Upload
Download free for 30 days
Login
Submit search
เฉลยข้อสอบโอเน็ตคณิตศาสตร์ ม.6 ปีการศึกษา 2555
8 likes
63,026 views
ครู กรุณา
1 of 19
Download now
Downloaded 115 times
1
2
3
4
5
6
7
8
9
10
11
12
13
Most read
14
15
16
17
Most read
18
Most read
19
More Related Content
PDF
O-net คณิตศาสตร์ 2557
รวมข้อสอบ gat pat 9 วิชา
PDF
เฉลยข้อสอบโอเน็ตคณิตศาสตร์ ม.6 ปีการศึกษา 2558
ครู กรุณา
PDF
เฉลยละเอียด ONET คณิตศาสตร์ ม.6 ปกศ.2560
ครู กรุณา
PDF
O-net ม.6 คณิตศาสตร์ 56 +เฉลย
Watcharinz
PDF
เฉลยละเอียด ONET คณิตศาสตร์ ม.6 ปกศ 2559
ครู กรุณา
PDF
เฉลย O-net คณิตศาสตร์ 54
อนุชิต ไชยชมพู
PDF
เฉลยข้อสอบ Onet ปี 53
Seohyunjjang
PDF
เฉลย คณิตรับตรงสามัญ 7วิชา มค 55 pr4
Ge Ar
O-net คณิตศาสตร์ 2557
รวมข้อสอบ gat pat 9 วิชา
เฉลยข้อสอบโอเน็ตคณิตศาสตร์ ม.6 ปีการศึกษา 2558
ครู กรุณา
เฉลยละเอียด ONET คณิตศาสตร์ ม.6 ปกศ.2560
ครู กรุณา
O-net ม.6 คณิตศาสตร์ 56 +เฉลย
Watcharinz
เฉลยละเอียด ONET คณิตศาสตร์ ม.6 ปกศ 2559
ครู กรุณา
เฉลย O-net คณิตศาสตร์ 54
อนุชิต ไชยชมพู
เฉลยข้อสอบ Onet ปี 53
Seohyunjjang
เฉลย คณิตรับตรงสามัญ 7วิชา มค 55 pr4
Ge Ar
What's hot
(20)
PDF
เฉลยข้อสอบโอเน็ตคณิตศาสตร์ ม.ุ6 ปีการศึกษา 2555
ครู กรุณา
PDF
ข้อสอบคณิตศาสตร์ ม.2 เทอม 1 ชุดที่ 1
คุณครูพี่อั๋น
PDF
บทที่ 1 ห.ร.ม และ ค.ร.น
sawed kodnara
PDF
O-NET ม.6-ความน่าจะเป็น
คุณครูพี่อั๋น
PDF
ข้อสอบโอเน็ตคณิตศาสตร์ ม.6 ปีการศึกษา 2556
ครู กรุณา
PDF
ข้อสอบคณิตศาสตร์ ม.2 เทอม 1 ชุดที่ 2
คุณครูพี่อั๋น
PDF
ข้อสอบคณิตศาสตร์ ม.2 เทอม 2 ชุดที่ 2
คุณครูพี่อั๋น
PDF
เฉลย กสพท. คณิตศาสตร์ 2555
Tonson Lalitkanjanakul
PDF
แบบทดสอบ เรื่องพหุนาม
ทับทิม เจริญตา
PDF
แบบทดสอบรวม ม.1 ภาคเรียนที่ 2
kanjana2536
PDF
O net ลำดับเลขคณิต
Toongneung SP
PDF
เฉลยข้อสอบโอเน็ตคณิตศาสตร์ ม.3 ปีการศึกษา 2557
ครู กรุณา
PDF
ข้อสอบปลายภาค คณิต ม.1 เทอม 1 ชุดที่ 1 หน่วยที่ 3
คุณครูพี่อั๋น
PDF
เฉลยการวัดตำแหน่งและกระจาย
krurutsamee
PDF
เฉลยข้อสอบโอเน็ตคณิตศาสตร์ ม.6 ปีการศึกษา 2553
ครู กรุณา
PDF
แผนที่ 1 ค่าประจำหลักของทศนิยม
Kamolthip Boonpo
PDF
แบบฝึกหัด เรื่อง สมการและอสมการพหุนาม ชุดที่ 2
คุณครูพี่อั๋น
PDF
ข้อสอบ LAS ปี ๒๕๕๗ คณิตศาสตร์ ป.5
Khunnawang Khunnawang
PDF
ข้อสอบคณิตศาสตร์ ม.3 เทอม 1 ชุดที่ 1
คุณครูพี่อั๋น
PDF
G6 Maths Circle
LiftzaNg Kab
เฉลยข้อสอบโอเน็ตคณิตศาสตร์ ม.ุ6 ปีการศึกษา 2555
ครู กรุณา
ข้อสอบคณิตศาสตร์ ม.2 เทอม 1 ชุดที่ 1
คุณครูพี่อั๋น
บทที่ 1 ห.ร.ม และ ค.ร.น
sawed kodnara
O-NET ม.6-ความน่าจะเป็น
คุณครูพี่อั๋น
ข้อสอบโอเน็ตคณิตศาสตร์ ม.6 ปีการศึกษา 2556
ครู กรุณา
ข้อสอบคณิตศาสตร์ ม.2 เทอม 1 ชุดที่ 2
คุณครูพี่อั๋น
ข้อสอบคณิตศาสตร์ ม.2 เทอม 2 ชุดที่ 2
คุณครูพี่อั๋น
เฉลย กสพท. คณิตศาสตร์ 2555
