SlideShare a Scribd company logo
2
PythonForDataScience Cheat Sheet
NumPy Basics
Learn Python for Data Science Interactively at www.DataCamp.com
NumPy
DataCamp
Learn Python for Data Science Interactively
The NumPy library is the core library for scientific computing in
Python. It provides a high-performance multidimensional array
object, and tools for working with these arrays.
>>> import numpy as np
Use the following import convention:
Creating Arrays
>>> np.zeros((3,4)) Create an array of zeros
>>> np.ones((2,3,4),dtype=np.int16) Create an array of ones
>>> d = np.arange(10,25,5) Create an array of evenly
spaced values (step value)
>>> np.linspace(0,2,9) Create an array of evenly
spaced values (number of samples)
>>> e = np.full((2,2),7) Create a constant array
>>> f = np.eye(2) Create a 2X2 identity matrix
>>> np.random.random((2,2)) Create an array with random values
>>> np.empty((3,2)) Create an empty array
Array Mathematics
>>> g = a - b Subtraction
array([[-0.5, 0. , 0. ],
[-3. , -3. , -3. ]])
>>> np.subtract(a,b) Subtraction
>>> b + a Addition
array([[ 2.5, 4. , 6. ],
[ 5. , 7. , 9. ]])
>>> np.add(b,a) Addition
>>> a / b Division
array([[ 0.66666667, 1. , 1. ],
[ 0.25 , 0.4 , 0.5 ]])
>>> np.divide(a,b) Division
>>> a * b Multiplication
array([[ 1.5, 4. , 9. ],
[ 4. , 10. , 18. ]])
>>> np.multiply(a,b) Multiplication
>>> np.exp(b) Exponentiation
>>> np.sqrt(b) Square root
>>> np.sin(a) Print sines of an array
>>> np.cos(b) Element-wise cosine
>>> np.log(a) Element-wise natural logarithm
>>> e.dot(f) Dot product
array([[ 7., 7.],
[ 7., 7.]])
Subsetting, Slicing, Indexing
>>> a.sum() Array-wise sum
>>> a.min() Array-wise minimum value
>>> b.max(axis=0) Maximum value of an array row
>>> b.cumsum(axis=1) Cumulative sum of the elements
>>> a.mean() Mean
>>> b.median() Median
>>> a.corrcoef() Correlation coefficient
>>> np.std(b) Standard deviation
Comparison
>>> a == b Element-wise comparison
array([[False, True, True],
[False, False, False]], dtype=bool)
>>> a < 2 Element-wise comparison
array([True, False, False], dtype=bool)
>>> np.array_equal(a, b) Array-wise comparison
1 2 3
1D array 2D array 3D array
1.5 2 3
4 5 6
Array Manipulation
NumPy Arrays
axis 0
axis 1
axis 0
axis 1
axis 2
Arithmetic Operations
Transposing Array
>>> i = np.transpose(b) Permute array dimensions
>>> i.T Permute array dimensions
Changing Array Shape
>>> b.ravel() Flatten the array
>>> g.reshape(3,-2) Reshape, but don’t change data
Adding/Removing Elements
>>> h.resize((2,6)) Return a new array with shape (2,6)
>>> np.append(h,g) Append items to an array
>>> np.insert(a, 1, 5) Insert items in an array
>>> np.delete(a,[1]) Delete items from an array
Combining Arrays
>>> np.concatenate((a,d),axis=0) Concatenate arrays
array([ 1, 2, 3, 10, 15, 20])
>>> np.vstack((a,b)) Stack arrays vertically (row-wise)
array([[ 1. , 2. , 3. ],
[ 1.5, 2. , 3. ],
[ 4. , 5. , 6. ]])
>>> np.r_[e,f] Stack arrays vertically (row-wise)
>>> np.hstack((e,f)) Stack arrays horizontally (column-wise)
array([[ 7., 7., 1., 0.],
[ 7., 7., 0., 1.]])
>>> np.column_stack((a,d)) Create stacked column-wise arrays
array([[ 1, 10],
[ 2, 15],
[ 3, 20]])
>>> np.c_[a,d] Create stacked column-wise arrays
Splitting Arrays
>>> np.hsplit(a,3) Split the array horizontally at the 3rd
[array([1]),array([2]),array([3])] index
>>> np.vsplit(c,2) Split the array vertically at the 2nd index
[array([[[ 1.5, 2. , 1. ],
[ 4. , 5. , 6. ]]]),
array([[[ 3., 2., 3.],
[ 4., 5., 6.]]])]
Also see Lists
Subsetting
>>> a[2] Select the element at the 2nd index
3
>>> b[1,2] Select the element at row 1 column 2
6.0 (equivalent to b[1][2])
Slicing
>>> a[0:2] Select items at index 0 and 1
array([1, 2])
>>> b[0:2,1] Select items at rows 0 and 1 in column 1
array([ 2., 5.])
>>> b[:1] Select all items at row 0
array([[1.5, 2., 3.]]) (equivalent to b[0:1, :])
>>> c[1,...] Same as [1,:,:]
array([[[ 3., 2., 1.],
[ 4., 5., 6.]]])
>>> a[ : :-1] Reversed array a
array([3, 2, 1])
Boolean Indexing
>>> a[a<2] Select elements from a less than 2
array([1])
Fancy Indexing
>>> b[[1, 0, 1, 0],[0, 1, 2, 0]] Select elements (1,0),(0,1),(1,2)and (0,0)
array([ 4. , 2. , 6. , 1.5])
>>> b[[1, 0, 1, 0]][:,[0,1,2,0]] Select a subset of the matrix’s rows
array([[ 4. ,5. , 6. , 4. ], and columns
[ 1.5, 2. , 3. , 1.5],
[ 4. , 5. , 6. , 4. ],
[ 1.5, 2. , 3. , 1.5]])
>>> a = np.array([1,2,3])
>>> b = np.array([(1.5,2,3), (4,5,6)], dtype = float)
>>> c = np.array([[(1.5,2,3), (4,5,6)], [(3,2,1), (4,5,6)]],
dtype = float)
Initial Placeholders
Aggregate Functions
>>> np.loadtxt("myfile.txt")
>>> np.genfromtxt("my_file.csv", delimiter=',')
>>> np.savetxt("myarray.txt", a, delimiter=" ")
I/O
1 2 3
1.5 2 3
4 5 6
Copying Arrays
>>> h = a.view() Create a view of the array with the same data
>>> np.copy(a) Create a copy of the array
>>> h = a.copy() Create a deep copy of the array
Saving & Loading Text Files
Saving & Loading On Disk
>>> np.save('my_array', a)
>>> np.savez('array.npz', a, b)
>>> np.load('my_array.npy')
>>> a.shape Array dimensions
>>> len(a) Length of array
>>> b.ndim Number of array dimensions
>>> e.size Number of array elements
>>> b.dtype Data type of array elements
>>> b.dtype.name Name of data type
>>> b.astype(int) Convert an array to a different type
Inspecting Your Array
>>> np.info(np.ndarray.dtype)
Asking For Help
Sorting Arrays
>>> a.sort() Sort an array
>>> c.sort(axis=0) Sort the elements of an array's axis
Data Types
>>> np.int64 Signed 64-bit integer types
>>> np.float32 Standard double-precision floating point
>>> np.complex Complex numbers represented by 128 floats
>>> np.bool Boolean type storing TRUE and FALSE values
>>> np.object Python object type
>>> np.string_ Fixed-length string type
>>> np.unicode_ Fixed-length unicode type
1 2 3
1.5 2 3
4 5 6
1.5 2 3
4 5 6
1 2 3

