Problems on Modulation
techniques
Quote of the day
“Any man who reads too much and uses his
own brain too little falls into lazy habits of
thinking.”
― Albert Einstein
Important formulae to solve AM problems
c
m
E
E
m 
c
c
c
c f
t
E
t
e 

 2
where
)
cos(
)
( 

t
E
t
e m
m
m 
cos
)
( 
m
c E
E
E 

max m
c E
E
E 

min
min
max
min
max
E
E
E
E
m




c
c
total
t P
m
m
E
P 



















2
1
2
1
2
2
2
2
)
( c
c
USB
LSB P
m
E
m
P
P
4
8
2
2
2



 
  2
2
2
2
2
2
1
2
/
efficiency
on
transmissi
m
m
P
m
P
m
c
c




m
f
2
Bandwidth  1
R
for
2
2
2
2
2
2




 c
c
c
E
c
E
P
R
E
R
P
c
For an AM, amplitude of modulating signal is 0.5 V and
carrier amplitude is 1V.Find Modulation Index.
c
m
E
E
m 

Solution: Ec = 1 V and Em = 0.5 V
We know that
1
5
.
0

m
5
.
0

m
When the modulation percentage is 75%, an AM transmitter
radiates 10KW Power. How much of this is carrier Power?
Solution: Pt = 10 KW and m=0.75
c
total
t P
m
P 









2
1
2
)
(
We know that











2
1
2
)
(
m
P
P total
t
c
W
Pc
3
10
8
.
7 














2
75
.
0
1
10
10
2
3
c
P
KW
Pc 8
.
7


An AM transmitter radiates 20KW. If the modulation Index is
0.7. Find the carrier Power.(June-July2009(2002 scheme))
Solution: Pt = 20 KW and m=0.7
We know that
c
total
t P
m
P 









2
1
2
)
(











2
1
2
)
(
m
P
P total
t
c
W
Pc
3
10
064
.
16 














2
7
.
0
1
10
20
2
3
c
P
KW
Pc 064
.
16


The total Power content of an AM signal is 1000W.
Determine the power being transmitted at carrier
frequency and at each side bands when modulation
percentage is 100%. .(Dec 2014-Jan 2015)
Solution: Pt = 1000 W and m=1
c
total
t P
m
P 









2
1
2
)
(
We know that











2
1
2
)
(
m
P
P total
t
c
W
Pc 67
.
666














2
1
1
10
1
2
3
c
P
c
LSB
USB P
m
P
P 









4
2
67
.
666
4
1








 LSB
USB P
P
W
Pc 67
.
166


A500W, 100KHz carrier is modulated to a depth of 60% by
modulating frequency of 1KHz. Calculate the total power
transmitted. What are the sideband components of AM
Wave?(Dec –Jan 2010(2006 scheme))
Solution: Pc = 500 W, fc =100 KHz, m = 60% = .6 and fm =1 KHz
We know that
c
total
t P
m
P 









2
1
2
)
( 500
2
6
.
0
1
2
)
( 









 total
t
P
W
P total
t 590
)
( 

m
c
USB f
f
f 

 m
c
LSB f
f
f 


We know that
KHz
fUSB 101

 KHz
fLSB 99


A400W, 1MHz carrier is amplitude-modulated with a sinusoidal
signal 0f 2500Hz. The depth of modulation is 75%. Calculate the
sideband frequencies, bandwidth, and power in sidebands and
the total power in modulated wave. (June-July2008(2006 scheme))
Solution: Pc = 400 W, fc =1 MHz, m = 75% = .75 and fm =2.5 KHz
We know that
c
total
t P
m
P 









2
1
2
)
( 400
2
75
.
0
1
2
)
( 









 total
t
P
W
P total
t 5
.
512
)
( 

m
c
USB f
f
f 

 m
c
LSB f
f
f 


We know that
KHz
fUSB 5
.
1002

 KHz
fLSB 5
.
997


c
LSB
USB P
m
P
P 









4
2
400
4
75
.
0 2









 LSB
USB P
P W
25
.
56

m
f
BW 2


KHz
KHz
BW 5
5
.
2
2 



A Carrier of 750 W,1MHz is amplitude modulated by sinusoidal
signal of 2 KHz to a depth of 50%. Calculate Bandwidth, Power in
side band and total power transmitted.
Solution: Pc = 750 W, fc =1 MHz, m = 50% = .5 and fm =2 KHz
We know that
c
total
t P
m
P 









