SlideShare a Scribd company logo
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
NIPS 2016 読み会
@Preferred Networks
2017/1/19
NIPS 2016
Overview and Deep Learning Topics
@hamadakoichi
濱田晃一
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
2	
AGENDA
◆Deep Learning Topics
◆NIPS 2016 Overview
◆Generative Adversarial Networks(GANs)
◆Recurrent Neural Networks(RNNs)
◆GANs
◆GANs in NIPS2016
◆Recent GANs
◆RNNs in NIPS2016
3	
Copyright (C) 2014 DeNA Co.,Ltd. All Rights Reserved.
講師
・TokyoWebmining 主催者
 - 機械学習の実活用コミュニティ。登録人数 1500人超。
 - 7年継続、累積59回開催
濱田晃一 (@hamadakoichi)
・執筆:Mobageを支える技術
Analytics Architect
・博士 : 量子統計場の理論 (理論物理)
・DeNA全サービスを対象とし、大規模機械学習活用したサービス開発
 - 数千万ユーザー、50億アクション/日、テキスト、画像、ソーシャルグラフ
 - 体験設計から、分散学習アルゴリズムの設計・実装まで
・Deep Learning
 - 画像表現学習・画像生成
   対話・キャラクター表現学習、等
4	
Copyright (C) 2014 DeNA Co.,Ltd. All Rights Reserved.
AGENDA
◆Deep Learning Topics
◆NIPS 2016 Overview
◆Generative Adversarial Networks(GANs)
◆Recurrent Neural Networks(RNNs)
◆GANs
◆GANs in NIPS2016
◆Recent GANs
◆RNNs in NIPS2016
5	
Copyright (C) 2014 DeNA Co.,Ltd. All Rights Reserved.
AGENDA
◆Deep Learning Topics
◆NIPS 2016 Overview
◆Generative Adversarial Networks(GANs)
◆Recurrent Neural Networks(RNNs)
◆GANs
◆GANs in NIPS2016
◆Recent GANs
◆RNNs in NIPS2016
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
6	
NIPS 2016
・第30回の開催
・期間: 2016年12月5-10日
・ICML 33回に続き長い伝統
・チュートリアル: 5(1日)
・本会議: 5-8(4日)
・ワークショップ: 9-10(2日)
・開催地: バルセロナ(スペイン)
貼る:会場雰囲気
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
7	
NIPS 2016
参加者が 6000人に増加 (2015年の1.5倍)
※Terrence Sejnowskiは NIPS foundationの President
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
8	
NIPS Features
・採択の92%はポスター
・採択率: 23%
・投稿数: 2500+、採択数: 568
・Oral(45) : 20分の口頭発表 + ポスター
・Poster(523) : ポスターのみ
・少数トラックでの進行(最大3)
(昨年までシングルトラックだったがパラレルに)
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
9	
NIPS Features
・ポスター発表による活発な議論
(昨年までの19-24時の5時間ポスターからは時間縮小したが、最後まで活発な議論)
・210 min(3.5 hour)/ day
・130 Poster x 4 days
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
10	
NIPS2016 Hot Topics
引用元:
The review process for NIPS 2016
http://www.tml.cs.uni-tuebingen.de/team/
luxburg/misc/nips2016/index.php
Deep Learning Computer Vision Large Scale Learning Learning Theory Optimization Sparsity
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
11	
NIPS2016 Hot Topics
Tutorial 3/9、Symposium 2/3 が Deep Learning
Reinforcement Learning, Generative Adversarial Net, Recurrent Net
Tutorial Symposium
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
12	
NIPS2016 Hot Topics
Tutorial Symposium
Tutorial 3/9、Symposium 2/3 が Deep Learning
Reinforcement Learning, Generative Adversarial Net, Recurrent Net
上記2トピックに関し、本会議論文をピックアップし概要紹介します
(Reinforcement Learningは、このNIPS読み会での個別論文の発表も多いため)
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
13	
AGENDA
◆Deep Learning Topics
◆NIPS 2016 Overview
◆Generative Adversarial Networks(GANs)
◆Recurrent Neural Networks(RNNs)
◆GANs
◆GANs in NIPS2016
◆Recent GANs
◆RNNs in NIPS2016
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
14	
AGENDA
◆Deep Learning Topics
◆NIPS 2016 Overview
◆Generative Adversarial Networks(GANs)
◆Recurrent Neural Networks(RNNs)
◆GANs
◆GANs in NIPS2016
◆Recent GANs
◆RNNs in NIPS2016
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
15	
AGENDA
◆Deep Learning Topics
◆NIPS 2016 Overview
◆Generative Adversarial Networks(GANs)
◆Recurrent Neural Networks(RNNs)
◆GANs
◆GANs in NIPS2016
◆Recent GANs
◆RNNs in NIPS2016
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
16	
Generative Adversarial Network (GAN)
Generative Adversarial Nets(GAN)
Goodfellow+, NIPS2014
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
17	
Generative Adversarial Network (GAN)
Generator(生成器)と Discriminator(識別器)を戦わせ
生成精度を向上させる
識別器: “本物画像”と “生成器が作った偽画像”を識別する
生成器: 生成画像を識別器に“本物画像”と誤識別させようとする
(Goodfellow+, NIPS2014, Deep Learning Workshop, Presentation)
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
18	
Generative Adversarial Network (GAN)
Minimax Objective function
Discriminator が
「本物画像」を「本物」と識別
(Goodfellow+, NIPS2014, Deep Learning Workshop, Presentation)
Discriminator が
「生成画像」を「偽物」と識別する
Discriminatorは
正しく識別しようとする
(最大化)
Generatorは Discriminator に誤識別させようとする(最小化)
Generator(生成器)と Discriminator(識別器)を戦わせ
生成精度を向上させる
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
19	
自然画像の表現ベクトル空間学習・演算・画像生成
ICLR16: Deep Convolutional GAN : DCGAN (Radford+)
自然画像のクリアな画像生成 画像演算
Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks.
Alec Radford, Luke Metz, Soumith Chintala.
arXiv:1511.06434. In ICLR 2016.
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
20	
ICML16: Autoencoding beyond pixels (Larsen+)
Autoencoding beyond pixels using a learned similarity metric.
Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle,
Ole Winther.
arXiv:1512.09300. In ICML 2016.
自然画像の表現ベクトル空間学習・演算・画像生成
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
21	
ICML16: Generative Adversarial Text to Image Synthesis(Reed+)
Generative Adversarial Text to Image Synthesis.
Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen
Logeswaran, Bernt Schiele, Honglak Lee.
arXiv:1605.05396. In ICML 2016.
文章からの画像生成
文章で条件付したGAN
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
22	
AGENDA
◆Deep Learning Topics
◆NIPS 2016 Overview
◆Generative Adversarial Networks(GANs)
◆Recurrent Neural Networks(RNNs)
◆GANs
◆GANs in NIPS2016
◆Recent GANs
◆RNNs in NIPS2016
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
23	
Generative Adversarial Text to Image Synthesis(Reed+)
Learning What and Where to Draw.
Scott Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, Honglak Lee.
arXiv:1610.02454. In NIPS 2016.
文章からの画像生成
表示位置情報も条件付したGAN
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
24	
InfoGAN (Chen+)
InfoGAN: Interpretable Representation
Learning by Information Maximizing
Generative Adversarial Nets.
Xi Chen, Yan Duan, Rein Houthooft, John
Schulman, Ilya Sutskever, Pieter Abbeel.
arXiv:1606.03657. In NIPS 2016
Latent code c、Generator 出力との Mutual Information を加え
GANで狙って表現ベクトル空間を学習
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
25	
3Dモデルの表現ベクトル空間学習・演算・生成
3D GAN (Wu+)
3Dモデルの生成 3Dモデル演算
写真からの3Dモデル生成
3D VAE-GAN
3D GAN
Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling.
Jiajun Wu, Chengkai Zhang, Tianfan Xue, William T. Freeman, Joshua B. Tenenbaum.
arXiv:1610.07584. In NIPS 2016.
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
26	
Generating Videos with Scene Dynamics(Vondrick+)
動画の表現ベクトル空間学習・動画生成
Generating Videos with Scene Dynamics.
Carl Vondrick, Hamed Pirsiavash, Antonio Torralba. In NIPS 2016.
http://web.mit.edu/vondrick/tinyvideo/
動画生成 1画像からその後の動画生成
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
27	
f-GAN (Nowozin+)
GAN目的関数を Symmetric JS-divergence から
f-divergence に一般化。各Divergence を用い学習・評価
f-GAN: Training Generative
Neural samplers using
variational Divergence
Minimization.
Sebastian Nowozin, Botond
Cseke, Ryota Tomioka.
arXiv:1606.00709.
In NIPS 2016.
Kernel Density Estimation on the MNIST
f-divergence
LSUN
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
28	
Improved Techniques for Training GANs (Salimans+)
Improved Techniques for Training GANs.
Tim Salimans, Ian Goodfellow, Wojciech
Zaremba, Vicki Cheung, Alec Radford, Xi Chen.
arXiv:1606.03498. In NIPS 2016.
収束が難しいGANの学習方法論
GAN半教師あり学習
1. Feature Matching
2. Minibatch discrimination
3. Historical averaging
4. One-sided label smoothing
5. Virtual batch normalization
Techniques Semi-supervised learning
MNIST
Semi-supervised training
with feature matching
Semi-supervised training
with feature matching and
minibatch discrimination
CIFAR-10
Generated samples
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
29	
AGENDA
◆Deep Learning Topics
◆NIPS 2016 Overview
◆Generative Adversarial Networks(GANs)
◆Recurrent Neural Networks(RNNs)
◆GANs
◆GANs in NIPS2016
◆Recent GANs
◆RNNs in NIPS2016
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
30	
Extended Architectures for Generative Adversarial Nets 2016
Extended Architectures for GANs
Figure by Chris Olah (2016) : https://twitter.com/ch402/status/793535193835417601
Ex)
Conditional Image Synthesis With
Auxiliary Classifier GANs.
Augustus Odena, Christopher Olah,
Jonathon Shlens.
arXiv:1610.09585.
Generative Adversarial Net の各種拡張
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
31	
Stack GAN: Text to PhotoRealistic Image Synthesis(Zhang+2016)
1段目で文章から低解像度画像を生成
2段目で低解像度画像から高解像度画像を生成
StackGAN: Text to Photo-realistic Image
Synthesis with Stacked Generative Adversarial
Networks.
Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang,
Xiaolei Huang, Xiaogang Wang, Dimitris Metaxas.
arXiv:1612.03242.
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
32	
Plug & Play Generative Networks (Nguyen+2016)
高解像度な画像生成
227 x 227 ImageNet
Plug & Play Generative Networks: Conditional
Iterative Generation of Images in Latent Space.
Anh Nguyen, Jason Yosinski, Yoshua Bengio,
Alexey Dosovitskiy, Jeff Clune.
arXiv:1612.00005.
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
33	
AGENDA
◆Deep Learning Topics
◆NIPS 2016 Overview
◆Generative Adversarial Networks(GANs)
◆Recurrent Neural Networks(RNNs)
◆GANs
◆GANs in NIPS2016
◆Recent GANs
◆RNNs in NIPS2016
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
34	
Phased LSTM (Neil+)
時間で開閉するGateを導入した LSTM
Sensor Data 等、Event 駆動の長期系列特徴を学習
Phased LSTM: Accelerating Recurrent Network Training for Long or Event-based Sequences.
Daniel Neil, Michael Pfeiffer, Shih-Chii Liu.
arXiv:1610.09513. In NIPS 2016.
LSTM Phased LSTM
Phased LSTM Behavior
Frequency Discrimination Task
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
35	
Using Fast Weights to Attend to the Recent Past (Ba+)
早く学習・減衰する Fast Weight 追加で、系列固有の情報を扱う
Slow Weight での長期特徴とあわせ、双方の系列特徴を学習
Using Fast Weights to Attend to the Recent Past.
Jimmy Ba, Geoffrey Hinton, Volodymyr Mnih, Joel Z. Leibo, Catalin Ionescu.
arXiv:1610.06258. In NIPS 2016.
Associative Retrieval Task
Classification Error Test Log Likelihood
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
36	
Learning to learn by GD by GD (Andrychowicz+)
LSTMを用いたOptimizer
Parameterごとに 勾配系列から適切な次の更新量を算出
Learning to learn by gradient descent by gradient descent.
Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W. Hoffman, David Pfau, Tom Schaul, Brendan Shillingford,
Nando de Freitas.
arXiv:1606.04474. In NIPS 2016.
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
37	
Matching Network for One Shot Learning (Vinyals+)
Attention Mechanism を用いた One Shot Learning
参照構造を学習しておき、新規小規模データセットでも高精度で動作
Matching Networks for One Shot Learning.
Oriol Vinyals, Charles Blundell, Timothy Lillicrap,
Koray Kavukcuoglu, Daan Wierstra.
arXiv:1606.04080. In NIPS 2016.
Omniglot
miniImageNet
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
38	
AGENDA
◆Deep Learning Topics
◆NIPS 2016 Overview
◆Generative Adversarial Networks(GANs)
◆Recurrent Neural Networks(RNNs)
◆GANs
◆GANs in NIPS2016
◆Recent GANs
◆RNNs in NIPS2016