More Related Content

What's hot (20)

MySQL Operators
MySQL OperatorsMySQL Operators
MySQL Operators
mysql content
 
Python3 cheatsheet
Python3 cheatsheetPython3 cheatsheet
Python3 cheatsheet
Gil Cohen
 
Chart and graphs in R programming language
Chart and graphs in R programming language Chart and graphs in R programming language
Chart and graphs in R programming language
CHANDAN KUMAR
 
Descriptive Statistics with R
Descriptive Statistics with RDescriptive Statistics with R
Descriptive Statistics with R
Kazuki Yoshida
 
Python lab manual all the experiments are available
Python lab manual all the experiments are availablePython lab manual all the experiments are available
Python lab manual all the experiments are available
Nitesh Dubey
 
Red black tree
Red black treeRed black tree
Red black tree
Rajendran
 
Sql queries presentation
Sql queries presentationSql queries presentation
Sql queries presentation
NITISH KUMAR
 
R and Visualization: A match made in Heaven
R and Visualization: A match made in HeavenR and Visualization: A match made in Heaven
R and Visualization: A match made in Heaven
Edureka!
 
Data Structures in Python
Data Structures in PythonData Structures in Python
Data Structures in Python
Devashish Kumar
 
Visualization and Matplotlib using Python.pptx
Visualization and Matplotlib using Python.pptxVisualization and Matplotlib using Python.pptx
Visualization and Matplotlib using Python.pptx
SharmilaMore5
 
Activity selection problem
Activity selection problemActivity selection problem
Activity selection problem
QAU ISLAMABAD,PAKISTAN
 
Presentation on data preparation with pandas
Presentation on data preparation with pandasPresentation on data preparation with pandas
Presentation on data preparation with pandas
AkshitaKanther
 
Unit I Database concepts - RDBMS & ORACLE
Unit I  Database concepts - RDBMS & ORACLEUnit I  Database concepts - RDBMS & ORACLE
Unit I Database concepts - RDBMS & ORACLE
DrkhanchanaR
 
Data visualization using R
Data visualization using RData visualization using R
Data visualization using R
Ummiya Mohammedi
 
Data Mining Techniques
Data Mining TechniquesData Mining Techniques
Data Mining Techniques
Sanzid Kawsar
 
Stored procedure
Stored procedureStored procedure
Stored procedure
Deepak Sharma
 
Exploratory data analysis in R - Data Science Club
Exploratory data analysis in R - Data Science ClubExploratory data analysis in R - Data Science Club
Exploratory data analysis in R - Data Science Club
Martin Bago
 
Lecture 02 lexical analysis
Lecture 02 lexical analysisLecture 02 lexical analysis
Lecture 02 lexical analysis
Iffat Anjum
 
Data preprocessing
Data preprocessingData preprocessing
Data preprocessing
Gajanand Sharma
 
EX-6-Implement Matrix Multiplication with Hadoop Map Reduce.pptx
EX-6-Implement Matrix Multiplication with Hadoop Map Reduce.pptxEX-6-Implement Matrix Multiplication with Hadoop Map Reduce.pptx
EX-6-Implement Matrix Multiplication with Hadoop Map Reduce.pptx
vishal choudhary
 
Python3 cheatsheet
Python3 cheatsheetPython3 cheatsheet
Python3 cheatsheet
Gil Cohen
 
Chart and graphs in R programming language
Chart and graphs in R programming language Chart and graphs in R programming language
Chart and graphs in R programming language
CHANDAN KUMAR
 
Descriptive Statistics with R
Descriptive Statistics with RDescriptive Statistics with R
Descriptive Statistics with R
Kazuki Yoshida
 
Python lab manual all the experiments are available
Python lab manual all the experiments are availablePython lab manual all the experiments are available
Python lab manual all the experiments are available
Nitesh Dubey
 
Red black tree
Red black treeRed black tree
Red black tree
Rajendran
 
Sql queries presentation
Sql queries presentationSql queries presentation
Sql queries presentation
NITISH KUMAR
 
R and Visualization: A match made in Heaven
R and Visualization: A match made in HeavenR and Visualization: A match made in Heaven
R and Visualization: A match made in Heaven
Edureka!
 