Tonson Lalitkanjanakul
แบบทดสอบ เรื่องพหุนาม
ทับทิม เจริญตา
แบบทดสอบรวม ม.1 ภาคเรียนที่ 2
kanjana2536
O net ลำดับเลขคณิต
Toongneung SP
เฉลยข้อสอบโอเน็ตคณิตศาสตร์ ม.3 ปีการศึกษา 2557
ครู กรุณา
ข้อสอบปลายภาค คณิต ม.1 เทอม 1 ชุดที่ 1 หน่วยที่ 3
คุณครูพี่อั๋น
เฉลยการวัดตำแหน่งและกระจาย
krurutsamee
เฉลยข้อสอบโอเน็ตคณิตศาสตร์ ม.6 ปีการศึกษา 2553
ครู กรุณา
แผนที่ 1 ค่าประจำหลักของทศนิยม
Kamolthip Boonpo
แบบฝึกหัด เรื่อง สมการและอสมการพหุนาม ชุดที่ 2
คุณครูพี่อั๋น
ข้อสอบ LAS ปี ๒๕๕๗ คณิตศาสตร์ ป.5
Khunnawang Khunnawang
ข้อสอบคณิตศาสตร์ ม.3 เทอม 1 ชุดที่ 1
คุณครูพี่อั๋น
G6 Maths Circle
LiftzaNg Kab
Ad
Viewers also liked
(13)
PDF
O-NET ม.6-สถิติ
คุณครูพี่อั๋น
PDF
O-NET ม.6-ลำดับและอนุกรม
คุณครูพี่อั๋น
PDF
Math onet49
nampeungnsc
PDF
เฉลย O net 53
GiveAGift
PDF
Onet57 04
Chanika Sajawirote
DOC
ตรีโกณมิติ
mou38
PDF
ข้อสอบ O net 48 คณิตศาสตร์ ม 6
jupjeep
PDF
เฉลยข้อสอบโอเน็ตคณิตศาสตร์ ม.6 ปีการศึกษา2558
ครู กรุณา
PDF
O-NET ม.6-ตรีโกณมิติ
คุณครูพี่อั๋น
PDF
รวมข้อสอบโอเน็ต คณิต ม.6
คุณครูพี่อั๋น
PDF
Math
nampeungnsc
PDF
O-NET ม.6- การให้เหตุผล
คุณครูพี่อั๋น
PDF
แยกเรื่อง 05-ฟังก์ชัน
คุณครูพี่อั๋น
O-NET ม.6-สถิติ
คุณครูพี่อั๋น
O-NET ม.6-ลำดับและอนุกรม
คุณครูพี่อั๋น
Math onet49
nampeungnsc
เฉลย O net 53
GiveAGift
Onet57 04
Chanika Sajawirote
ตรีโกณมิติ
mou38
ข้อสอบ O net 48 คณิตศาสตร์ ม 6
jupjeep
เฉลยข้อสอบโอเน็ตคณิตศาสตร์ ม.6 ปีการศึกษา2558
ครู กรุณา
O-NET ม.6-ตรีโกณมิติ
คุณครูพี่อั๋น
รวมข้อสอบโอเน็ต คณิต ม.6
คุณครูพี่อั๋น
Math
nampeungnsc
O-NET ม.6- การให้เหตุผล
คุณครูพี่อั๋น
แยกเรื่อง 05-ฟังก์ชัน
คุณครูพี่อั๋น
Ad
Similar to เฉลยข้อสอบโอเน็ตคณิตศาสตร์ ม.6 ปีการศึกษา 2555
(20)
PDF
Ma mama11(2)
Nuties Electron
PDF
Onet
Vipawee Thongkeaw
PDF
Onet56
Vipawee Thongkeaw
PDF
Onet5602
Benz Th-Ka
PDF
Onet5602 2
chutimajang
PDF
Onet5602
Supisara Jaibaan
PDF
M onet56-140628092525-phpapp01
sincerecin
PDF
ข้อสอบคณิตศาสตร์ O-net'56
praeploy2539
PDF
One tmath
SiwadolChaimano
PDF
Onet5602 math
parnapisara
PDF
ข้อสอบOnet วิชาคณิตศาสตร์
vipawee613_14
PDF
ข้อสอบ O-net คณิตศาสตร์ 56
gunnygreameyes
PDF
O-net คณิตศาสตร์ 56
gunnygreameyes
PDF
Onet5602
Pl'nice Destiny
PDF
mathOnet5602
sukonlapat45656
PDF
ข้อสอบ วิชาคณิตศาสตร์ Onat
vipawee613_14
PDF
Onet56
aui609
PDF
M onet56
taioddntw
PDF
M onet56
taioddntw
PDF
เฉลย คณิต 53
Peeranut Poungsawud
Ma mama11(2)
Nuties Electron
Onet
Vipawee Thongkeaw
Onet56
Vipawee Thongkeaw
Onet5602
Benz Th-Ka
Onet5602 2
chutimajang
Onet5602
Supisara Jaibaan
M onet56-140628092525-phpapp01
sincerecin
ข้อสอบคณิตศาสตร์ O-net'56
praeploy2539