More Related Content

Viewers also liked (19)

Value iteration networks
Value iteration networksValue iteration networks
Value iteration networks
Fujimoto Keisuke
 
InfoGAN: Interpretable Representation Learning by Information Maximizing Gen...
InfoGAN: Interpretable Representation Learning by Information Maximizing Gen...InfoGAN: Interpretable Representation Learning by Information Maximizing Gen...
InfoGAN: Interpretable Representation Learning by Information Maximizing Gen...
Shuhei Yoshida
 
Dual Learning for Machine Translation (NIPS 2016)
Dual Learning for Machine Translation (NIPS 2016)Dual Learning for Machine Translation (NIPS 2016)
Dual Learning for Machine Translation (NIPS 2016)
Toru Fujino
 
時系列データ3
時系列データ3時系列データ3
時系列データ3
graySpace999
 
Fast and Probvably Seedings for k-Means
Fast and Probvably Seedings for k-MeansFast and Probvably Seedings for k-Means
Fast and Probvably Seedings for k-Means
Kimikazu Kato
 
Interaction Networks for Learning about Objects, Relations and Physics
Interaction Networks for Learning about Objects, Relations and PhysicsInteraction Networks for Learning about Objects, Relations and Physics
Interaction Networks for Learning about Objects, Relations and Physics
Ken Kuroki
 
Introduction of "TrailBlazer" algorithm
Introduction of "TrailBlazer" algorithmIntroduction of "TrailBlazer" algorithm
Introduction of "TrailBlazer" algorithm
Katsuki Ohto
 
Learning to learn by gradient descent by gradient descent
Learning to learn by gradient descent by gradient descentLearning to learn by gradient descent by gradient descent
Learning to learn by gradient descent by gradient descent
Hiroyuki Fukuda
 
Conditional Image Generation with PixelCNN Decoders
Conditional Image Generation with PixelCNN DecodersConditional Image Generation with PixelCNN Decoders
Conditional Image Generation with PixelCNN Decoders
suga93
 
Safe and Efficient Off-Policy Reinforcement Learning
Safe and Efficient Off-Policy Reinforcement LearningSafe and Efficient Off-Policy Reinforcement Learning
Safe and Efficient Off-Policy Reinforcement Learning
mooopan
 
Introduction of “Fairness in Learning: Classic and Contextual Bandits”
Introduction of “Fairness in Learning: Classic and Contextual Bandits”Introduction of “Fairness in Learning: Classic and Contextual Bandits”
Introduction of “Fairness in Learning: Classic and Contextual Bandits”
Kazuto Fukuchi
 
Improving Variational Inference with Inverse Autoregressive Flow
Improving Variational Inference with Inverse Autoregressive FlowImproving Variational Inference with Inverse Autoregressive Flow
Improving Variational Inference with Inverse Autoregressive Flow
Tatsuya Shirakawa
 
[DL輪読会]Convolutional Sequence to Sequence Learning
[DL輪読会]Convolutional Sequence to Sequence Learning[DL輪読会]Convolutional Sequence to Sequence Learning
[DL輪読会]Convolutional Sequence to Sequence Learning
Deep Learning JP
 
論文紹介 Combining Model-Based and Model-Free Updates for Trajectory-Centric Rein...
論文紹介 Combining Model-Based and Model-Free Updates for Trajectory-Centric Rein...論文紹介 Combining Model-Based and Model-Free Updates for Trajectory-Centric Rein...
論文紹介 Combining Model-Based and Model-Free Updates for Trajectory-Centric Rein...
Kusano Hitoshi
 
Differential privacy without sensitivity [NIPS2016読み会資料]
Differential privacy without sensitivity [NIPS2016読み会資料]Differential privacy without sensitivity [NIPS2016読み会資料]
Differential privacy without sensitivity [NIPS2016読み会資料]
Kentaro Minami
 
Matching networks for one shot learning
Matching networks for one shot learningMatching networks for one shot learning
Matching networks for one shot learning
Kazuki Fujikawa
 
ICML2016読み会 概要紹介
ICML2016読み会 概要紹介ICML2016読み会 概要紹介
ICML2016読み会 概要紹介
Kohei Hayashi
 
論文紹介 Pixel Recurrent Neural Networks
論文紹介 Pixel Recurrent Neural Networks論文紹介 Pixel Recurrent Neural Networks
論文紹介 Pixel Recurrent Neural Networks
Seiya Tokui
 