Data Structures in Python
Data Structures in PythonData Structures in Python
Data Structures in Python
Devashish Kumar
 
Visualization and Matplotlib using Python.pptx
Visualization and Matplotlib using Python.pptxVisualization and Matplotlib using Python.pptx
Visualization and Matplotlib using Python.pptx
SharmilaMore5
 
Presentation on data preparation with pandas
Presentation on data preparation with pandasPresentation on data preparation with pandas
Presentation on data preparation with pandas
AkshitaKanther
 
Unit I Database concepts - RDBMS & ORACLE
Unit I  Database concepts - RDBMS & ORACLEUnit I  Database concepts - RDBMS & ORACLE
Unit I Database concepts - RDBMS & ORACLE
DrkhanchanaR
 
Data visualization using R
Data visualization using RData visualization using R
Data visualization using R
Ummiya Mohammedi
 
Data Mining Techniques
Data Mining TechniquesData Mining Techniques
Data Mining Techniques
Sanzid Kawsar
 
Exploratory data analysis in R - Data Science Club
Exploratory data analysis in R - Data Science ClubExploratory data analysis in R - Data Science Club
Exploratory data analysis in R - Data Science Club
Martin Bago
 
Lecture 02 lexical analysis
Lecture 02 lexical analysisLecture 02 lexical analysis
Lecture 02 lexical analysis
Iffat Anjum
 
EX-6-Implement Matrix Multiplication with Hadoop Map Reduce.pptx
EX-6-Implement Matrix Multiplication with Hadoop Map Reduce.pptxEX-6-Implement Matrix Multiplication with Hadoop Map Reduce.pptx
EX-6-Implement Matrix Multiplication with Hadoop Map Reduce.pptx
vishal choudhary
 

Similar to Numpy python cheat_sheet (20)

@Computeronic_NumPy EMERSON EDUARDO RODRIGUES.pdf
@Computeronic_NumPy EMERSON EDUARDO RODRIGUES.pdf@Computeronic_NumPy EMERSON EDUARDO RODRIGUES.pdf
@Computeronic_NumPy EMERSON EDUARDO RODRIGUES.pdf
EMERSON EDUARDO RODRIGUES
 
Numpy_Cheat_Sheet.pdf
Numpy_Cheat_Sheet.pdfNumpy_Cheat_Sheet.pdf
Numpy_Cheat_Sheet.pdf
SkyNerve
 
NUMPY LIBRARY study materials PPT 2.pptx
NUMPY LIBRARY study materials PPT 2.pptxNUMPY LIBRARY study materials PPT 2.pptx
NUMPY LIBRARY study materials PPT 2.pptx
CHETHANKUMAR274045
 
Numpy cheat-sheet
Numpy cheat-sheetNumpy cheat-sheet
Numpy cheat-sheet
Arief Kurniawan
 
Numpy in python, Array operations using numpy and so on
Numpy in python, Array operations using numpy and so onNumpy in python, Array operations using numpy and so on
Numpy in python, Array operations using numpy and so on
SherinRappai
 
Data Preprocessing Introduction for Machine Learning
Data Preprocessing Introduction for Machine LearningData Preprocessing Introduction for Machine Learning
Data Preprocessing Introduction for Machine Learning
sonali sonavane
 
NumPy-python-27-9-24-we.pptxNumPy-python-27-9-24-we.pptx
NumPy-python-27-9-24-we.pptxNumPy-python-27-9-24-we.pptxNumPy-python-27-9-24-we.pptxNumPy-python-27-9-24-we.pptx
NumPy-python-27-9-24-we.pptxNumPy-python-27-9-24-we.pptx
tahirnaquash2
 
ACFrOgAabSLW3ZCRLJ0i-To_2fPk_pA9QThyDKNNlA3VK282MnXaLGJa7APKD15-TW9zT_QI98dAH...
ACFrOgAabSLW3ZCRLJ0i-To_2fPk_pA9QThyDKNNlA3VK282MnXaLGJa7APKD15-TW9zT_QI98dAH...ACFrOgAabSLW3ZCRLJ0i-To_2fPk_pA9QThyDKNNlA3VK282MnXaLGJa7APKD15-TW9zT_QI98dAH...
ACFrOgAabSLW3ZCRLJ0i-To_2fPk_pA9QThyDKNNlA3VK282MnXaLGJa7APKD15-TW9zT_QI98dAH...
DineshThallapelly
 
NUMPY [Autosaved] .pptx
NUMPY [Autosaved]                    .pptxNUMPY [Autosaved]                    .pptx
NUMPY [Autosaved] .pptx
coolmanbalu123
 
Arrays with Numpy, Computer Graphics
Arrays with Numpy, Computer GraphicsArrays with Numpy, Computer Graphics
Arrays with Numpy, Computer Graphics
Prabu U
 