One tmath
SiwadolChaimano
Onet5602 math
parnapisara
ข้อสอบOnet วิชาคณิตศาสตร์
vipawee613_14
ข้อสอบ O-net คณิตศาสตร์ 56
gunnygreameyes
O-net คณิตศาสตร์ 56
gunnygreameyes
Onet5602
Pl'nice Destiny
mathOnet5602
sukonlapat45656
ข้อสอบ วิชาคณิตศาสตร์ Onat
vipawee613_14
Onet56
aui609
M onet56
taioddntw
M onet56
taioddntw
เฉลย คณิต 53
Peeranut Poungsawud
More from ครู กรุณา
(20)
PDF
ข้อสอบโอเน็ตคณิตศาสตร์ ม.3 ปีการศึกษา 2561
ครู กรุณา
PDF
ข้อสอบโอเน็ตคณิตศาสตร์ ม.6 ปีการศึกษา 2561
ครู กรุณา
PDF
Onet m3 strand1 number and operations 52-61
ครู กรุณา
PDF
เฉลยละเอียด ONET คณิตศาสตร์ ม.3 ปกศ.2560
ครู กรุณา
PDF
เอกสารทบทวนความรู้พื้นฐานเตรียมสอบ ม.ปลาย O-NET Edition 2
ครู กรุณา
PDF
เฉลยละเอียด ONET คณิตศาสตร์ ม.3 ปกศ.2559(1)
ครู กรุณา
PDF
ข้อสอบโอเน็ตคณิตศาสตร์ ม.6 ปีการศึกษา 2559
ครู กรุณา
PDF
ข้อสอบโอเน็ตคณิตศาสตร์ ม.3 ปีการศึกษา 2559
ครู กรุณา
PDF
เฉลยละเอียด ONET คณิตศาสตร์ ม.3 ปกศ.2558
ครู กรุณา
PDF
ข้อสอบโควตา ม.อ. 60 วิชาคณิตศาสตร์
ครู กรุณา
PDF
ข้อสอบโอเน็ตคณิตศาสตร์ ม.6 ปีการศึกษา 2558
ครู กรุณา
PDF
เฉลยข้อสอบโอเน็ตคณิตศาสตร์ ม.3 ปีการศึกษา 2558
ครู กรุณา
PDF
เฉลยข้อสอบโอเน็ตคณิตศาสตร์ ม.3 ปีการศึกษา 2558
ครู กรุณา
PDF
ข้อสอบโควต้า ม.อ. 58 (สอบธันวา 57)
ครู กรุณา
PDF
เตรียมความพร้อม PISA 2015
ครู กรุณา
PDF
7 วิชาสามัญ คณิต 58 พร้อมเฉลย
ครู กรุณา
PDF
เฉลยข้อสอบโอเน็ตคณิตศาสตร์ ม.3 ปีการศึกษา 2556
ครู กรุณา
PDF
ข้อสอบโควตา ม.อ. 2557
ครู กรุณา
PDF
ข้อสอบโควตา ม.อ. 2554
ครู กรุณา
PDF
7 วิชาสามัญ คณิต 57 พร้อมเฉลย
ครู กรุณา
ข้อสอบโอเน็ตคณิตศาสตร์ ม.3 ปีการศึกษา 2561
ครู กรุณา
ข้อสอบโอเน็ตคณิตศาสตร์ ม.6 ปีการศึกษา 2561
ครู กรุณา
Onet m3 strand1 number and operations 52-61
ครู กรุณา
เฉลยละเอียด ONET คณิตศาสตร์ ม.3 ปกศ.2560
ครู กรุณา
เอกสารทบทวนความรู้พื้นฐานเตรียมสอบ ม.ปลาย O-NET Edition 2
ครู กรุณา
เฉลยละเอียด ONET คณิตศาสตร์ ม.3 ปกศ.2559(1)
ครู กรุณา
ข้อสอบโอเน็ตคณิตศาสตร์ ม.6 ปีการศึกษา 2559
ครู กรุณา
ข้อสอบโอเน็ตคณิตศาสตร์ ม.3 ปีการศึกษา 2559
ครู กรุณา
เฉลยละเอียด ONET คณิตศาสตร์ ม.3 ปกศ.2558
ครู กรุณา
ข้อสอบโควตา ม.อ. 60 วิชาคณิตศาสตร์
ครู กรุณา
ข้อสอบโอเน็ตคณิตศาสตร์ ม.6 ปีการศึกษา 2558
ครู กรุณา
เฉลยข้อสอบโอเน็ตคณิตศาสตร์ ม.3 ปีการศึกษา 2558
ครู กรุณา
เฉลยข้อสอบโอเน็ตคณิตศาสตร์ ม.3 ปีการศึกษา 2558
ครู กรุณา
ข้อสอบโควต้า ม.อ. 58 (สอบธันวา 57)
ครู กรุณา
เตรียมความพร้อม PISA 2015
ครู กรุณา
7 วิชาสามัญ คณิต 58 พร้อมเฉลย
ครู กรุณา
เฉลยข้อสอบโอเน็ตคณิตศาสตร์ ม.3 ปีการศึกษา 2556
ครู กรุณา
ข้อสอบโควตา ม.อ. 2557
ครู กรุณา
ข้อสอบโควตา ม.อ. 2554
ครู กรุณา
7 วิชาสามัญ คณิต 57 พร้อมเฉลย
ครู กรุณา
เฉลยข้อสอบโอเน็ตคณิตศาสตร์ ม.6 ปีการศึกษา 2555
1.