Deep Learning - The Past, Present and Future of Artificial Intelligence
Deep Learning - The Past, Present and Future of Artificial IntelligenceDeep Learning - The Past, Present and Future of Artificial Intelligence
Deep Learning - The Past, Present and Future of Artificial Intelligence
Lukas Masuch
 
InfoGAN: Interpretable Representation Learning by Information Maximizing Gen...
InfoGAN: Interpretable Representation Learning by Information Maximizing Gen...InfoGAN: Interpretable Representation Learning by Information Maximizing Gen...
InfoGAN: Interpretable Representation Learning by Information Maximizing Gen...
Shuhei Yoshida
 
Dual Learning for Machine Translation (NIPS 2016)
Dual Learning for Machine Translation (NIPS 2016)Dual Learning for Machine Translation (NIPS 2016)
Dual Learning for Machine Translation (NIPS 2016)
Toru Fujino
 
時系列データ3
時系列データ3時系列データ3
時系列データ3
graySpace999
 
Fast and Probvably Seedings for k-Means
Fast and Probvably Seedings for k-MeansFast and Probvably Seedings for k-Means
Fast and Probvably Seedings for k-Means
Kimikazu Kato
 
Interaction Networks for Learning about Objects, Relations and Physics
Interaction Networks for Learning about Objects, Relations and PhysicsInteraction Networks for Learning about Objects, Relations and Physics
Interaction Networks for Learning about Objects, Relations and Physics
Ken Kuroki
 
Introduction of "TrailBlazer" algorithm
Introduction of "TrailBlazer" algorithmIntroduction of "TrailBlazer" algorithm
Introduction of "TrailBlazer" algorithm
Katsuki Ohto
 
Learning to learn by gradient descent by gradient descent
Learning to learn by gradient descent by gradient descentLearning to learn by gradient descent by gradient descent
Learning to learn by gradient descent by gradient descent
Hiroyuki Fukuda
 
Conditional Image Generation with PixelCNN Decoders
Conditional Image Generation with PixelCNN DecodersConditional Image Generation with PixelCNN Decoders
Conditional Image Generation with PixelCNN Decoders
suga93
 
Safe and Efficient Off-Policy Reinforcement Learning
Safe and Efficient Off-Policy Reinforcement LearningSafe and Efficient Off-Policy Reinforcement Learning
Safe and Efficient Off-Policy Reinforcement Learning
mooopan
 
Introduction of “Fairness in Learning: Classic and Contextual Bandits”
Introduction of “Fairness in Learning: Classic and Contextual Bandits”Introduction of “Fairness in Learning: Classic and Contextual Bandits”
Introduction of “Fairness in Learning: Classic and Contextual Bandits”
Kazuto Fukuchi
 
Improving Variational Inference with Inverse Autoregressive Flow
Improving Variational Inference with Inverse Autoregressive FlowImproving Variational Inference with Inverse Autoregressive Flow
Improving Variational Inference with Inverse Autoregressive Flow
Tatsuya Shirakawa
 
[DL輪読会]Convolutional Sequence to Sequence Learning
[DL輪読会]Convolutional Sequence to Sequence Learning[DL輪読会]Convolutional Sequence to Sequence Learning
[DL輪読会]Convolutional Sequence to Sequence Learning
Deep Learning JP
 
論文紹介 Combining Model-Based and Model-Free Updates for Trajectory-Centric Rein...
論文紹介 Combining Model-Based and Model-Free Updates for Trajectory-Centric Rein...論文紹介 Combining Model-Based and Model-Free Updates for Trajectory-Centric Rein...
論文紹介 Combining Model-Based and Model-Free Updates for Trajectory-Centric Rein...
Kusano Hitoshi
 
Differential privacy without sensitivity [NIPS2016読み会資料]
Differential privacy without sensitivity [NIPS2016読み会資料]Differential privacy without sensitivity [NIPS2016読み会資料]
Differential privacy without sensitivity [NIPS2016読み会資料]
Kentaro Minami
 
Matching networks for one shot learning
Matching networks for one shot learningMatching networks for one shot learning
Matching networks for one shot learning
Kazuki Fujikawa
 
ICML2016読み会 概要紹介
ICML2016読み会 概要紹介ICML2016読み会 概要紹介
ICML2016読み会 概要紹介
Kohei Hayashi
 
論文紹介 Pixel Recurrent Neural Networks
論文紹介 Pixel Recurrent Neural Networks論文紹介 Pixel Recurrent Neural Networks
論文紹介 Pixel Recurrent Neural Networks
Seiya Tokui
 
Deep Learning - The Past, Present and Future of Artificial Intelligence
Deep Learning - The Past, Present and Future of Artificial IntelligenceDeep Learning - The Past, Present and Future of Artificial Intelligence
Deep Learning - The Past, Present and Future of Artificial Intelligence
Lukas Masuch
 

Similar to NIPS 2016 Overview and Deep Learning Topics (20)

Tutorial of GANs in Gifu Univ
Tutorial of GANs in Gifu UnivTutorial of GANs in Gifu Univ
Tutorial of GANs in Gifu Univ
Shunsuke NAKATSUKA
 
NIPS+読み会・関西 #7 発表資料
NIPS+読み会・関西 #7 発表資料NIPS+読み会・関西 #7 発表資料
NIPS+読み会・関西 #7 発表資料
Kazuki Tachikawa
 
[DL輪読会]Neural Radiance Flow for 4D View Synthesis and Video Processing (NeRF...
[DL輪読会]Neural Radiance Flow for 4D View Synthesis and Video  Processing (NeRF...[DL輪読会]Neural Radiance Flow for 4D View Synthesis and Video  Processing (NeRF...
[DL輪読会]Neural Radiance Flow for 4D View Synthesis and Video Processing (NeRF...
Deep Learning JP
 
画像生成・生成モデル メタサーベイ
画像生成・生成モデル メタサーベイ画像生成・生成モデル メタサーベイ
画像生成・生成モデル メタサーベイ
cvpaper. challenge
 
GAN0420
GAN0420GAN0420
GAN0420
Daigo HIROOKA
 
Generative Adversarial Networksの基礎と応用について
Generative Adversarial Networksの基礎と応用についてGenerative Adversarial Networksの基礎と応用について
Generative Adversarial Networksの基礎と応用について
So Hasegawa
 
A (Very) Gentle Introduction to Generative Adversarial Networks (a.k.a GANs)
 A (Very) Gentle Introduction to Generative Adversarial Networks (a.k.a GANs) A (Very) Gentle Introduction to Generative Adversarial Networks (a.k.a GANs)
A (Very) Gentle Introduction to Generative Adversarial Networks (a.k.a GANs)
Thomas da Silva Paula
 
Transformer 動向調査 in 画像認識
Transformer 動向調査 in 画像認識Transformer 動向調査 in 画像認識
Transformer 動向調査 in 画像認識
Kazuki Maeno
 
210610 SSIIi2021 Computer Vision x Trasnformer
210610 SSIIi2021 Computer Vision x Trasnformer210610 SSIIi2021 Computer Vision x Trasnformer
210610 SSIIi2021 Computer Vision x Trasnformer
exwzds
 
【DL輪読会】Toward Fast and Stabilized GAN Training for Highfidelity Few-shot Imag...
【DL輪読会】Toward Fast and Stabilized GAN Training for Highfidelity Few-shot Imag...【DL輪読会】Toward Fast and Stabilized GAN Training for Highfidelity Few-shot Imag...
【DL輪読会】Toward Fast and Stabilized GAN Training for Highfidelity Few-shot Imag...
Deep Learning JP
 
機械学習応用システムの安全性の研究動向と今後の展望
機械学習応用システムの安全性の研究動向と今後の展望機械学習応用システムの安全性の研究動向と今後の展望
機械学習応用システムの安全性の研究動向と今後の展望
Nobukazu Yoshioka
 
【DL輪読会】Physion: Evaluating Physical Prediction from Vision in Humans and Mach...
【DL輪読会】Physion: Evaluating Physical Prediction from Vision in Humans and Mach...【DL輪読会】Physion: Evaluating Physical Prediction from Vision in Humans and Mach...
【DL輪読会】Physion: Evaluating Physical Prediction from Vision in Humans and Mach...
Deep Learning JP
 
TensorFlow London: Progressive Growing of GANs for increased stability, quali...
TensorFlow London: Progressive Growing of GANs for increased stability, quali...TensorFlow London: Progressive Growing of GANs for increased stability, quali...
TensorFlow London: Progressive Growing of GANs for increased stability, quali...
Seldon
 