Introduction to NumPy (PyData SV 2013)
Introduction to NumPy (PyData SV 2013)Introduction to NumPy (PyData SV 2013)
Introduction to NumPy (PyData SV 2013)
PyData
 
Introduction to NumPy
Introduction to NumPyIntroduction to NumPy
Introduction to NumPy
Huy Nguyen
 
Essential numpy before you start your Machine Learning journey in python.pdf
Essential numpy before you start your Machine Learning journey in python.pdfEssential numpy before you start your Machine Learning journey in python.pdf
Essential numpy before you start your Machine Learning journey in python.pdf
Smrati Kumar Katiyar
 
Introduction to numpy Session 1
Introduction to numpy Session 1Introduction to numpy Session 1
Introduction to numpy Session 1
Jatin Miglani
 
CAP776Numpy (2).ppt
CAP776Numpy (2).pptCAP776Numpy (2).ppt
CAP776Numpy (2).ppt
ChhaviCoachingCenter
 
CAP776Numpy.ppt
CAP776Numpy.pptCAP776Numpy.ppt
CAP776Numpy.ppt
kdr52121
 
CE344L-200365-Lab2.pdf
CE344L-200365-Lab2.pdfCE344L-200365-Lab2.pdf
CE344L-200365-Lab2.pdf
UmarMustafa13
 
Numpy_defintion_description_usage_examples.pptx
Numpy_defintion_description_usage_examples.pptxNumpy_defintion_description_usage_examples.pptx
Numpy_defintion_description_usage_examples.pptx
VGaneshKarthikeyan
 
NUMPY-2.pptx
NUMPY-2.pptxNUMPY-2.pptx
NUMPY-2.pptx
MahendraVusa
 
lec08-numpy.pptx
lec08-numpy.pptxlec08-numpy.pptx
lec08-numpy.pptx
lekha572836
 
@Computeronic_NumPy EMERSON EDUARDO RODRIGUES.pdf
@Computeronic_NumPy EMERSON EDUARDO RODRIGUES.pdf@Computeronic_NumPy EMERSON EDUARDO RODRIGUES.pdf
@Computeronic_NumPy EMERSON EDUARDO RODRIGUES.pdf
EMERSON EDUARDO RODRIGUES
 
Numpy_Cheat_Sheet.pdf
Numpy_Cheat_Sheet.pdfNumpy_Cheat_Sheet.pdf
Numpy_Cheat_Sheet.pdf
SkyNerve
 
NUMPY LIBRARY study materials PPT 2.pptx
NUMPY LIBRARY study materials PPT 2.pptxNUMPY LIBRARY study materials PPT 2.pptx
NUMPY LIBRARY study materials PPT 2.pptx
CHETHANKUMAR274045
 
Numpy in python, Array operations using numpy and so on
Numpy in python, Array operations using numpy and so onNumpy in python, Array operations using numpy and so on
Numpy in python, Array operations using numpy and so on
SherinRappai
 
Data Preprocessing Introduction for Machine Learning
Data Preprocessing Introduction for Machine LearningData Preprocessing Introduction for Machine Learning
Data Preprocessing Introduction for Machine Learning
sonali sonavane
 
NumPy-python-27-9-24-we.pptxNumPy-python-27-9-24-we.pptx
NumPy-python-27-9-24-we.pptxNumPy-python-27-9-24-we.pptxNumPy-python-27-9-24-we.pptxNumPy-python-27-9-24-we.pptx
NumPy-python-27-9-24-we.pptxNumPy-python-27-9-24-we.pptx
tahirnaquash2
 
ACFrOgAabSLW3ZCRLJ0i-To_2fPk_pA9QThyDKNNlA3VK282MnXaLGJa7APKD15-TW9zT_QI98dAH...
ACFrOgAabSLW3ZCRLJ0i-To_2fPk_pA9QThyDKNNlA3VK282MnXaLGJa7APKD15-TW9zT_QI98dAH...ACFrOgAabSLW3ZCRLJ0i-To_2fPk_pA9QThyDKNNlA3VK282MnXaLGJa7APKD15-TW9zT_QI98dAH...
ACFrOgAabSLW3ZCRLJ0i-To_2fPk_pA9QThyDKNNlA3VK282MnXaLGJa7APKD15-TW9zT_QI98dAH...
DineshThallapelly
 
NUMPY [Autosaved] .pptx
NUMPY [Autosaved]                    .pptxNUMPY [Autosaved]                    .pptx
NUMPY [Autosaved] .pptx
coolmanbalu123
 
Arrays with Numpy, Computer Graphics
Arrays with Numpy, Computer GraphicsArrays with Numpy, Computer Graphics
Arrays with Numpy, Computer Graphics
Prabu U
 
Introduction to NumPy (PyData SV 2013)
Introduction to NumPy (PyData SV 2013)Introduction to NumPy (PyData SV 2013)
Introduction to NumPy (PyData SV 2013)
PyData
 
Introduction to NumPy
Introduction to NumPyIntroduction to NumPy
Introduction to NumPy
Huy Nguyen
 
Essential numpy before you start your Machine Learning journey in python.pdf
Essential numpy before you start your Machine Learning journey in python.pdfEssential numpy before you start your Machine Learning journey in python.pdf
Essential numpy before you start your Machine Learning journey in python.pdf
Smrati Kumar Katiyar
 
Introduction to numpy Session 1
Introduction to numpy Session 1Introduction to numpy Session 1
Introduction to numpy Session 1
Jatin Miglani
 
