Intelligence & Generati...
Aaryan Kansari
 
Offshore IT Support: Balancing In-House and Offshore Help Desk Technicians
Offshore IT Support: Balancing In-House and Offshore Help Desk TechniciansOffshore IT Support: Balancing In-House and Offshore Help Desk Technicians
Offshore IT Support: Balancing In-House and Offshore Help Desk Technicians
john823664
 
ECS25 - The adventures of a Microsoft 365 Platform Owner - Website.pptx
ECS25 - The adventures of a Microsoft 365 Platform Owner - Website.pptxECS25 - The adventures of a Microsoft 365 Platform Owner - Website.pptx
ECS25 - The adventures of a Microsoft 365 Platform Owner - Website.pptx
Jasper Oosterveld
 
Jeremy Millul - A Talented Software Developer
Jeremy Millul - A Talented Software DeveloperJeremy Millul - A Talented Software Developer
Jeremy Millul - A Talented Software Developer
Jeremy Millul
 
Dr Jimmy Schwarzkopf presentation on the SUMMIT 2025 A
Dr Jimmy Schwarzkopf presentation on the SUMMIT 2025 ADr Jimmy Schwarzkopf presentation on the SUMMIT 2025 A
Dr Jimmy Schwarzkopf presentation on the SUMMIT 2025 A
Dr. Jimmy Schwarzkopf
 
Introducing the OSA 3200 SP and OSA 3250 ePRC
Introducing the OSA 3200 SP and OSA 3250 ePRCIntroducing the OSA 3200 SP and OSA 3250 ePRC
Introducing the OSA 3200 SP and OSA 3250 ePRC
Adtran
 
Droidal: AI Agents Revolutionizing Healthcare
Droidal: AI Agents Revolutionizing HealthcareDroidal: AI Agents Revolutionizing Healthcare
Droidal: AI Agents Revolutionizing Healthcare
Droidal LLC
 
Let’s Get Slack Certified! 🚀- Slack Community
Let’s Get Slack Certified! 🚀- Slack CommunityLet’s Get Slack Certified! 🚀- Slack Community
Let’s Get Slack Certified! 🚀- Slack Community
SanjeetMishra29
 
Data Virtualization: Bringing the Power of FME to Any Application
Data Virtualization: Bringing the Power of FME to Any ApplicationData Virtualization: Bringing the Power of FME to Any Application
Data Virtualization: Bringing the Power of FME to Any Application
Safe Software
 
Securiport - A Border Security Company
Securiport  -  A Border Security CompanySecuriport  -  A Border Security Company
Securiport - A Border Security Company
Securiport
 
AI Emotional Actors: “When Machines Learn to Feel and Perform"
AI Emotional Actors:  “When Machines Learn to Feel and Perform"AI Emotional Actors:  “When Machines Learn to Feel and Perform"
AI Emotional Actors: “When Machines Learn to Feel and Perform"
AkashKumar809858
 
6th Power Grid Model Meetup - 21 May 2025
6th Power Grid Model Meetup - 21 May 20256th Power Grid Model Meetup - 21 May 2025
6th Power Grid Model Meetup - 21 May 2025
DanBrown980551
 
Evaluation Challenges in Using Generative AI for Science & Technical Content
Evaluation Challenges in Using Generative AI for Science & Technical ContentEvaluation Challenges in Using Generative AI for Science & Technical Content
Evaluation Challenges in Using Generative AI for Science & Technical Content
Paul Groth
 
Contributing to WordPress With & Without Code.pptx
Contributing to WordPress With & Without Code.pptxContributing to WordPress With & Without Code.pptx
Contributing to WordPress With & Without Code.pptx
Patrick Lumumba
 
Maxx nft market place new generation nft marketing place
Maxx nft market place new generation nft marketing placeMaxx nft market place new generation nft marketing place
Maxx nft market place new generation nft marketing place
usersalmanrazdelhi
 
Kubernetes Cloud Native Indonesia Meetup - May 2025
Kubernetes Cloud Native Indonesia Meetup - May 2025Kubernetes Cloud Native Indonesia Meetup - May 2025
Kubernetes Cloud Native Indonesia Meetup - May 2025
Prasta Maha
 