O-NET (ก.พ. 56)
1 O-NET 56 รหัสวิชา 04 คณิตศาสตร์ วันเสาร์ที่ 9 กุมภาพันธ์ 2556 เวลา 11.30 – 13.30 น. ตอนที่ 1 แบบปรนัย 5 ตัวเลือก ข้อละ 2.5 คะแนน 1. ให้ และ เป็นจานวนจริงใดๆ พิจารณาข้อความต่อไปนี้ (ก) ถ้า = แล้วจะได้ว่า = (ข) ถ้า < แล้วจะได้ว่า < (ค) ถ้า < และ < แล้วจะได้ว่า < ข้อใดถูก 1. (ก), (ข) และ (ค) ถูก 2. (ก) ถูก แต่ (ข) และ (ค) ผิด 3. (ก) และ (ค) ถูก แต่ (ข) ผิด 4. (ข) ถูก แต่ (ก) และ (ค) ผิด 5. (ก), (ข) และ (ค) ผิด 2. ข้อใดต่อไปนี้มีจานวนตรรกยะอยู่เพียงสองจานวน 1. √ , , 1.010010001 2. √ , √ , 3. + 1 , √ , 0. 0 00 000 0000 … 4. . … √ 5. 0. ̇ , √ √ , √ 3. ให้ = √ . , = . และ = . ̇ ข้อใดถูก 1. < < 2. < < 3. < < 4. < < 5. < < 29 Sep 2014
2.
2 O-NET (ก.พ.
56) 4. ค่าของ ( √ ) อยู่ในช่วงใดต่อไปนี้ 1. [1.5, 1.6) 2. [1.6, 1.7) 3. [1.7, 1.8) 4. [1.8, 1.9) 5. [1.9, 2.0) 5. √ √ √ √ มีค่าเท่ากับข้อใด 1. √ 2. √ 3. √ 4. √ 5. 6. ให้ = { | ( )( ) 0 } ข้อใดเป็นเซตย่อยของ 1. (–1.2, –0.2) 2. (–0.9, 0.3) 3. (–0.6, 1.2) 4. (0.4, 1.5) 5. (0.3, 1.3) 7. ถ้า = √ แล้ว มีค่าเท่ากับข้อใด 1. 2. 3. 4. 5.
3.
O-NET (ก.พ. 56)
3 8. เซต ( ) คือบริเวณที่แรเงาในข้อใด 1. 2. 3. 4. 5. 9. จงพิจารณาผลสรุปต่อไปนี้ (ก) เหตุ 1) ทุกคนที่อ่านหนังสือก่อนสอบจะสอบได้ 2) สมชายสอบได้ ผล สมชายอ่านหนังสือก่อนสอบ (ข) เหตุ 1) ทุกครั้งที่ฝนตกจะมีฟ้ าแลบ 2) วันนี้ไม่มีฟ้ าแลบ ผล วันนี้ผนไม่ตก (ค) เหตุ 1) แมวบางตัวไม่ชอบกินปลา 2) เหมียวเป็นแมวของฉัน ผล เหมียวไม่ขอบกินปลา ข้อใดถูก 1. (ก), (ข) และ (ค) สมเหตุสมผล 2. (ก) และ (ข) สมเหตุสมผล แต่ (ค) ไม่สมเหตุสมผล 3. (ข) และ (ค) สมเหตุสมผล แต่ (ก) ไม่สมเหตุสมผล 4. (ข) สมเหตุสมผล แต่ (ก) และ (ค) ไม่สมเหตุสมผล 5. (ก), (ข) และ (ค) ไม่สมเหตุสมผล 10. กัลยามีธุรกิจให้เช่าหนังสือ เธอพบว่า ถ้าคิดค่าเช่าหนังสือเล่มละ 10 บาท จะมีหนังสือถูกเช่าไป 100 เล่มต่อวัน แต่ ถ้าเพิ่มค่าเช่าเป็น 11 บาท จานวนหนังสือที่ถูกเช่าจะเป็น 98 เล่มต่อวัน และถ้าเพิ่มค่าเช่าเป็น 12 บาท จานวน หนังสือที่ถูกเช่าจะเป็น 96 เล่มต่อวัน กล่าวคือ จานวนหนังสือที่ถูกเช่าต่อวันจะลดลง 2 เล่มทุกๆ 1 บาทของค่าเช่าที่ เพิ่มขึ้น ถ้า คือจานวนเงินส่วนที่เพิ่มขึ้นของค่าเช่าต่อเล่ม และ คือรายได้จากค่าเช่าหนังสือต่อวัน (หน่วย : บาท) แล้ว ข้อใดคือสมการแสดงรายได้ต่อวันจากธุรกิจนี้ของกัลยา 1. = 000 0 2. = 000 0 3. = 000 0 4. = 00 0 5. = 00 0
4.