Jakub Langr (University of Oxford) - Overview of Generative Adversarial Netwo...
Jakub Langr (University of Oxford) - Overview of Generative Adversarial Netwo...Jakub Langr (University of Oxford) - Overview of Generative Adversarial Netwo...
Jakub Langr (University of Oxford) - Overview of Generative Adversarial Netwo...
Codiax
 
Domain transfer サーベイ
Domain transfer サーベイDomain transfer サーベイ
Domain transfer サーベイ
ぱんいち すみもと
 
Generative adversarial networks
Generative adversarial networksGenerative adversarial networks
Generative adversarial networks
Ding Li
 
Dual dl
Dual dlDual dl
Dual dl
ぱんいち すみもと
 
Generative Adversarial Networks And Deep Learning Roshani Raut
Generative Adversarial Networks And Deep Learning Roshani RautGenerative Adversarial Networks And Deep Learning Roshani Raut
Generative Adversarial Networks And Deep Learning Roshani Raut
logerhoyal3q
 
gan.pdf
gan.pdfgan.pdf
gan.pdf
Dr.rukmani Devi
 
Generative Adversarial Network ppt for beginners .
Generative Adversarial Network ppt for beginners .Generative Adversarial Network ppt for beginners .
Generative Adversarial Network ppt for beginners .
Jaya Chandran
 
NIPS+読み会・関西 #7 発表資料
NIPS+読み会・関西 #7 発表資料NIPS+読み会・関西 #7 発表資料
NIPS+読み会・関西 #7 発表資料
Kazuki Tachikawa
 
[DL輪読会]Neural Radiance Flow for 4D View Synthesis and Video Processing (NeRF...
[DL輪読会]Neural Radiance Flow for 4D View Synthesis and Video  Processing (NeRF...[DL輪読会]Neural Radiance Flow for 4D View Synthesis and Video  Processing (NeRF...
[DL輪読会]Neural Radiance Flow for 4D View Synthesis and Video Processing (NeRF...
Deep Learning JP
 
画像生成・生成モデル メタサーベイ
画像生成・生成モデル メタサーベイ画像生成・生成モデル メタサーベイ
画像生成・生成モデル メタサーベイ
cvpaper. challenge
 
Generative Adversarial Networksの基礎と応用について
Generative Adversarial Networksの基礎と応用についてGenerative Adversarial Networksの基礎と応用について
Generative Adversarial Networksの基礎と応用について
So Hasegawa
 
A (Very) Gentle Introduction to Generative Adversarial Networks (a.k.a GANs)
 A (Very) Gentle Introduction to Generative Adversarial Networks (a.k.a GANs) A (Very) Gentle Introduction to Generative Adversarial Networks (a.k.a GANs)
A (Very) Gentle Introduction to Generative Adversarial Networks (a.k.a GANs)
Thomas da Silva Paula
 
Transformer 動向調査 in 画像認識
Transformer 動向調査 in 画像認識Transformer 動向調査 in 画像認識
Transformer 動向調査 in 画像認識
Kazuki Maeno
 
210610 SSIIi2021 Computer Vision x Trasnformer
210610 SSIIi2021 Computer Vision x Trasnformer210610 SSIIi2021 Computer Vision x Trasnformer
210610 SSIIi2021 Computer Vision x Trasnformer
exwzds
 
【DL輪読会】Toward Fast and Stabilized GAN Training for Highfidelity Few-shot Imag...
【DL輪読会】Toward Fast and Stabilized GAN Training for Highfidelity Few-shot Imag...【DL輪読会】Toward Fast and Stabilized GAN Training for Highfidelity Few-shot Imag...
【DL輪読会】Toward Fast and Stabilized GAN Training for Highfidelity Few-shot Imag...
Deep Learning JP
 
機械学習応用システムの安全性の研究動向と今後の展望
機械学習応用システムの安全性の研究動向と今後の展望機械学習応用システムの安全性の研究動向と今後の展望
機械学習応用システムの安全性の研究動向と今後の展望
Nobukazu Yoshioka
 
【DL輪読会】Physion: Evaluating Physical Prediction from Vision in Humans and Mach...
【DL輪読会】Physion: Evaluating Physical Prediction from Vision in Humans and Mach...【DL輪読会】Physion: Evaluating Physical Prediction from Vision in Humans and Mach...
【DL輪読会】Physion: Evaluating Physical Prediction from Vision in Humans and Mach...
Deep Learning JP
 
TensorFlow London: Progressive Growing of GANs for increased stability, quali...
TensorFlow London: Progressive Growing of GANs for increased stability, quali...TensorFlow London: Progressive Growing of GANs for increased stability, quali...
TensorFlow London: Progressive Growing of GANs for increased stability, quali...
Seldon
 
Jakub Langr (University of Oxford) - Overview of Generative Adversarial Netwo...
Jakub Langr (University of Oxford) - Overview of Generative Adversarial Netwo...Jakub Langr (University of Oxford) - Overview of Generative Adversarial Netwo...
Jakub Langr (University of Oxford) - Overview of Generative Adversarial Netwo...
Codiax
 
Generative adversarial networks
Generative adversarial networksGenerative adversarial networks
Generative adversarial networks
Ding Li
 
Generative Adversarial Networks And Deep Learning Roshani Raut
Generative Adversarial Networks And Deep Learning Roshani RautGenerative Adversarial Networks And Deep Learning Roshani Raut
Generative Adversarial Networks And Deep Learning Roshani Raut
logerhoyal3q
 
Generative Adversarial Network ppt for beginners .
Generative Adversarial Network ppt for beginners .Generative Adversarial Network ppt for beginners .
Generative Adversarial Network ppt for beginners .
Jaya Chandran
 

More from Koichi Hamada (20)

Generative Adversarial Networks (GAN) @ NIPS2017
Generative Adversarial Networks (GAN) @ NIPS2017Generative Adversarial Networks (GAN) @ NIPS2017
Generative Adversarial Networks (GAN) @ NIPS2017
Koichi Hamada
 
DeNAのAI活用したサービス開発
DeNAのAI活用したサービス開発DeNAのAI活用したサービス開発
DeNAのAI活用したサービス開発
Koichi Hamada
 
対話返答生成における個性の追加反映
対話返答生成における個性の追加反映対話返答生成における個性の追加反映
対話返答生成における個性の追加反映
Koichi Hamada
 
DeNAの機械学習・深層学習活用した 体験提供の挑戦
DeNAの機械学習・深層学習活用した体験提供の挑戦DeNAの機械学習・深層学習活用した体験提供の挑戦
DeNAの機械学習・深層学習活用した 体験提供の挑戦
Koichi Hamada
 
Laplacian Pyramid of Generative Adversarial Networks (LAPGAN) - NIPS2015読み会 #...
Laplacian Pyramid of Generative Adversarial Networks (LAPGAN) - NIPS2015読み会 #...Laplacian Pyramid of Generative Adversarial Networks (LAPGAN) - NIPS2015読み会 #...
Laplacian Pyramid of Generative Adversarial Networks (LAPGAN) - NIPS2015読み会 #...
Koichi Hamada
 
DeNAの大規模データマイニング活用したサービス開発
DeNAの大規模データマイニング活用したサービス開発DeNAの大規模データマイニング活用したサービス開発
DeNAの大規模データマイニング活用したサービス開発
Koichi Hamada
 
『MobageのAnalytics活用したサービス開発』 - データマイニングCROSS2014 #CROSS2014
『MobageのAnalytics活用したサービス開発』 - データマイニングCROSS2014 #CROSS2014『MobageのAnalytics活用したサービス開発』 - データマイニングCROSS2014 #CROSS2014
『MobageのAnalytics活用したサービス開発』 - データマイニングCROSS2014 #CROSS2014
Koichi Hamada
 
『Mobageの大規模データマイニング活用と 意思決定』- #IBIS 2012 -ビジネスと機械学習の接点-
『Mobageの大規模データマイニング活用と 意思決定』- #IBIS 2012 -ビジネスと機械学習の接点- 『Mobageの大規模データマイニング活用と 意思決定』- #IBIS 2012 -ビジネスと機械学習の接点-
『Mobageの大規模データマイニング活用と 意思決定』- #IBIS 2012 -ビジネスと機械学習の接点-
Koichi Hamada
 
複雑ネットワーク上の伝搬法則の数理
複雑ネットワーク上の伝搬法則の数理複雑ネットワーク上の伝搬法則の数理
複雑ネットワーク上の伝搬法則の数理
Koichi Hamada
 
データマイニングCROSS 2012 Opening Talk - データマイニングの実サービス・ビジネス適用と展望
データマイニングCROSS 2012 Opening Talk - データマイニングの実サービス・ビジネス適用と展望 データマイニングCROSS 2012 Opening Talk - データマイニングの実サービス・ビジネス適用と展望
データマイニングCROSS 2012 Opening Talk - データマイニングの実サービス・ビジネス適用と展望
Koichi Hamada
 