New Ways to Reduce Database Costs with ScyllaDB
New Ways to Reduce Database Costs with ScyllaDBNew Ways to Reduce Database Costs with ScyllaDB
New Ways to Reduce Database Costs with ScyllaDB
ScyllaDB
 
Improving Developer Productivity With DORA, SPACE, and DevEx
Improving Developer Productivity With DORA, SPACE, and DevExImproving Developer Productivity With DORA, SPACE, and DevEx
Improving Developer Productivity With DORA, SPACE, and DevEx
Justin Reock
 
Nix(OS) for Python Developers - PyCon 25 (Bologna, Italia)
Nix(OS) for Python Developers - PyCon 25 (Bologna, Italia)Nix(OS) for Python Developers - PyCon 25 (Bologna, Italia)
Nix(OS) for Python Developers - PyCon 25 (Bologna, Italia)
Peter Bittner
 
UiPath Community Zurich: Release Management and Build Pipelines
UiPath Community Zurich: Release Management and Build PipelinesUiPath Community Zurich: Release Management and Build Pipelines
UiPath Community Zurich: Release Management and Build Pipelines
UiPathCommunity
 
Agentic AI Explained: The Next Frontier of Autonomous Intelligence & Generati...
Agentic AI Explained: The Next Frontier of Autonomous Intelligence & Generati...Agentic AI Explained: The Next Frontier of Autonomous Intelligence & Generati...
Agentic AI Explained: The Next Frontier of Autonomous Intelligence & Generati...
Aaryan Kansari
 
Offshore IT Support: Balancing In-House and Offshore Help Desk Technicians
Offshore IT Support: Balancing In-House and Offshore Help Desk TechniciansOffshore IT Support: Balancing In-House and Offshore Help Desk Technicians
Offshore IT Support: Balancing In-House and Offshore Help Desk Technicians
john823664
 
ECS25 - The adventures of a Microsoft 365 Platform Owner - Website.pptx
ECS25 - The adventures of a Microsoft 365 Platform Owner - Website.pptxECS25 - The adventures of a Microsoft 365 Platform Owner - Website.pptx
ECS25 - The adventures of a Microsoft 365 Platform Owner - Website.pptx
Jasper Oosterveld
 
Jeremy Millul - A Talented Software Developer
Jeremy Millul - A Talented Software DeveloperJeremy Millul - A Talented Software Developer
Jeremy Millul - A Talented Software Developer
Jeremy Millul
 
Dr Jimmy Schwarzkopf presentation on the SUMMIT 2025 A
Dr Jimmy Schwarzkopf presentation on the SUMMIT 2025 ADr Jimmy Schwarzkopf presentation on the SUMMIT 2025 A
Dr Jimmy Schwarzkopf presentation on the SUMMIT 2025 A
Dr. Jimmy Schwarzkopf
 
Introducing the OSA 3200 SP and OSA 3250 ePRC
Introducing the OSA 3200 SP and OSA 3250 ePRCIntroducing the OSA 3200 SP and OSA 3250 ePRC
Introducing the OSA 3200 SP and OSA 3250 ePRC
Adtran
 
Droidal: AI Agents Revolutionizing Healthcare
Droidal: AI Agents Revolutionizing HealthcareDroidal: AI Agents Revolutionizing Healthcare
Droidal: AI Agents Revolutionizing Healthcare
Droidal LLC
 
Let’s Get Slack Certified! 🚀- Slack Community
Let’s Get Slack Certified! 🚀- Slack CommunityLet’s Get Slack Certified! 🚀- Slack Community
Let’s Get Slack Certified! 🚀- Slack Community
SanjeetMishra29
 
Data Virtualization: Bringing the Power of FME to Any Application
Data Virtualization: Bringing the Power of FME to Any ApplicationData Virtualization: Bringing the Power of FME to Any Application
Data Virtualization: Bringing the Power of FME to Any Application
Safe Software
 
Securiport - A Border Security Company
Securiport  -  A Border Security CompanySecuriport  -  A Border Security Company
Securiport - A Border Security Company
Securiport
 