4 O-NET (ก.พ.
56) 11. ถ้ารูปสี่เหลี่ยมผืนผ้ามีด้านยาว ยาวกว่า ด้านกว้างอยู่ 3 ฟุต และเส้นแทยงมุมยาวกว่าด้านกว้างอยู่ 7 ฟุต แล้ว เส้นรอบรูปของรูปสี่เหลี่ยมนี้ยาวกี่ฟุต 1. 11 + 4√ 2. 11 + 8 √ 3. 22 + 4√ 4. 22 + 4√ 5. 22 + 8√ 12. แผนภาพของความสัมพันธ์ในข้อใดเป็นฟังก์ชันที่มี {1, 2, 3, 4, 5} เป็นโดเมน และ {1, 2, 3, 4} เป็นเรนจ์ 1. 2. 3. 4. 5. 13. บริเวณที่แรเงาในข้อใดเป็นกราฟของความสัมพันธ์ { ( ) | 0 } 1. 2. 3. 4. 5. 1 2 3 4 5 1 2 3 4 1 2 3 4 5 1 2 3 4 1 2 3 4 5 1 2 3 4 1 2 3 4 5 1 2 3 4 1 2 3 4 5 1 2 3 4 0 1 0 1 0 1 0 1 0 1
5.
O-NET (ก.พ. 56)
5 14. ถ้า ( ) = | | แล้ว เรนจ์ของ คือเซตในข้อใด 1. { | 1 < 0 } 2. { | 1 < 0 } 3. { | < 1 หรือ > 0 } 4. { | < 1 หรือ ≥ 0 } 5. { | 1 หรือ > 0 } 15. ถ้า = 1 แล้ว มีค่าน้อยที่สุดเท่ากับข้อใด 1. 2. 3. 4. 5. 16. ให้ ABC เป็นรูปสามเหลี่ยมที่มีมุม C เท่ากับ 45 องศา และ D เป็นจุดบนด้าน BC ที่ทาให้ AD เป็นเส้นความสูงของ สามเหลี่ยม ถ้าด้าน BD ยาว หน่วย และด้าน AB ยาว 3 หน่วย แล้ว ด้าน AC มีความยาวเท่ากับกี่หน่วย 1. 2 2. √ 3. 4 4. 5 5. 6 17. ให้ ABCD เป็นรูปสี่เหลี่ยมผืนผ้าซึ่งมี E เป็นจุดกึ่งกลางของด้าน CD ถ้ามุม ÂB = 90° แล้ว sin B̂C มีค่าเท่ากับข้อใด 1. √ 2. √ 3. √ 4. √ 5. √
6.
6 O-NET (ก.พ.
56) 18. ให้ ABC เป็นรูปสามเหลี่ยมที่มีมุม C เป็นมุมฉาก ด้าน BC ยาว หน่วย และ ด้าน AC ยาว + 8 หน่วย ถ้า cot(90° – B) = 3 แล้ว มีค่าเท่ากับข้อใด 1. 2 2. 3 3. 4 4. 5 5. 6 19. อิทธิยืนอยู่บนยอดประภาคารสูง 30 เมตร เห็นเรือสองลาจอดอยู่ในทะเลทางทิศตะวันออกในแนวเส้นตรงเดียวกัน โดยที่สายตาของเขาทามุมก้ม องศา เมื่อมองเรือลาที่หนึ่ง และทามุมก้ม องศาเมื่อมองเรือลาที่สอง ถ้าเรือสอง ลาอยู่ห่างกัน 80 เมตร และ = 90 องศา แล้ว เรือลาที่อยู่ไกลจากฝั่งที่สุดอยู่ห่างจากจุดที่ตั้งประภาคารกี่ เมตร 1. 90 2. 100 3. 120 4. 150 5. 170 20. ถ้าพจน์ที่ 5 และ พจน์ที่ 10 ของลาดับเลขคณิตเป็น 14 และ 29 ตามลาดับ แล้วพจน์ที่ 99 เท่ากับข้อใด 1. 276 2. 287 3. 296 4. 297 5. 299 21. ลาดับ –24 , –15 , – … 77 มีกี่พจน์ 1. 199 2. 200 3. 201 4. 202 5. 203
7.