2
1
2
)
( 750
2
5
.
0
1
2
)
( 









 total
t
P
W
P total
t 75
.
843
)
( 

m
c
USB f
f
f 

 m
c
LSB f
f
f 


We know that
KHz
fUSB 1002

 KHz
fLSB 998


c
LSB
USB P
m
P
P 









4
2
750
4
5
.
0 2









 LSB
USB P
P W
875
.
46

KHz
f
BW m 4
2 


 KHz
f
f
BW LSB
USB 4




Calculate the percentage power saving when one side
band and carrier is suppressed in an AM signal with
modulation index equal to 1.(VTU Model QP-2014)
c
c
total
t P
P
m
P
2
3
2
1
2
)
( 










c
c
P
P
2
3
4
5
saved
power
of
Amount 
LSB
c P
P
P 

suppressed
12
10
 833
.
0
 %
3
.
83

Solution: m = 1
We know that
c
c P
m
P
P 










4
2
suppressed c
c
c P
P
P
P
4
5
4
1
suppressed 









total
P
Psuppressed
saved
power
of
Amount 
Calculate the percentage power saving when one side
band and carrier is suppressed in an AM signal if
percentage of modulation is 50%.
c
c
total
t P
P
m
P
8
9
2
1
2
)
( 










c
c
P
P
16
17
8
9
saved
power
of
Amount 
LSB
c P
P
P 

suppressed
17
8
16
9


 944
.
0
 %
4
.
94

Solution: m = 0.5
We know that
c
c P
m
P
P 










4
2
suppressed c
c
c P
P
P
P
16
17
16
1
suppressed 









total
P
Psuppressed
saved
power
of
Amount 
A Sinusoidal carrier frequency of 1.2MHz is amplitude modulated by a
sinusoidal voltage of frequency 20KHz resulting in maximum and
minimum modulated carrier amplitude of 110V & 90V respectively.
Calculate
I. frequency of lower and upper side bands
II. unmodulated carrier amplitude
III. Modulation index IV. Amplitude of each side band.
Solution: fc =1.2 MHz, Emax = 110V, Emin = 90V and fm =20 KHz
We know that
m
c
USB f
f
f 

 m
c
LSB f
f
f 


KHz
fUSB 1220

 KHz
fLSB 1180


min
max
min
max
also
E
E
E
E
m



2
min
max E
E
Ec


2
& min
max E
E
Em


We also know that
2
90
110

c
E V
Ec 100

2
90
110

 m
E V
Em 10


90
110
90
110



m 1
.
0

m
An audio frequency signal 10 sin(2π×500t) is used to amplitude
modulate a carrier of 50 sin(2π×105t).Calculate. (JAN2015)
Solution: fm =500 Hz , Em = 10V, fc =100 KHz and Ec = 50V.
We know that m
c
USB f
f
f 

 m
c
LSB f
f
f 


KHz
fUSB 5
.
100

 KHz
fLSB 5
.
99


R
E
P c


2
power
carrier
also
2
c
c
m
E
E
m 
2
band
side
of
Amplitude c
mE

We also know that
50
10

m %
50
2
.
0 

m
2
50
2
.
0 
 V
5

600
2
2500


c
P 08
.
2

I.frequency of side bands
II. Bandwidth
III. Modulation index
IV. Amplitude of each side band.
V. Transmission efficiency
VI. Total power delivered to a load of 600Ω.
m
f
BW 2


KHz
Hz
BW 1
500
2 



c
P
m
P 









2
1
power
total
and
2
t
125
.
2

 t
P
2
2
2
eff.
m
m


Transmission
Efficiency
2
2
2
.
0
2
2
.
0
eff.


%
96
.
1
196
.
0
eff. 