MS SQL SERVER: Programming sql server data mining

  • 2. overviewData Mining APIsProgramming AMO Data Mining ObjectsStored ProceduresCreating Stored ProceduresExecuting Stored ProceduresDeploying and Debugging Stored Procedure AssembliesSummary
  • 3. Data Mining APIsThe major APIs used in Analysis Services programming.
  • 4. Data Mining APIsThe major APIs used in Analysis Services programming.
  • 6. Programming AMO Data Mining Objects steps in programming data mining objects by using AMO create the data structure model.
  • 7. create the data mining model that supports the mining algorithm you want to use in order to predict or to find the relationships underlying your data.
  • 8. process the mining models to obtain the trained models that you will use later when querying and predicting from the client application.Note: AMO is not for querying; AMO is for managing and administering your mining structures and models. To query your data, use ADOMD.NET
  • 9. Mining Structure Objects A mining structure contains a binding to a data source view that is defined in the database, and contains definitions for all columns participating in the mining models Steps followed to Creating a MiningStructure object are:Create the MiningStructure object and populate the basic attributes
  • 10. Create columns for the model. Each column needs a name and internal ID, a type, a content definition, and a binding.
  • 11. Update the MiningStructure object to the server, by using the Update method of the object.MiningModel ObjectsSteps to create a MiningModel object :Create the MiningModel object and populate the basic attributes. (object name, object ID, and mining algorithm specification)
  • 12. Add the columns of the mining model. One of the columns must be defined as the case key.Update the MiningModel object to the server, by using the Update method of the object.MiningModel objects can be processed independently of other models in the parent MiningStructure.Stored ProceduresStored procedures can be used to call external routines from Microsoft SQL Server Analysis Services
  • 13. You can write an external routines called by a stored procedure in any common language runtime (CLR) language, such as C, C++, C#, Visual Basic, or Visual Basic .NET.
  • 14. Stored procedures can be used to add business functionality to your applications that is not provided by the native functionality of MDXCreating Stored ProceduresAll stored procedures must be associated with a common language runtime (CLR) or Component Object Model (COM) class in order to be used. The class must be installed on the server — usually in the form of a Microsoft ActiveX® dynamic link library (DLL) — and registered as an assembly on the server or in an Analysis Services database.Server stored procedures can be called from any query context. Database stored procedures can only be accessed if the database context is the database under which the stored procedure is defined. For a server or a deployed Microsoft SQL Server Analysis Services database on a server, you can use SQL Server Management Studio to register an assembly. For an Analysis Services project, you can use Analysis Services Designer to register an assembly in the project.
  • 15. Executing Stored ProceduresServer ADOMD.NET allows you to execute DMX queries using the same objects that you would use with ADOMD.NET.The only exception is that you do not have to specify a connection, because you are already connected. You can copy the results from the query into a DataTable, or you can simply return the DataReader returned by ExecuteReader.
  • 16. Deploying and Debugging Stored Procedure AssembliesAfter Compiling and building the stored procedure, you must deploy the procedure to your Analysis Server in order to call it from DMX. To add a .NET assembly to your Analysis Services project, right-click the Assemblies folder in Solution Explorer and select New Assembly Reference.select some security-related options, such as Permissions and Impersonation information. The Permissions property specifies the code access permissions that are granted to the assembly when it’s loaded by Analysis Services. The recommended (and default) value is Safe.
  • 17. Deploying and Debugging Stored Procedure AssembliesTo debug the assembly in Visual Studio, select Attach to Process from the Debug menu. Select the executable msmdsrv.exe from the list, and ensure that the dialog box displays CLR as the Attach To option. you will be able to set breakpoints in your stored procedures at the end.
  • 18. Major Data Mining APIsProgramming AMO Data Mining ObjectsStored Procedures basicsDeploying and Debugging Stored Procedure AssembliesSummary
  • 19. Visit more self help tutorialsPick a tutorial of your choice and browse through it at your own pace.The tutorials section is free, self-guiding and will not involve any additional support.Visit us at www.dataminingtools.net