O-NET (ก.พ. 56)
7 22. ถ้า = 2 , = 1 และ = เมื่อ = … แล้ว เท่ากับข้อใด 1. 76 2. 113 3. 123 4. 199 5. 384 23. ถ้าพจน์ที่ ของอนุกรมคือ 0 แล้ว ผลบวก 23 พจน์แรกของอนุกรมนี้เท่ากับข้อใด 1. 589 2. 598 3. 624 4. 698 5. 759 24. ถ้าอนุกรมเรขาคณิตมีผลบวก 10 พจน์แรกเป็น 3069 และมีอัตราส่วนร่วมเป็น 2 แล้ว พจน์ที่ 3 ของอนุกรมนี้เท่ากับข้อใด 1. 2 2. 6 3. 8 4. 12 5. 24 25. ผลบวก 3 พจน์แรกของลาดับ = ( ) เท่ากับข้อใด 1. 2. 3. 4. 5.
8.
8 O-NET (ก.พ.
56) 26. เกษตรกรคนหนึ่งซื้อรถกระบะโดยผ่อนชาระเป็นเวลา 4 ปี ทางผู้ขายกาหนดให้ผ่อนชาระเดือนแรก 5,500 บาท และ เดือนถัดๆไปให้ผ่อนชาระเพิ่มขึ้นทุกเดือนๆละ 400 บาท จนครบกาหนด ถ้า คือจานวนเงินที่เขาต้องชาระในเดือน สุดท้าย และ คือจานวนเงินที่เขาชาระไปใน 2 ปีแรก (หน่วย : บาท) แล้ว ข้อใดถูก 1. = 24,300 และ = 242,300 2. = 24,300 และ = 242,400 3. = 24,400 และ = 242,400 4. = 24,400 และ = 243,900 5. = 24,900 และ = 243,900 27. ในการจัดคน 4 คนนั่งเป็นวงกลม ถ้าใน 4 คนนี้มีฝาแฝด 1 คู่ ความน่าจะเป็นที่ฝาแฝดจะได้นั่งติดกันเท่ากับข้อใด 1. 2. 3. 4. 5. 28. ในปีพ.ศ. 2557 ประเทศไทยมีความน่าจะเป็นที่จะประสบภาวะน้าท่วมเท่ากับ และความน่าจะเป็นที่จะประสบ ภัยแล้งเท่ากับ ถ้าความน่าจะเป็นที่จะประสบภาวะน้าท่วมหรือภัยแล้งเท่ากับ แล้วความน่าจะเป็นที่ประเทศ ไทยจะประสบทั้งภาวะน้าท่วมและภัยแล้งในปี พ.ศ. 2557 เท่ากับข้อใด 1. 2. 3. 4. 5. 29. ค่ากลางของข้อมูลในข้อใดมีความเหมาะสมที่จะใช้เป็นตัวแทนของข้อมูลของกลุ่ม 1. ค่าเฉลี่ยเลขคณิตของน้าหนักตัวของชาวจังหวัดเชียงใหม่ 2. ค่าเฉลี่ยเลขคณิตของจานวนหน้าของหนังสือที่คนไทยแต่ละคนอ่านในปี พ.ศ. 2554 3. มัธยฐานของจานวนเงินที่แต่ละคนใช้จ่ายต่อเดือนของคนไทย 4. ฐานนิยมของความสูงของนักเรียนห้องหนึ่ง 5. ค่าเฉลี่ยของฐานนิยมกับมัธยฐานของคะแนนสอบของนักเรียนทั้งโรงเรียน
9.
O-NET (ก.พ. 56)
9 30. ข้อใดไม่อยู่ในขั้นตอนของการสารวจความคิดเห็น 1. กาหนดขอบเขตของการสารวจ 2. กาหนดวิธีเลือกตัวอย่าง 3. สร้างแบบสารวจความคิดเห็น 4. ประมวลผลและวิเคราะห์ผลการสารวจ 5. เผยแพร่ผลการสารวจความคิดเห็น 31. ข้อมูลชุดหนึ่งมี 11 จานวนดังนี้ 15 , 10 , 12 , 15 , 16 , , 16 , 19 , 13 , 17 , 15 ถ้าค่าเฉลี่ยเลขคณิตของข้อมูลชุดนี้เท่ากับ 15 แล้ว กาลังสองของส่วนเบี่ยงเบนมาตรฐานของข้อมูลชุดนี้เท่ากับข้อใด 1. 6.4 2. 4.9 3. 3.6 4. 2.6 5. 1.8 32. ในการสารวจน้าหนักตัวของนักเรียนชั้นมัธยมศึกษาปีที่ 6 ของโรงเรียนแห่งหนึ่ง ซึ่งมี 3 ห้อง มีจานวนนักเรียน 44, 46 และ 42 คน ตามลาดับ ปรากฏว่ามีค่าเฉลี่ยเลขคณิตเท่ากับ 50 กิโลกรัม แต่พบว่าเครื่องชั่งที่ใช้สาหรับนักเรียน ห้องแรกมีความคลาดเคลื่อนทาให้ชั่งน้าหนักได้ตัวเลขสูงเกินจริงคนละ 1 กิโลกรัม ดังนั้นค่าเฉลี่ยเลขคณิตที่ถูกต้อง ของน้าหนักตัวของนักเรียนชั้นมัธยมศึกษาปีที่ 6 นี้เท่ากับกี่กิโลกรัม 1. 49 2. 3. 4. 5. ตอนที่ 2 แบบเติมคาตอบ ข้อละ 2.5 คะแนน 33. จานวนเต็มที่สอดคล้องกับอสมการ | | มีกี่จานวน
10.