データマイニングCROSS 第2部-機械学習・大規模分散処理
データマイニングCROSS 第2部-機械学習・大規模分散処理データマイニングCROSS 第2部-機械学習・大規模分散処理
データマイニングCROSS 第2部-機械学習・大規模分散処理
Koichi Hamada
 
Large Scale Data Mining of the Mobage Service - #PRMU 2011 #Mahout #Hadoop
Large Scale Data Mining of the Mobage Service - #PRMU 2011 #Mahout #HadoopLarge Scale Data Mining of the Mobage Service - #PRMU 2011 #Mahout #Hadoop
Large Scale Data Mining of the Mobage Service - #PRMU 2011 #Mahout #Hadoop
Koichi Hamada
 
"Mahout Recommendation" - #TokyoWebmining 14th
"Mahout Recommendation" -  #TokyoWebmining 14th"Mahout Recommendation" -  #TokyoWebmining 14th
"Mahout Recommendation" - #TokyoWebmining 14th
Koichi Hamada
 
Mahout JP - #TokyoWebmining 11th #MahoutJP
Mahout JP -  #TokyoWebmining 11th #MahoutJP Mahout JP -  #TokyoWebmining 11th #MahoutJP
Mahout JP - #TokyoWebmining 11th #MahoutJP
Koichi Hamada
 
10回開催記念 「データマイニング+WEB ~データマイニング・機械学習活用による継続進化~」ー第10回データマイニング+WEB勉強会@東京ー #Toky...
10回開催記念 「データマイニング+WEB ~データマイニング・機械学習活用による継続進化~」ー第10回データマイニング+WEB勉強会@東京ー #Toky...10回開催記念 「データマイニング+WEB ~データマイニング・機械学習活用による継続進化~」ー第10回データマイニング+WEB勉強会@東京ー #Toky...
10回開催記念 「データマイニング+WEB ~データマイニング・機械学習活用による継続進化~」ー第10回データマイニング+WEB勉強会@東京ー #Toky...
Koichi Hamada
 
『モバゲーの大規模データマイニング基盤におけるHadoop活用』-Hadoop Conference Japan 2011- #hcj2011
『モバゲーの大規模データマイニング基盤におけるHadoop活用』-Hadoop Conference Japan 2011- #hcj2011 『モバゲーの大規模データマイニング基盤におけるHadoop活用』-Hadoop Conference Japan 2011- #hcj2011
『モバゲーの大規模データマイニング基盤におけるHadoop活用』-Hadoop Conference Japan 2011- #hcj2011
Koichi Hamada
 
「R言語による Random Forest 徹底入門 -集団学習による分類・予測-」 - #TokyoR #11
「R言語による Random Forest 徹底入門 -集団学習による分類・予測-」 - #TokyoR  #11「R言語による Random Forest 徹底入門 -集団学習による分類・予測-」 - #TokyoR  #11
「R言語による Random Forest 徹底入門 -集団学習による分類・予測-」 - #TokyoR #11
Koichi Hamada
 
Mahout Canopy Clustering - #TokyoWebmining 9
Mahout Canopy Clustering - #TokyoWebmining 9Mahout Canopy Clustering - #TokyoWebmining 9
Mahout Canopy Clustering - #TokyoWebmining 9
Koichi Hamada
 
Apache Mahout - Random Forests - #TokyoWebmining #8
Apache Mahout - Random Forests - #TokyoWebmining #8 Apache Mahout - Random Forests - #TokyoWebmining #8
Apache Mahout - Random Forests - #TokyoWebmining #8
Koichi Hamada
 
「樹木モデルとランダムフォレスト-機械学習による分類・予測-」-データマイニングセミナー
「樹木モデルとランダムフォレスト-機械学習による分類・予測-」-データマイニングセミナー「樹木モデルとランダムフォレスト-機械学習による分類・予測-」-データマイニングセミナー
「樹木モデルとランダムフォレスト-機械学習による分類・予測-」-データマイニングセミナー
Koichi Hamada
 
Generative Adversarial Networks (GAN) @ NIPS2017
Generative Adversarial Networks (GAN) @ NIPS2017Generative Adversarial Networks (GAN) @ NIPS2017
Generative Adversarial Networks (GAN) @ NIPS2017
Koichi Hamada
 
DeNAのAI活用したサービス開発
DeNAのAI活用したサービス開発DeNAのAI活用したサービス開発
DeNAのAI活用したサービス開発
Koichi Hamada
 
対話返答生成における個性の追加反映
対話返答生成における個性の追加反映対話返答生成における個性の追加反映
対話返答生成における個性の追加反映
Koichi Hamada
 
DeNAの機械学習・深層学習活用した 体験提供の挑戦
DeNAの機械学習・深層学習活用した体験提供の挑戦DeNAの機械学習・深層学習活用した体験提供の挑戦
DeNAの機械学習・深層学習活用した 体験提供の挑戦
Koichi Hamada
 
Laplacian Pyramid of Generative Adversarial Networks (LAPGAN) - NIPS2015読み会 #...
Laplacian Pyramid of Generative Adversarial Networks (LAPGAN) - NIPS2015読み会 #...Laplacian Pyramid of Generative Adversarial Networks (LAPGAN) - NIPS2015読み会 #...
Laplacian Pyramid of Generative Adversarial Networks (LAPGAN) - NIPS2015読み会 #...
Koichi Hamada
 
DeNAの大規模データマイニング活用したサービス開発
DeNAの大規模データマイニング活用したサービス開発DeNAの大規模データマイニング活用したサービス開発
DeNAの大規模データマイニング活用したサービス開発
Koichi Hamada
 
『MobageのAnalytics活用したサービス開発』 - データマイニングCROSS2014 #CROSS2014
『MobageのAnalytics活用したサービス開発』 - データマイニングCROSS2014 #CROSS2014『MobageのAnalytics活用したサービス開発』 - データマイニングCROSS2014 #CROSS2014
『MobageのAnalytics活用したサービス開発』 - データマイニングCROSS2014 #CROSS2014
Koichi Hamada
 
『Mobageの大規模データマイニング活用と 意思決定』- #IBIS 2012 -ビジネスと機械学習の接点-
『Mobageの大規模データマイニング活用と 意思決定』- #IBIS 2012 -ビジネスと機械学習の接点- 『Mobageの大規模データマイニング活用と 意思決定』- #IBIS 2012 -ビジネスと機械学習の接点-
『Mobageの大規模データマイニング活用と 意思決定』- #IBIS 2012 -ビジネスと機械学習の接点-
Koichi Hamada
 
複雑ネットワーク上の伝搬法則の数理
複雑ネットワーク上の伝搬法則の数理複雑ネットワーク上の伝搬法則の数理
複雑ネットワーク上の伝搬法則の数理
Koichi Hamada
 
データマイニングCROSS 2012 Opening Talk - データマイニングの実サービス・ビジネス適用と展望
データマイニングCROSS 2012 Opening Talk - データマイニングの実サービス・ビジネス適用と展望 データマイニングCROSS 2012 Opening Talk - データマイニングの実サービス・ビジネス適用と展望
データマイニングCROSS 2012 Opening Talk - データマイニングの実サービス・ビジネス適用と展望
Koichi Hamada
 
データマイニングCROSS 第2部-機械学習・大規模分散処理
データマイニングCROSS 第2部-機械学習・大規模分散処理データマイニングCROSS 第2部-機械学習・大規模分散処理
データマイニングCROSS 第2部-機械学習・大規模分散処理
Koichi Hamada
 
Large Scale Data Mining of the Mobage Service - #PRMU 2011 #Mahout #Hadoop
Large Scale Data Mining of the Mobage Service - #PRMU 2011 #Mahout #HadoopLarge Scale Data Mining of the Mobage Service - #PRMU 2011 #Mahout #Hadoop
Large Scale Data Mining of the Mobage Service - #PRMU 2011 #Mahout #Hadoop
Koichi Hamada
 
"Mahout Recommendation" - #TokyoWebmining 14th
"Mahout Recommendation" -  #TokyoWebmining 14th"Mahout Recommendation" -  #TokyoWebmining 14th
"Mahout Recommendation" - #TokyoWebmining 14th
Koichi Hamada
 
Mahout JP - #TokyoWebmining 11th #MahoutJP
Mahout JP -  #TokyoWebmining 11th #MahoutJP Mahout JP -  #TokyoWebmining 11th #MahoutJP
Mahout JP - #TokyoWebmining 11th #MahoutJP
Koichi Hamada
 