CAP776Numpy.ppt
CAP776Numpy.pptCAP776Numpy.ppt
CAP776Numpy.ppt
kdr52121
 
CE344L-200365-Lab2.pdf
CE344L-200365-Lab2.pdfCE344L-200365-Lab2.pdf
CE344L-200365-Lab2.pdf
UmarMustafa13
 
Numpy_defintion_description_usage_examples.pptx
Numpy_defintion_description_usage_examples.pptxNumpy_defintion_description_usage_examples.pptx
Numpy_defintion_description_usage_examples.pptx
VGaneshKarthikeyan
 
lec08-numpy.pptx
lec08-numpy.pptxlec08-numpy.pptx
lec08-numpy.pptx
lekha572836
 
Ad

More from Nishant Upadhyay (14)

Multivariate calculus
Multivariate calculusMultivariate calculus
Multivariate calculus
Nishant Upadhyay
 
Multivariate calculus
Multivariate calculusMultivariate calculus
Multivariate calculus
Nishant Upadhyay
 
Matrices1
Matrices1Matrices1
Matrices1
Nishant Upadhyay
 
Vectors2
Vectors2Vectors2
Vectors2
Nishant Upadhyay
 
Mathematics for machine learning calculus formulasheet
Mathematics for machine learning calculus formulasheetMathematics for machine learning calculus formulasheet
Mathematics for machine learning calculus formulasheet
Nishant Upadhyay
 
Pandas pythonfordatascience
Pandas pythonfordatasciencePandas pythonfordatascience
Pandas pythonfordatascience
Nishant Upadhyay
 
Maths4ml linearalgebra-formula
Maths4ml linearalgebra-formulaMaths4ml linearalgebra-formula
Maths4ml linearalgebra-formula
Nishant Upadhyay
 
Sqlcheetsheet
SqlcheetsheetSqlcheetsheet
Sqlcheetsheet
Nishant Upadhyay
 
Sql cheat-sheet
Sql cheat-sheetSql cheat-sheet
Sql cheat-sheet
Nishant Upadhyay
 
My sql installationguide_windows
My sql installationguide_windowsMy sql installationguide_windows
My sql installationguide_windows
Nishant Upadhyay
 
Company handout
Company handoutCompany handout
Company handout
Nishant Upadhyay
 
Python bokeh cheat_sheet
Python bokeh cheat_sheet Python bokeh cheat_sheet
Python bokeh cheat_sheet
Nishant Upadhyay
 
Foliumcheatsheet
FoliumcheatsheetFoliumcheatsheet
Foliumcheatsheet
Nishant Upadhyay
 
Python seaborn cheat_sheet
Python seaborn cheat_sheetPython seaborn cheat_sheet
Python seaborn cheat_sheet
Nishant Upadhyay
 
Ad

Recently uploaded (20)

BODMAS-Rule-&-Unit-Digit-Concept-pdf.pdf
BODMAS-Rule-&-Unit-Digit-Concept-pdf.pdfBODMAS-Rule-&-Unit-Digit-Concept-pdf.pdf
BODMAS-Rule-&-Unit-Digit-Concept-pdf.pdf
SiddharthSean
 
EPC UNIT-V forengineeringstudentsin.pptx
EPC UNIT-V forengineeringstudentsin.pptxEPC UNIT-V forengineeringstudentsin.pptx
EPC UNIT-V forengineeringstudentsin.pptx
ExtremerZ
 
BE PROGRAMjwjwjwjsjsjsjsME TEMPLATE.pptx
BE PROGRAMjwjwjwjsjsjsjsME TEMPLATE.pptxBE PROGRAMjwjwjwjsjsjsjsME TEMPLATE.pptx
BE PROGRAMjwjwjwjsjsjsjsME TEMPLATE.pptx
AaronBaluyut
 
Mining Presentation Online Courses for Student
Mining Presentation Online Courses for StudentMining Presentation Online Courses for Student
Mining Presentation Online Courses for Student
Rizki229625
 
apidays New York 2025 - Two tales of API Change Management by Eric Koleda (Coda)
apidays New York 2025 - Two tales of API Change Management by Eric Koleda (Coda)apidays New York 2025 - Two tales of API Change Management by Eric Koleda (Coda)
apidays New York 2025 - Two tales of API Change Management by Eric Koleda (Coda)
apidays
 
apidays Singapore 2025 - Enhancing Developer Productivity with UX (Government...
apidays Singapore 2025 - Enhancing Developer Productivity with UX (Government...apidays Singapore 2025 - Enhancing Developer Productivity with UX (Government...
apidays Singapore 2025 - Enhancing Developer Productivity with UX (Government...
apidays
 
apidays New York 2025 - CIAM in the wild by Michael Gruen (Layr)
apidays New York 2025 - CIAM in the wild by Michael Gruen (Layr)apidays New York 2025 - CIAM in the wild by Michael Gruen (Layr)
apidays New York 2025 - CIAM in the wild by Michael Gruen (Layr)
apidays
 
apidays New York 2025 - Spring Modulith Design for Microservices by Renjith R...
apidays New York 2025 - Spring Modulith Design for Microservices by Renjith R...apidays New York 2025 - Spring Modulith Design for Microservices by Renjith R...
apidays New York 2025 - Spring Modulith Design for Microservices by Renjith R...
apidays
 
apidays Singapore 2025 - The Future of AI Autonomy: How APIs Enable Agentic A...
apidays Singapore 2025 - The Future of AI Autonomy: How APIs Enable Agentic A...apidays Singapore 2025 - The Future of AI Autonomy: How APIs Enable Agentic A...
apidays Singapore 2025 - The Future of AI Autonomy: How APIs Enable Agentic A...
apidays
 