10 O-NET (ก.พ.
56) 34. ในการสารวจความชอบรับประทานก๋วยเตี๋ยว, ข้าวมันไก่ และข้าวหมูแดง ของนักเรียนชั้นมัธยมศึกษาปีที่ 6 จานวน 100 คนของโรงเรียนแห่งหนึ่ง พบว่ามีนักเรียน ชอบก๋วยเตี๋ยว 49 คน ชอบก๋วยเตี๋ยวและข้าวมันไก่ 22 คน ชอบข้าวมันไก่ 48 คน ชอบก๋วยเตี๋ยวและข้าวหมูแดง 32 คน ชอบข้าวหมูแดง 59 คน ชอบข้าวมันไก่และข้าวหมูแดง 27 คน และชอบทั้งสามอย่าง 15 คน จานวนนักเรียนที่ไม่ชอบอาหารทั้งสามชนิดนี้เท่ากับกี่คน 35. โรงพิมพ์แห่งหนึ่งคิดค่าจ้างในการพิมพ์แผ่นพับแยกเป็น 2 ส่วนคือ ส่วนที่หนึ่งเป็นค่าเรียงพิมพ์ ซึ่งไม่ขึ้นกับจานวน แผ่นพับที่พิมพ์ กับส่วนที่สองเป็นค่าพิมพ์ ซึ่งขึ้นอยู่กับจานวนแผ่นพับที่พิมพ์ โดยโรงพิมพ์เสนอราคาดังนี้ ถ้าสั่งพิมพ์ 100 ใบ จะคิดค่าจ้างรวมทั้งหมดเป็นเงิน 800 บาท และถ้าสั่งพิมพ์ 200 ใบ จะคิดค่าจ้างรวมทั้งหมดเป็นเงิน 1,100 บาท โรงพิมพ์คิดค่าเรียงพิมพ์กี่บาท 36. พี่มีเงินมากกว่าน้อง 120 บาท ถ้าทั้งสองคนมีเงินรวมกันไม่เกิน 1,240 บาท แล้ว พี่มีเงินมากที่สุดได้กี่บาท 37. ขวดโหลใบหนึ่งบรรจุลูกแก้วสีแดง 6 ลูก สีเขียว 3 ลูก และสีเหลือง 1 ลูก หยิบลูกแก้วออกมา 2 ลูกพร้อมกัน ความน่าจะเป็นที่จะหยิบได้ลูกแก้วที่มีสีต่างกันเท่ากับเท่าใด
11.
O-NET (ก.พ. 56)
11 38. ถ้าพจน์ที่ 4 และพจน์ที่ 7 ของลาดับเรขาคณิตเป็น 54 และ 1458 ตามลาดับ แล้ว พจน์แรกเท่ากับเท่าใด 39. คะแนนสอบวิชาวิทยาศาสตร์ของนักเรียนห้องหนึ่งจานวน 119 คน เป็นดังนี้ คะแนนที่เปอร์เซ็นไทล์ที่ 56 เท่ากับเท่าใด 40. คะแนนสอบวิชาคณิตศาสตร์ของนักเรียน 50 คน มีตารางแจกแจงความถี่ดังนี้ ค่าเฉลี่ยเลขคณิตของคะแนนสอบนี้เท่ากับเท่าใด คะแนนที่ได้ จานวนนักเรียน (คน) 52 13 55 12 57 17 60 9 62 10 65 6 70 14 75 14 78 7 80 10 82 7 ช่วงคะแนน จานวนนักเรียน (คน) 1 – 20 3 21 – 40 5 41 – 60 13 61 – 80 20 81 – 100 9
12.