10回開催記念 「データマイニング+WEB ~データマイニング・機械学習活用による継続進化~」ー第10回データマイニング+WEB勉強会@東京ー #Toky...
10回開催記念 「データマイニング+WEB ~データマイニング・機械学習活用による継続進化~」ー第10回データマイニング+WEB勉強会@東京ー #Toky...10回開催記念 「データマイニング+WEB ~データマイニング・機械学習活用による継続進化~」ー第10回データマイニング+WEB勉強会@東京ー #Toky...
10回開催記念 「データマイニング+WEB ~データマイニング・機械学習活用による継続進化~」ー第10回データマイニング+WEB勉強会@東京ー #Toky...
Koichi Hamada
 
『モバゲーの大規模データマイニング基盤におけるHadoop活用』-Hadoop Conference Japan 2011- #hcj2011
『モバゲーの大規模データマイニング基盤におけるHadoop活用』-Hadoop Conference Japan 2011- #hcj2011 『モバゲーの大規模データマイニング基盤におけるHadoop活用』-Hadoop Conference Japan 2011- #hcj2011
『モバゲーの大規模データマイニング基盤におけるHadoop活用』-Hadoop Conference Japan 2011- #hcj2011
Koichi Hamada
 
「R言語による Random Forest 徹底入門 -集団学習による分類・予測-」 - #TokyoR #11
「R言語による Random Forest 徹底入門 -集団学習による分類・予測-」 - #TokyoR  #11「R言語による Random Forest 徹底入門 -集団学習による分類・予測-」 - #TokyoR  #11
「R言語による Random Forest 徹底入門 -集団学習による分類・予測-」 - #TokyoR #11
Koichi Hamada
 
Mahout Canopy Clustering - #TokyoWebmining 9
Mahout Canopy Clustering - #TokyoWebmining 9Mahout Canopy Clustering - #TokyoWebmining 9
Mahout Canopy Clustering - #TokyoWebmining 9
Koichi Hamada
 
Apache Mahout - Random Forests - #TokyoWebmining #8
Apache Mahout - Random Forests - #TokyoWebmining #8 Apache Mahout - Random Forests - #TokyoWebmining #8
Apache Mahout - Random Forests - #TokyoWebmining #8
Koichi Hamada
 
「樹木モデルとランダムフォレスト-機械学習による分類・予測-」-データマイニングセミナー
「樹木モデルとランダムフォレスト-機械学習による分類・予測-」-データマイニングセミナー「樹木モデルとランダムフォレスト-機械学習による分類・予測-」-データマイニングセミナー
「樹木モデルとランダムフォレスト-機械学習による分類・予測-」-データマイニングセミナー
Koichi Hamada
 

Recently uploaded (20)

Towards Scientific Foundation Models (Invited Talk)
Towards Scientific Foundation Models  (Invited Talk)Towards Scientific Foundation Models  (Invited Talk)
Towards Scientific Foundation Models (Invited Talk)
Steffen Staab
 
Anti epileptic drugs 2025.pptxjjnvgghbbvguiu
Anti epileptic drugs 2025.pptxjjnvgghbbvguiuAnti epileptic drugs 2025.pptxjjnvgghbbvguiu
Anti epileptic drugs 2025.pptxjjnvgghbbvguiu
sanjay030663
 
Biological application of spectroscopy.pptx
Biological application of spectroscopy.pptxBiological application of spectroscopy.pptx
Biological application of spectroscopy.pptx
RahulRajai
 
Class 7 Ch 1, Quiz 1 on nutrition in plants
Class 7 Ch 1, Quiz 1 on nutrition in plantsClass 7 Ch 1, Quiz 1 on nutrition in plants
Class 7 Ch 1, Quiz 1 on nutrition in plants
090kartiksharma
 
Chemistry Quick Notes By MdcatAcademy.com ..pdf
Chemistry Quick Notes By MdcatAcademy.com ..pdfChemistry Quick Notes By MdcatAcademy.com ..pdf
Chemistry Quick Notes By MdcatAcademy.com ..pdf
salimullahk05
 
Growing Crops with Microbiology- Endophytes and Rhizophagy Cycle.pdf
Growing Crops with Microbiology- Endophytes and Rhizophagy Cycle.pdfGrowing Crops with Microbiology- Endophytes and Rhizophagy Cycle.pdf
Growing Crops with Microbiology- Endophytes and Rhizophagy Cycle.pdf
kahumbusu
 
Niosomes- Non ionic surfactant vesicle ( Karina Changrani)
 Niosomes- Non ionic surfactant vesicle ( Karina Changrani) Niosomes- Non ionic surfactant vesicle ( Karina Changrani)
Niosomes- Non ionic surfactant vesicle ( Karina Changrani)
3012KarinaChangrani
 
robotics in microbiology and it's implications pptx
robotics in microbiology and it's implications pptxrobotics in microbiology and it's implications pptx
robotics in microbiology and it's implications pptx
pelegoodluck1
 
Glymphatic system dysfunction and neurodegeneration
Glymphatic system dysfunction and neurodegenerationGlymphatic system dysfunction and neurodegeneration
Glymphatic system dysfunction and neurodegeneration
KanakChaudhary10
 
_OceanofPDF.com_Qualitative_Research_Analyzing_Life_-_Johnny_Saldana.pdf
_OceanofPDF.com_Qualitative_Research_Analyzing_Life_-_Johnny_Saldana.pdf_OceanofPDF.com_Qualitative_Research_Analyzing_Life_-_Johnny_Saldana.pdf
_OceanofPDF.com_Qualitative_Research_Analyzing_Life_-_Johnny_Saldana.pdf
HannoPoeschl
 
Insights to Narcotic Drugs by Urmila Nirmal
Insights to Narcotic Drugs by Urmila NirmalInsights to Narcotic Drugs by Urmila Nirmal
Insights to Narcotic Drugs by Urmila Nirmal
urvi1504nirmal
 
The scientific heritage No 161 (161) (2025)
The scientific heritage No 161 (161) (2025)The scientific heritage No 161 (161) (2025)
The scientific heritage No 161 (161) (2025)
The scientific heritage
 
chapter 2 Prepare for administration of medications.pdf
chapter  2 Prepare for administration of medications.pdfchapter  2 Prepare for administration of medications.pdf
chapter 2 Prepare for administration of medications.pdf
Berhe4
 
Energy and its different types with applications.pptx
Energy and its different types with applications.pptxEnergy and its different types with applications.pptx
Energy and its different types with applications.pptx
AQSAKHALID82
 
Basic immune response against viruses.pptx
Basic immune response against viruses.pptxBasic immune response against viruses.pptx
Basic immune response against viruses.pptx
nehadeshmukh4702
 
APPLIED VETEINARY ANATOMy presentation in veterinary
APPLIED VETEINARY ANATOMy presentation in veterinaryAPPLIED VETEINARY ANATOMy presentation in veterinary
APPLIED VETEINARY ANATOMy presentation in veterinary
mythi170320000
 
Medical Instrumentation -I Biological Signals .pptx
Medical Instrumentation -I Biological Signals .pptxMedical Instrumentation -I Biological Signals .pptx
Medical Instrumentation -I Biological Signals .pptx
drmaneharshalid
 
kaysones_pagkosmios_meteo_organismos.pdf
kaysones_pagkosmios_meteo_organismos.pdfkaysones_pagkosmios_meteo_organismos.pdf
kaysones_pagkosmios_meteo_organismos.pdf
ssuser5750e1
 
_OceanofPDF.com_Qualitative_Research_Methods_-_Hennink.pdf
_OceanofPDF.com_Qualitative_Research_Methods_-_Hennink.pdf_OceanofPDF.com_Qualitative_Research_Methods_-_Hennink.pdf
_OceanofPDF.com_Qualitative_Research_Methods_-_Hennink.pdf
HannoPoeschl
 
A review on simple heterocyclics involved in chemical ,biochemical and metabo...
A review on simple heterocyclics involved in chemical ,biochemical and metabo...A review on simple heterocyclics involved in chemical ,biochemical and metabo...
A review on simple heterocyclics involved in chemical ,biochemical and metabo...
DrAparnaYeddala
 
Towards Scientific Foundation Models (Invited Talk)
Towards Scientific Foundation Models  (Invited Talk)Towards Scientific Foundation Models  (Invited Talk)
Towards Scientific Foundation Models (Invited Talk)
Steffen Staab
 
Anti epileptic drugs 2025.pptxjjnvgghbbvguiu
Anti epileptic drugs 2025.pptxjjnvgghbbvguiuAnti epileptic drugs 2025.pptxjjnvgghbbvguiu
Anti epileptic drugs 2025.pptxjjnvgghbbvguiu
sanjay030663
 
Biological application of spectroscopy.pptx
Biological application of spectroscopy.pptxBiological application of spectroscopy.pptx
Biological application of spectroscopy.pptx
RahulRajai
 