AG-FIRMA FINCOME ARTICLE AI AGENT RAG.pdf
AG-FIRMA FINCOME ARTICLE AI AGENT RAG.pdfAG-FIRMA FINCOME ARTICLE AI AGENT RAG.pdf
AG-FIRMA FINCOME ARTICLE AI AGENT RAG.pdf
Anass Nabil
 
SAP_S4HANA_EWM_Food_Processing_Industry.pptx
SAP_S4HANA_EWM_Food_Processing_Industry.pptxSAP_S4HANA_EWM_Food_Processing_Industry.pptx
SAP_S4HANA_EWM_Food_Processing_Industry.pptx
vemulavenu484
 
Copy of Robotic Process Automation (RPA) Project Proposal.pdf
Copy of Robotic Process Automation (RPA) Project Proposal.pdfCopy of Robotic Process Automation (RPA) Project Proposal.pdf
Copy of Robotic Process Automation (RPA) Project Proposal.pdf
AkshatJaiswal65
 
Tableau Cloud - what to consider before making the move update 2025.pdf
Tableau Cloud - what to consider before making the move update 2025.pdfTableau Cloud - what to consider before making the move update 2025.pdf
Tableau Cloud - what to consider before making the move update 2025.pdf
elinavihriala
 
apidays New York 2025 - Building Agentic Workflows with FDC3 Intents by Nick ...
apidays New York 2025 - Building Agentic Workflows with FDC3 Intents by Nick ...apidays New York 2025 - Building Agentic Workflows with FDC3 Intents by Nick ...
apidays New York 2025 - Building Agentic Workflows with FDC3 Intents by Nick ...
apidays
 
apidays New York 2025 - Why I Built Another Carbon Measurement Tool for LLMs ...
apidays New York 2025 - Why I Built Another Carbon Measurement Tool for LLMs ...apidays New York 2025 - Why I Built Another Carbon Measurement Tool for LLMs ...
apidays New York 2025 - Why I Built Another Carbon Measurement Tool for LLMs ...
apidays
 
Part Departement Head Presentation for Business
Part Departement Head Presentation for BusinessPart Departement Head Presentation for Business
Part Departement Head Presentation for Business
Rizki229625
 
1-2. Lab Introduction to Linux environment.ppt
1-2. Lab Introduction to Linux environment.ppt1-2. Lab Introduction to Linux environment.ppt
1-2. Lab Introduction to Linux environment.ppt
Wahajch
 
THE FRIEDMAN TEST ( Biostatics B. Pharm)
THE FRIEDMAN TEST ( Biostatics B. Pharm)THE FRIEDMAN TEST ( Biostatics B. Pharm)
THE FRIEDMAN TEST ( Biostatics B. Pharm)
JishuHaldar
 
Gen AI futfyfufufufufuytfyctrwaeq3A435.pdf
Gen AI futfyfufufufufuytfyctrwaeq3A435.pdfGen AI futfyfufufufufuytfyctrwaeq3A435.pdf
Gen AI futfyfufufufufuytfyctrwaeq3A435.pdf
divyanshuM3
 
Arrays in c programing. practicals and .ppt
Arrays in c programing. practicals and .pptArrays in c programing. practicals and .ppt
Arrays in c programing. practicals and .ppt
Carlos701746
 
BODMAS-Rule-&-Unit-Digit-Concept-pdf.pdf
BODMAS-Rule-&-Unit-Digit-Concept-pdf.pdfBODMAS-Rule-&-Unit-Digit-Concept-pdf.pdf
BODMAS-Rule-&-Unit-Digit-Concept-pdf.pdf
SiddharthSean
 
EPC UNIT-V forengineeringstudentsin.pptx
EPC UNIT-V forengineeringstudentsin.pptxEPC UNIT-V forengineeringstudentsin.pptx
EPC UNIT-V forengineeringstudentsin.pptx
ExtremerZ
 
BE PROGRAMjwjwjwjsjsjsjsME TEMPLATE.pptx
BE PROGRAMjwjwjwjsjsjsjsME TEMPLATE.pptxBE PROGRAMjwjwjwjsjsjsjsME TEMPLATE.pptx
BE PROGRAMjwjwjwjsjsjsjsME TEMPLATE.pptx
AaronBaluyut
 
Mining Presentation Online Courses for Student
Mining Presentation Online Courses for StudentMining Presentation Online Courses for Student
Mining Presentation Online Courses for Student
Rizki229625
 
apidays New York 2025 - Two tales of API Change Management by Eric Koleda (Coda)
apidays New York 2025 - Two tales of API Change Management by Eric Koleda (Coda)apidays New York 2025 - Two tales of API Change Management by Eric Koleda (Coda)
apidays New York 2025 - Two tales of API Change Management by Eric Koleda (Coda)
apidays
 
apidays Singapore 2025 - Enhancing Developer Productivity with UX (Government...
apidays Singapore 2025 - Enhancing Developer Productivity with UX (Government...apidays Singapore 2025 - Enhancing Developer Productivity with UX (Government...
apidays Singapore 2025 - Enhancing Developer Productivity with UX (Government...
apidays
 
apidays New York 2025 - CIAM in the wild by Michael Gruen (Layr)
apidays New York 2025 - CIAM in the wild by Michael Gruen (Layr)apidays New York 2025 - CIAM in the wild by Michael Gruen (Layr)
apidays New York 2025 - CIAM in the wild by Michael Gruen (Layr)
apidays
 
apidays New York 2025 - Spring Modulith Design for Microservices by Renjith R...
apidays New York 2025 - Spring Modulith Design for Microservices by Renjith R...apidays New York 2025 - Spring Modulith Design for Microservices by Renjith R...
apidays New York 2025 - Spring Modulith Design for Microservices by Renjith R...
apidays
 
apidays Singapore 2025 - The Future of AI Autonomy: How APIs Enable Agentic A...
apidays Singapore 2025 - The Future of AI Autonomy: How APIs Enable Agentic A...apidays Singapore 2025 - The Future of AI Autonomy: How APIs Enable Agentic A...
apidays Singapore 2025 - The Future of AI Autonomy: How APIs Enable Agentic A...
apidays
 