Numerical Problems on Ampitude Modulation

  • 1.
    Problems on Modulation techniques Quoteof the day “Any man who reads too much and uses his own brain too little falls into lazy habits of thinking.” ― Albert Einstein
  • 2.
    Important formulae tosolve AM problems c m E E m  c c c c f t E t e    2 where ) cos( ) (   t E t e m m m  cos ) (  m c E E E   max m c E E E   min min max min max E E E E m     c c total t P m m E P                     2 1 2 1 2 2 2 2 ) ( c c USB LSB P m E m P P 4 8 2 2 2        2 2 2 2 2 2 1 2 / efficiency on transmissi m m P m P m c c     m f 2 Bandwidth  1 R for 2 2 2 2 2 2      c c c E c E P R E R P c
  • 3.
    For an AM,amplitude of modulating signal is 0.5 V and carrier amplitude is 1V.Find Modulation Index. c m E E m   Solution: Ec = 1 V and Em = 0.5 V We know that 1 5 . 0  m 5 . 0  m
  • 4.
    When the modulationpercentage is 75%, an AM transmitter radiates 10KW Power. How much of this is carrier Power? Solution: Pt = 10 KW and m=0.75 c total t P m P           2 1 2 ) ( We know that            2 1 2 ) ( m P P total t c W Pc 3 10 8 . 7                2 75 . 0 1 10 10 2 3 c P KW Pc 8 . 7  
  • 5.
    An AM transmitterradiates 20KW. If the modulation Index is 0.7. Find the carrier Power.(June-July2009(2002 scheme)) Solution: Pt = 20 KW and m=0.7 We know that c total t P m P           2 1 2 ) (            2 1 2 ) ( m P P total t c W Pc 3 10 064 . 16                2 7 . 0 1 10 20 2 3 c P KW Pc 064 . 16  
  • 6.
    The total Powercontent of an AM signal is 1000W. Determine the power being transmitted at carrier frequency and at each side bands when modulation percentage is 100%. .(Dec 2014-Jan 2015) Solution: Pt = 1000 W and m=1 c total t P m P           2 1 2 ) ( We know that            2 1 2 ) ( m P P total t c W Pc 67 . 666               2 1 1 10 1 2 3 c P c LSB USB P m P P           4 2 67 . 666 4 1          LSB USB P P W Pc 67 . 166  
  • 7.
    A500W, 100KHz carrieris modulated to a depth of 60% by modulating frequency of 1KHz. Calculate the total power transmitted. What are the sideband components of AM Wave?(Dec –Jan 2010(2006 scheme)) Solution: Pc = 500 W, fc =100 KHz, m = 60% = .6 and fm =1 KHz We know that c total t P m P           2 1 2 ) ( 500 2 6 . 0 1 2 ) (            total t P W P total t 590 ) (   m c USB f f f    m c LSB f f f    We know that KHz fUSB 101   KHz fLSB 99  
  • 8.
    A400W, 1MHz carrieris amplitude-modulated with a sinusoidal signal 0f 2500Hz. The depth of modulation is 75%. Calculate the sideband frequencies, bandwidth, and power in sidebands and the total power in modulated wave. (June-July2008(2006 scheme)) Solution: Pc = 400 W, fc =1 MHz, m = 75% = .75 and fm =2.5 KHz We know that c total t P m P           2 1 2 ) ( 400 2 75 . 0 1 2 ) (            total t P W P total t 5 . 512 ) (   m c USB f f f    m c LSB f f f    We know that KHz fUSB 5 . 1002   KHz fLSB 5 . 997   c LSB USB P m P P           4 2 400 4 75 . 0 2           LSB USB P P W 25 . 56  m f BW 2   KHz KHz BW 5 5 . 2 2    
  • 9.
    A Carrier of750 W,1MHz is amplitude modulated by sinusoidal signal of 2 KHz to a depth of 50%. Calculate Bandwidth, Power in side band and total power transmitted. Solution: Pc = 750 W, fc =1 MHz, m = 50% = .5 and fm =2 KHz We know that c total t P m P           2 1 2 ) ( 750 2 5 . 0 1 2 ) (            total t P W P total t 75 . 843 ) (   m c USB f f f    m c LSB f f f    We know that KHz fUSB 1002   KHz fLSB 998   c LSB USB P m P P           4 2 750 4 5 . 0 2           LSB USB P P W 875 . 46  KHz f BW m 4 2     KHz f f BW LSB USB 4    
  • 10.
    Calculate the percentagepower saving when one side band and carrier is suppressed in an AM signal with modulation index equal to 1.(VTU Model QP-2014) c c total t P P m P 2 3 2 1 2 ) (            c c P P 2 3 4 5 saved power of Amount  LSB c P P P   suppressed 12 10  833 . 0  % 3 . 83  Solution: m = 1 We know that c c P m P P            4 2 suppressed c c c P P P P 4 5 4 1 suppressed           total P Psuppressed saved power of Amount 
  • 11.
    Calculate the percentagepower saving when one side band and carrier is suppressed in an AM signal if percentage of modulation is 50%. c c total t P P m P 8 9 2 1 2 ) (            c c P P 16 17 8 9 saved power of Amount  LSB c P P P   suppressed 17 8 16 9    944 . 0  % 4 . 94  Solution: m = 0.5 We know that c c P m P P            4 2 suppressed c c c P P P P 16 17 16 1 suppressed           total P Psuppressed saved power of Amount 
  • 12.
    A Sinusoidal carrierfrequency of 1.2MHz is amplitude modulated by a sinusoidal voltage of frequency 20KHz resulting in maximum and minimum modulated carrier amplitude of 110V & 90V respectively. Calculate I. frequency of lower and upper side bands II. unmodulated carrier amplitude III. Modulation index IV. Amplitude of each side band. Solution: fc =1.2 MHz, Emax = 110V, Emin = 90V and fm =20 KHz We know that m c USB f f f    m c LSB f f f    KHz fUSB 1220   KHz fLSB 1180   min max min max also E E E E m    2 min max E E Ec   2 & min max E E Em   We also know that 2 90 110  c E V Ec 100  2 90 110   m E V Em 10   90 110 90 110    m 1 . 0  m
  • 13.
    An audio frequencysignal 10 sin(2π×500t) is used to amplitude modulate a carrier of 50 sin(2π×105t).Calculate. (JAN2015) Solution: fm =500 Hz , Em = 10V, fc =100 KHz and Ec = 50V. We know that m c USB f f f    m c LSB f f f    KHz fUSB 5 . 100   KHz fLSB 5 . 99   R E P c   2 power carrier also 2 c c m E E m  2 band side of Amplitude c mE  We also know that 50 10  m % 50 2 . 0   m 2 50 2 . 0   V 5  600 2 2500   c P 08 . 2  I.frequency of side bands II. Bandwidth III. Modulation index IV. Amplitude of each side band. V. Transmission efficiency VI. Total power delivered to a load of 600Ω. m f BW 2   KHz Hz BW 1 500 2     c P m P           2 1 power total and 2 t 125 . 2   t P 2 2 2 eff. m m   Transmission Efficiency 2 2 2 . 0 2 2 . 0 eff.   % 96 . 1 196 . 0 eff.  