Class 7 Ch 1, Quiz 1 on nutrition in plants
Class 7 Ch 1, Quiz 1 on nutrition in plantsClass 7 Ch 1, Quiz 1 on nutrition in plants
Class 7 Ch 1, Quiz 1 on nutrition in plants
090kartiksharma
 
Chemistry Quick Notes By MdcatAcademy.com ..pdf
Chemistry Quick Notes By MdcatAcademy.com ..pdfChemistry Quick Notes By MdcatAcademy.com ..pdf
Chemistry Quick Notes By MdcatAcademy.com ..pdf
salimullahk05
 
Growing Crops with Microbiology- Endophytes and Rhizophagy Cycle.pdf
Growing Crops with Microbiology- Endophytes and Rhizophagy Cycle.pdfGrowing Crops with Microbiology- Endophytes and Rhizophagy Cycle.pdf
Growing Crops with Microbiology- Endophytes and Rhizophagy Cycle.pdf
kahumbusu
 
Niosomes- Non ionic surfactant vesicle ( Karina Changrani)
 Niosomes- Non ionic surfactant vesicle ( Karina Changrani) Niosomes- Non ionic surfactant vesicle ( Karina Changrani)
Niosomes- Non ionic surfactant vesicle ( Karina Changrani)
3012KarinaChangrani
 
robotics in microbiology and it's implications pptx
robotics in microbiology and it's implications pptxrobotics in microbiology and it's implications pptx
robotics in microbiology and it's implications pptx
pelegoodluck1
 
Glymphatic system dysfunction and neurodegeneration
Glymphatic system dysfunction and neurodegenerationGlymphatic system dysfunction and neurodegeneration
Glymphatic system dysfunction and neurodegeneration
KanakChaudhary10
 
_OceanofPDF.com_Qualitative_Research_Analyzing_Life_-_Johnny_Saldana.pdf
_OceanofPDF.com_Qualitative_Research_Analyzing_Life_-_Johnny_Saldana.pdf_OceanofPDF.com_Qualitative_Research_Analyzing_Life_-_Johnny_Saldana.pdf
_OceanofPDF.com_Qualitative_Research_Analyzing_Life_-_Johnny_Saldana.pdf
HannoPoeschl
 
Insights to Narcotic Drugs by Urmila Nirmal
Insights to Narcotic Drugs by Urmila NirmalInsights to Narcotic Drugs by Urmila Nirmal
Insights to Narcotic Drugs by Urmila Nirmal
urvi1504nirmal
 
The scientific heritage No 161 (161) (2025)
The scientific heritage No 161 (161) (2025)The scientific heritage No 161 (161) (2025)
The scientific heritage No 161 (161) (2025)
The scientific heritage
 
chapter 2 Prepare for administration of medications.pdf
chapter  2 Prepare for administration of medications.pdfchapter  2 Prepare for administration of medications.pdf
chapter 2 Prepare for administration of medications.pdf
Berhe4
 
Energy and its different types with applications.pptx
Energy and its different types with applications.pptxEnergy and its different types with applications.pptx
Energy and its different types with applications.pptx
AQSAKHALID82
 
Basic immune response against viruses.pptx
Basic immune response against viruses.pptxBasic immune response against viruses.pptx
Basic immune response against viruses.pptx
nehadeshmukh4702
 
APPLIED VETEINARY ANATOMy presentation in veterinary
APPLIED VETEINARY ANATOMy presentation in veterinaryAPPLIED VETEINARY ANATOMy presentation in veterinary
APPLIED VETEINARY ANATOMy presentation in veterinary
mythi170320000
 
Medical Instrumentation -I Biological Signals .pptx
Medical Instrumentation -I Biological Signals .pptxMedical Instrumentation -I Biological Signals .pptx
Medical Instrumentation -I Biological Signals .pptx
drmaneharshalid
 
kaysones_pagkosmios_meteo_organismos.pdf
kaysones_pagkosmios_meteo_organismos.pdfkaysones_pagkosmios_meteo_organismos.pdf
kaysones_pagkosmios_meteo_organismos.pdf
ssuser5750e1
 
_OceanofPDF.com_Qualitative_Research_Methods_-_Hennink.pdf
_OceanofPDF.com_Qualitative_Research_Methods_-_Hennink.pdf_OceanofPDF.com_Qualitative_Research_Methods_-_Hennink.pdf
_OceanofPDF.com_Qualitative_Research_Methods_-_Hennink.pdf
HannoPoeschl
 
A review on simple heterocyclics involved in chemical ,biochemical and metabo...
A review on simple heterocyclics involved in chemical ,biochemical and metabo...A review on simple heterocyclics involved in chemical ,biochemical and metabo...
A review on simple heterocyclics involved in chemical ,biochemical and metabo...
DrAparnaYeddala
 