AG-FIRMA FINCOME ARTICLE AI AGENT RAG.pdf
AG-FIRMA FINCOME ARTICLE AI AGENT RAG.pdfAG-FIRMA FINCOME ARTICLE AI AGENT RAG.pdf
AG-FIRMA FINCOME ARTICLE AI AGENT RAG.pdf
Anass Nabil
 
SAP_S4HANA_EWM_Food_Processing_Industry.pptx
SAP_S4HANA_EWM_Food_Processing_Industry.pptxSAP_S4HANA_EWM_Food_Processing_Industry.pptx
SAP_S4HANA_EWM_Food_Processing_Industry.pptx
vemulavenu484
 
Copy of Robotic Process Automation (RPA) Project Proposal.pdf
Copy of Robotic Process Automation (RPA) Project Proposal.pdfCopy of Robotic Process Automation (RPA) Project Proposal.pdf
Copy of Robotic Process Automation (RPA) Project Proposal.pdf
AkshatJaiswal65
 
Tableau Cloud - what to consider before making the move update 2025.pdf
Tableau Cloud - what to consider before making the move update 2025.pdfTableau Cloud - what to consider before making the move update 2025.pdf
Tableau Cloud - what to consider before making the move update 2025.pdf
elinavihriala
 
apidays New York 2025 - Building Agentic Workflows with FDC3 Intents by Nick ...
apidays New York 2025 - Building Agentic Workflows with FDC3 Intents by Nick ...apidays New York 2025 - Building Agentic Workflows with FDC3 Intents by Nick ...
apidays New York 2025 - Building Agentic Workflows with FDC3 Intents by Nick ...
apidays
 
apidays New York 2025 - Why I Built Another Carbon Measurement Tool for LLMs ...
apidays New York 2025 - Why I Built Another Carbon Measurement Tool for LLMs ...apidays New York 2025 - Why I Built Another Carbon Measurement Tool for LLMs ...
apidays New York 2025 - Why I Built Another Carbon Measurement Tool for LLMs ...
apidays
 
Part Departement Head Presentation for Business
Part Departement Head Presentation for BusinessPart Departement Head Presentation for Business
Part Departement Head Presentation for Business
Rizki229625
 
1-2. Lab Introduction to Linux environment.ppt
1-2. Lab Introduction to Linux environment.ppt1-2. Lab Introduction to Linux environment.ppt
1-2. Lab Introduction to Linux environment.ppt
Wahajch
 
THE FRIEDMAN TEST ( Biostatics B. Pharm)
THE FRIEDMAN TEST ( Biostatics B. Pharm)THE FRIEDMAN TEST ( Biostatics B. Pharm)
THE FRIEDMAN TEST ( Biostatics B. Pharm)
JishuHaldar
 
Gen AI futfyfufufufufuytfyctrwaeq3A435.pdf
Gen AI futfyfufufufufuytfyctrwaeq3A435.pdfGen AI futfyfufufufufuytfyctrwaeq3A435.pdf
Gen AI futfyfufufufufuytfyctrwaeq3A435.pdf
divyanshuM3
 
Arrays in c programing. practicals and .ppt
Arrays in c programing. practicals and .pptArrays in c programing. practicals and .ppt
Arrays in c programing. practicals and .ppt
Carlos701746
 