NIPS 2016 Overview and Deep Learning Topics

  • 1. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. NIPS 2016 読み会 @Preferred Networks 2017/1/19 NIPS 2016 Overview and Deep Learning Topics @hamadakoichi 濱田晃一 Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
  • 2. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 2 AGENDA ◆Deep Learning Topics ◆NIPS 2016 Overview ◆Generative Adversarial Networks(GANs) ◆Recurrent Neural Networks(RNNs) ◆GANs ◆GANs in NIPS2016 ◆Recent GANs ◆RNNs in NIPS2016
  • 3. 3 Copyright (C) 2014 DeNA Co.,Ltd. All Rights Reserved. 講師 ・TokyoWebmining 主催者  - 機械学習の実活用コミュニティ。登録人数 1500人超。  - 7年継続、累積59回開催 濱田晃一 (@hamadakoichi) ・執筆:Mobageを支える技術 Analytics Architect ・博士 : 量子統計場の理論 (理論物理) ・DeNA全サービスを対象とし、大規模機械学習活用したサービス開発  - 数千万ユーザー、50億アクション/日、テキスト、画像、ソーシャルグラフ  - 体験設計から、分散学習アルゴリズムの設計・実装まで ・Deep Learning  - 画像表現学習・画像生成    対話・キャラクター表現学習、等
  • 4. 4 Copyright (C) 2014 DeNA Co.,Ltd. All Rights Reserved. AGENDA ◆Deep Learning Topics ◆NIPS 2016 Overview ◆Generative Adversarial Networks(GANs) ◆Recurrent Neural Networks(RNNs) ◆GANs ◆GANs in NIPS2016 ◆Recent GANs ◆RNNs in NIPS2016
  • 5. 5 Copyright (C) 2014 DeNA Co.,Ltd. All Rights Reserved. AGENDA ◆Deep Learning Topics ◆NIPS 2016 Overview ◆Generative Adversarial Networks(GANs) ◆Recurrent Neural Networks(RNNs) ◆GANs ◆GANs in NIPS2016 ◆Recent GANs ◆RNNs in NIPS2016
  • 6. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 6 NIPS 2016 ・第30回の開催 ・期間: 2016年12月5-10日 ・ICML 33回に続き長い伝統 ・チュートリアル: 5(1日) ・本会議: 5-8(4日) ・ワークショップ: 9-10(2日) ・開催地: バルセロナ(スペイン) 貼る:会場雰囲気
  • 7. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 7 NIPS 2016 参加者が 6000人に増加 (2015年の1.5倍) ※Terrence Sejnowskiは NIPS foundationの President
  • 8. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 8 NIPS Features ・採択の92%はポスター ・採択率: 23% ・投稿数: 2500+、採択数: 568 ・Oral(45) : 20分の口頭発表 + ポスター ・Poster(523) : ポスターのみ ・少数トラックでの進行(最大3) (昨年までシングルトラックだったがパラレルに)
  • 9. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 9 NIPS Features ・ポスター発表による活発な議論 (昨年までの19-24時の5時間ポスターからは時間縮小したが、最後まで活発な議論) ・210 min(3.5 hour)/ day ・130 Poster x 4 days
  • 10. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 10 NIPS2016 Hot Topics 引用元: The review process for NIPS 2016 http://www.tml.cs.uni-tuebingen.de/team/ luxburg/misc/nips2016/index.php Deep Learning Computer Vision Large Scale Learning Learning Theory Optimization Sparsity
  • 11. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 11 NIPS2016 Hot Topics Tutorial 3/9、Symposium 2/3 が Deep Learning Reinforcement Learning, Generative Adversarial Net, Recurrent Net Tutorial Symposium
  • 12. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 12 NIPS2016 Hot Topics Tutorial Symposium Tutorial 3/9、Symposium 2/3 が Deep Learning Reinforcement Learning, Generative Adversarial Net, Recurrent Net 上記2トピックに関し、本会議論文をピックアップし概要紹介します (Reinforcement Learningは、このNIPS読み会での個別論文の発表も多いため)
  • 13. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 13 AGENDA ◆Deep Learning Topics ◆NIPS 2016 Overview ◆Generative Adversarial Networks(GANs) ◆Recurrent Neural Networks(RNNs) ◆GANs ◆GANs in NIPS2016 ◆Recent GANs ◆RNNs in NIPS2016
  • 14. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 14 AGENDA ◆Deep Learning Topics ◆NIPS 2016 Overview ◆Generative Adversarial Networks(GANs) ◆Recurrent Neural Networks(RNNs) ◆GANs ◆GANs in NIPS2016 ◆Recent GANs ◆RNNs in NIPS2016
  • 15. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 15 AGENDA ◆Deep Learning Topics ◆NIPS 2016 Overview ◆Generative Adversarial Networks(GANs) ◆Recurrent Neural Networks(RNNs) ◆GANs ◆GANs in NIPS2016 ◆Recent GANs ◆RNNs in NIPS2016
  • 16. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 16 Generative Adversarial Network (GAN) Generative Adversarial Nets(GAN) Goodfellow+, NIPS2014
  • 17. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 17 Generative Adversarial Network (GAN) Generator(生成器)と Discriminator(識別器)を戦わせ 生成精度を向上させる 識別器: “本物画像”と “生成器が作った偽画像”を識別する 生成器: 生成画像を識別器に“本物画像”と誤識別させようとする (Goodfellow+, NIPS2014, Deep Learning Workshop, Presentation)
  • 18. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 18 Generative Adversarial Network (GAN) Minimax Objective function Discriminator が 「本物画像」を「本物」と識別 (Goodfellow+, NIPS2014, Deep Learning Workshop, Presentation) Discriminator が 「生成画像」を「偽物」と識別する Discriminatorは 正しく識別しようとする (最大化) Generatorは Discriminator に誤識別させようとする(最小化) Generator(生成器)と Discriminator(識別器)を戦わせ 生成精度を向上させる
  • 19. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 19 自然画像の表現ベクトル空間学習・演算・画像生成 ICLR16: Deep Convolutional GAN : DCGAN (Radford+) 自然画像のクリアな画像生成 画像演算 Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. Alec Radford, Luke Metz, Soumith Chintala. arXiv:1511.06434. In ICLR 2016.
  • 20. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 20 ICML16: Autoencoding beyond pixels (Larsen+) Autoencoding beyond pixels using a learned similarity metric. Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, Ole Winther. arXiv:1512.09300. In ICML 2016. 自然画像の表現ベクトル空間学習・演算・画像生成
  • 21. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 21 ICML16: Generative Adversarial Text to Image Synthesis(Reed+) Generative Adversarial Text to Image Synthesis. Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee. arXiv:1605.05396. In ICML 2016. 文章からの画像生成 文章で条件付したGAN
  • 22. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 22 AGENDA ◆Deep Learning Topics ◆NIPS 2016 Overview ◆Generative Adversarial Networks(GANs) ◆Recurrent Neural Networks(RNNs) ◆GANs ◆GANs in NIPS2016 ◆Recent GANs ◆RNNs in NIPS2016
  • 23. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 23 Generative Adversarial Text to Image Synthesis(Reed+) Learning What and Where to Draw. Scott Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, Honglak Lee. arXiv:1610.02454. In NIPS 2016. 文章からの画像生成 表示位置情報も条件付したGAN
  • 24. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 24 InfoGAN (Chen+) InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets. Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, Pieter Abbeel. arXiv:1606.03657. In NIPS 2016 Latent code c、Generator 出力との Mutual Information を加え GANで狙って表現ベクトル空間を学習
  • 25. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 25 3Dモデルの表現ベクトル空間学習・演算・生成 3D GAN (Wu+) 3Dモデルの生成 3Dモデル演算 写真からの3Dモデル生成 3D VAE-GAN 3D GAN Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling. Jiajun Wu, Chengkai Zhang, Tianfan Xue, William T. Freeman, Joshua B. Tenenbaum. arXiv:1610.07584. In NIPS 2016.
  • 26. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 26 Generating Videos with Scene Dynamics(Vondrick+) 動画の表現ベクトル空間学習・動画生成 Generating Videos with Scene Dynamics. Carl Vondrick, Hamed Pirsiavash, Antonio Torralba. In NIPS 2016. http://web.mit.edu/vondrick/tinyvideo/ 動画生成 1画像からその後の動画生成
  • 27. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 27 f-GAN (Nowozin+) GAN目的関数を Symmetric JS-divergence から f-divergence に一般化。各Divergence を用い学習・評価 f-GAN: Training Generative Neural samplers using variational Divergence Minimization. Sebastian Nowozin, Botond Cseke, Ryota Tomioka. arXiv:1606.00709. In NIPS 2016. Kernel Density Estimation on the MNIST f-divergence LSUN
  • 28. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 28 Improved Techniques for Training GANs (Salimans+) Improved Techniques for Training GANs. Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen. arXiv:1606.03498. In NIPS 2016. 収束が難しいGANの学習方法論 GAN半教師あり学習 1. Feature Matching 2. Minibatch discrimination 3. Historical averaging 4. One-sided label smoothing 5. Virtual batch normalization Techniques Semi-supervised learning MNIST Semi-supervised training with feature matching Semi-supervised training with feature matching and minibatch discrimination CIFAR-10 Generated samples
  • 29. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 29 AGENDA ◆Deep Learning Topics ◆NIPS 2016 Overview ◆Generative Adversarial Networks(GANs) ◆Recurrent Neural Networks(RNNs) ◆GANs ◆GANs in NIPS2016 ◆Recent GANs ◆RNNs in NIPS2016
  • 30. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 30 Extended Architectures for Generative Adversarial Nets 2016 Extended Architectures for GANs Figure by Chris Olah (2016) : https://twitter.com/ch402/status/793535193835417601 Ex) Conditional Image Synthesis With Auxiliary Classifier GANs. Augustus Odena, Christopher Olah, Jonathon Shlens. arXiv:1610.09585. Generative Adversarial Net の各種拡張
  • 31. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 31 Stack GAN: Text to PhotoRealistic Image Synthesis(Zhang+2016) 1段目で文章から低解像度画像を生成 2段目で低解像度画像から高解像度画像を生成 StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks. Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaolei Huang, Xiaogang Wang, Dimitris Metaxas. arXiv:1612.03242.
  • 32. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 32 Plug & Play Generative Networks (Nguyen+2016) 高解像度な画像生成 227 x 227 ImageNet Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space. Anh Nguyen, Jason Yosinski, Yoshua Bengio, Alexey Dosovitskiy, Jeff Clune. arXiv:1612.00005.
  • 33. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 33 AGENDA ◆Deep Learning Topics ◆NIPS 2016 Overview ◆Generative Adversarial Networks(GANs) ◆Recurrent Neural Networks(RNNs) ◆GANs ◆GANs in NIPS2016 ◆Recent GANs ◆RNNs in NIPS2016
  • 34. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 34 Phased LSTM (Neil+) 時間で開閉するGateを導入した LSTM Sensor Data 等、Event 駆動の長期系列特徴を学習 Phased LSTM: Accelerating Recurrent Network Training for Long or Event-based Sequences. Daniel Neil, Michael Pfeiffer, Shih-Chii Liu. arXiv:1610.09513. In NIPS 2016. LSTM Phased LSTM Phased LSTM Behavior Frequency Discrimination Task
  • 35. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 35 Using Fast Weights to Attend to the Recent Past (Ba+) 早く学習・減衰する Fast Weight 追加で、系列固有の情報を扱う Slow Weight での長期特徴とあわせ、双方の系列特徴を学習 Using Fast Weights to Attend to the Recent Past. Jimmy Ba, Geoffrey Hinton, Volodymyr Mnih, Joel Z. Leibo, Catalin Ionescu. arXiv:1610.06258. In NIPS 2016. Associative Retrieval Task Classification Error Test Log Likelihood
  • 36. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 36 Learning to learn by GD by GD (Andrychowicz+) LSTMを用いたOptimizer Parameterごとに 勾配系列から適切な次の更新量を算出 Learning to learn by gradient descent by gradient descent. Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W. Hoffman, David Pfau, Tom Schaul, Brendan Shillingford, Nando de Freitas. arXiv:1606.04474. In NIPS 2016.
  • 37. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 37 Matching Network for One Shot Learning (Vinyals+) Attention Mechanism を用いた One Shot Learning 参照構造を学習しておき、新規小規模データセットでも高精度で動作 Matching Networks for One Shot Learning. Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, Daan Wierstra. arXiv:1606.04080. In NIPS 2016. Omniglot miniImageNet
  • 38. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 38 AGENDA ◆Deep Learning Topics ◆NIPS 2016 Overview ◆Generative Adversarial Networks(GANs) ◆Recurrent Neural Networks(RNNs) ◆GANs ◆GANs in NIPS2016 ◆Recent GANs ◆RNNs in NIPS2016