Numpy python cheat_sheet

  • 1. 2 PythonForDataScience Cheat Sheet NumPy Basics Learn Python for Data Science Interactively at www.DataCamp.com NumPy DataCamp Learn Python for Data Science Interactively The NumPy library is the core library for scientific computing in Python. It provides a high-performance multidimensional array object, and tools for working with these arrays. >>> import numpy as np Use the following import convention: Creating Arrays >>> np.zeros((3,4)) Create an array of zeros >>> np.ones((2,3,4),dtype=np.int16) Create an array of ones >>> d = np.arange(10,25,5) Create an array of evenly spaced values (step value) >>> np.linspace(0,2,9) Create an array of evenly spaced values (number of samples) >>> e = np.full((2,2),7) Create a constant array >>> f = np.eye(2) Create a 2X2 identity matrix >>> np.random.random((2,2)) Create an array with random values >>> np.empty((3,2)) Create an empty array Array Mathematics >>> g = a - b Subtraction array([[-0.5, 0. , 0. ], [-3. , -3. , -3. ]]) >>> np.subtract(a,b) Subtraction >>> b + a Addition array([[ 2.5, 4. , 6. ], [ 5. , 7. , 9. ]]) >>> np.add(b,a) Addition >>> a / b Division array([[ 0.66666667, 1. , 1. ], [ 0.25 , 0.4 , 0.5 ]]) >>> np.divide(a,b) Division >>> a * b Multiplication array([[ 1.5, 4. , 9. ], [ 4. , 10. , 18. ]]) >>> np.multiply(a,b) Multiplication >>> np.exp(b) Exponentiation >>> np.sqrt(b) Square root >>> np.sin(a) Print sines of an array >>> np.cos(b) Element-wise cosine >>> np.log(a) Element-wise natural logarithm >>> e.dot(f) Dot product array([[ 7., 7.], [ 7., 7.]]) Subsetting, Slicing, Indexing >>> a.sum() Array-wise sum >>> a.min() Array-wise minimum value >>> b.max(axis=0) Maximum value of an array row >>> b.cumsum(axis=1) Cumulative sum of the elements >>> a.mean() Mean >>> b.median() Median >>> a.corrcoef() Correlation coefficient >>> np.std(b) Standard deviation Comparison >>> a == b Element-wise comparison array([[False, True, True], [False, False, False]], dtype=bool) >>> a < 2 Element-wise comparison array([True, False, False], dtype=bool) >>> np.array_equal(a, b) Array-wise comparison 1 2 3 1D array 2D array 3D array 1.5 2 3 4 5 6 Array Manipulation NumPy Arrays axis 0 axis 1 axis 0 axis 1 axis 2 Arithmetic Operations Transposing Array >>> i = np.transpose(b) Permute array dimensions >>> i.T Permute array dimensions Changing Array Shape >>> b.ravel() Flatten the array >>> g.reshape(3,-2) Reshape, but don’t change data Adding/Removing Elements >>> h.resize((2,6)) Return a new array with shape (2,6) >>> np.append(h,g) Append items to an array >>> np.insert(a, 1, 5) Insert items in an array >>> np.delete(a,[1]) Delete items from an array Combining Arrays >>> np.concatenate((a,d),axis=0) Concatenate arrays array([ 1, 2, 3, 10, 15, 20]) >>> np.vstack((a,b)) Stack arrays vertically (row-wise) array([[ 1. , 2. , 3. ], [ 1.5, 2. , 3. ], [ 4. , 5. , 6. ]]) >>> np.r_[e,f] Stack arrays vertically (row-wise) >>> np.hstack((e,f)) Stack arrays horizontally (column-wise) array([[ 7., 7., 1., 0.], [ 7., 7., 0., 1.]]) >>> np.column_stack((a,d)) Create stacked column-wise arrays array([[ 1, 10], [ 2, 15], [ 3, 20]]) >>> np.c_[a,d] Create stacked column-wise arrays Splitting Arrays >>> np.hsplit(a,3) Split the array horizontally at the 3rd [array([1]),array([2]),array([3])] index >>> np.vsplit(c,2) Split the array vertically at the 2nd index [array([[[ 1.5, 2. , 1. ], [ 4. , 5. , 6. ]]]), array([[[ 3., 2., 3.], [ 4., 5., 6.]]])] Also see Lists Subsetting >>> a[2] Select the element at the 2nd index 3 >>> b[1,2] Select the element at row 1 column 2 6.0 (equivalent to b[1][2]) Slicing >>> a[0:2] Select items at index 0 and 1 array([1, 2]) >>> b[0:2,1] Select items at rows 0 and 1 in column 1 array([ 2., 5.]) >>> b[:1] Select all items at row 0 array([[1.5, 2., 3.]]) (equivalent to b[0:1, :]) >>> c[1,...] Same as [1,:,:] array([[[ 3., 2., 1.], [ 4., 5., 6.]]]) >>> a[ : :-1] Reversed array a array([3, 2, 1]) Boolean Indexing >>> a[a<2] Select elements from a less than 2 array([1]) Fancy Indexing >>> b[[1, 0, 1, 0],[0, 1, 2, 0]] Select elements (1,0),(0,1),(1,2)and (0,0) array([ 4. , 2. , 6. , 1.5]) >>> b[[1, 0, 1, 0]][:,[0,1,2,0]] Select a subset of the matrix’s rows array([[ 4. ,5. , 6. , 4. ], and columns [ 1.5, 2. , 3. , 1.5], [ 4. , 5. , 6. , 4. ], [ 1.5, 2. , 3. , 1.5]]) >>> a = np.array([1,2,3]) >>> b = np.array([(1.5,2,3), (4,5,6)], dtype = float) >>> c = np.array([[(1.5,2,3), (4,5,6)], [(3,2,1), (4,5,6)]], dtype = float) Initial Placeholders Aggregate Functions >>> np.loadtxt("myfile.txt") >>> np.genfromtxt("my_file.csv", delimiter=',') >>> np.savetxt("myarray.txt", a, delimiter=" ") I/O 1 2 3 1.5 2 3 4 5 6 Copying Arrays >>> h = a.view() Create a view of the array with the same data >>> np.copy(a) Create a copy of the array >>> h = a.copy() Create a deep copy of the array Saving & Loading Text Files Saving & Loading On Disk >>> np.save('my_array', a) >>> np.savez('array.npz', a, b) >>> np.load('my_array.npy') >>> a.shape Array dimensions >>> len(a) Length of array >>> b.ndim Number of array dimensions >>> e.size Number of array elements >>> b.dtype Data type of array elements >>> b.dtype.name Name of data type >>> b.astype(int) Convert an array to a different type Inspecting Your Array >>> np.info(np.ndarray.dtype) Asking For Help Sorting Arrays >>> a.sort() Sort an array >>> c.sort(axis=0) Sort the elements of an array's axis Data Types >>> np.int64 Signed 64-bit integer types >>> np.float32 Standard double-precision floating point >>> np.complex Complex numbers represented by 128 floats >>> np.bool Boolean type storing TRUE and FALSE values >>> np.object Python object type >>> np.string_ Fixed-length string type >>> np.unicode_ Fixed-length unicode type 1 2 3 1.5 2 3 4 5 6 1.5 2 3 4 5 6 1 2 3