12 O-NET (ก.พ.
56) เฉลย 1. 5 9. 4 17. 1 25. 3 33. 9 2. 1 10. 1 18. 3 26. 2 34. 10 3. 5 11. 5 19. 1 27. 4 35. 500 4. 4 12. 1 20. 3 28. 2 36. 680 5. 2 13. 3 21. 3 29. 2 37. 0.6 6. 5 14. 5 22. 3 30. 5 38. 2 7. 2 15. 2 23. 2 31. (5.8) 39. 66 8. 1 16. 3 24. 4 32. 4 40. 61.3 แนวคิด 1. 5 (ก) ผิด ในกรณีที่ = 0 จะได้ = เสมอ (= 0) โดยที่ ไม่จาเป็นต้องเท่ากับ ก็ได้ เช่น (0)(1) = (0)(2) แต่ ≠ (ข) ผิด ในกรณีที่ เป็นลบเยอะๆ ยกกาลังสอง จะกลายเป็นบวกมากๆ เช่น 0 < 1 แต่ ( 0) = 100 > (ค) ผิด ถ้า กับ เป็นลบ คูณกันจะกลายเป็นบวกได้ เช่น 2 < 1 และ 1 < 4 แต่ ( 2)( 1) กลายเป็นบวก ซึ่งจะมากกว่า ( 1)(4) ซึ่งเป็นลบ 2. 1 1. √ = ถอดรูทลงตัว = ตรรก 2. √ กับ √ ถอดรูทไม่ลงตัว = อตรรก = อตรรก – ตรรก = อตรรก = เกินหลักสูตร ( เป็นอตรรก) 1.010010001 = ทศนิยมรู้จบ = ตรรก แต่มี อตรรก แน่ๆ 2 ตัว ข้อนี้จึงผิดแน่นอน 3. + 1 = อตรรก + ตรรก = อตรรก 4. = เศษส่วน = ตรรก √ = ถอดรูทลงตัว = ตรรก . … = ทศนิยมซ้า = ตรรก 0. 0 00 000 0000 … = ไม่รู้จบไม่ซ้า = อตรรก √ = ถอดรูทลงตัว = ตรรก 5. 0. ̇ = ทศนิยมซ้า = ตรรก √ √ = √ (√ ) = √ = ถอดรูทไม่ลงตัว = อตรรก √ = ถอดรูทไม่ลงตัว = อตรรก 3. 5 ข้อนี้ต้องรู้ค่าประมาณของ √ และ ถึงทศนิยมตาแหน่งที่ 2 (√ ~ 1.414 , ~ 3.14) จะเห็นว่า < < 4. 4 = √ . ~ 1.414 – 1.4 ~ 0.014 = . ~ 3.1416 – 3.1 ~ 0.0416 = . ̇ ~ . … – . … ~ 0.0 … = √ √ = √ = ( √ ) = ( √ ) √ √ = √ ( √ ) = √ ( ) ~ . ~ . ~ 1.866
13.
O-NET (ก.พ. 56)
13 5. 2 6. 5 แก้อสมการ ต้องใช้เส้นจานวน แล้วเติม + – + แต่เนื่องจากข้อนี้มีหนึ่งวงเล็บ ( ) ที่ ถูกค่าลบคูณอยู่ ดังนั้น ต้องเริ่มช่องขวาสุดด้วย จับแต่ละวงเล็บ = 0 จะได้ = , จะใส่เครื่องหมายได้เป็น จะได้คาตอบคือ ( ) = ( 0. . …) จะเห็นว่า ข้อ 5 เท่านั้น ที่ อยู่ภายในช่วง ( 0. . …) 7. 2 แปลงฝั่งขวาให้เป็นฐาน 2 จะได้ √ = = = ดังนั้น = ตัดฐาน 2 ทั้งสองข้าง จะได้ = ดังนั้น = = 8. 1 เรามีสูตรที่เปลี่ยน อินเตอร์เซก กับ คอมพลีเมนท์ ให้เป็น ลบ ได้ คือ = ดังนั้น ( ) = ( ) = ( ) คือเอา มาหักออกด้วยบริเวรที่อยู่ใน จะเห็นว่าบริเวณ 2 จะโดนหักไป เหลือ 9. 4 10. 1 เพิ่ม บาท ดังนั้น จานวนหนังสือจะลดลง 2 เล่ม ดังนั้น ค่าเช่าเพิ่มเป็นเล่มละ 10 + บาท และปล่อยหนังสือได้ลดลงเหลือ 00 เล่ม ดังนั้น รายได้ = ค่าเช่าต่อเล่ม × จานวนเล่ม = ( 0 )( 00 ) = 1000 + 80 = √ √ √ √ = √ √ √ √ √ √ = √ = √ + ฝนตก ฟ้ าแลบ วันนี้ (ข) ถูก วาดได้แบบเดียว และได้ผลถูกต้อง อ่านก่อน สอบได้ สมชาย (ก) ผิด ตัวอย่างค้าน เช่น แมว แมวฉัน เหมียว ชอบปลา (ค) ผิด ตัวอย่างค้าน เช่น 1 2 3
14.
14 O-NET (ก.พ.
56) 11. 5 ให้ กว้าง = จะได้ ยาว = + 3 และ เส้นทแยงมุม = + 7 ดังรูป จากพีทากอรัส จะได้ แยกตัวประกอบไม่ได้ ต้องใช้สูตร จะได้ = ( ) √( ) ( )( ) ( ) = √ = √ = √ แต่ √ = ( . ) เป็นลบ จะเป็นด้านกว้างไม่ได้ ดังนั้น กว้าง = √ และยาว = ( √ ) = 7 √ ดังนั้น เส้นรอบรูป = (กว้าง ยาว) = ( √ 7 √ ) = ( √ ) = 22 + 8√ 12. 1 โดเมน = {1, 2, 3, 4, 5} และ เรนจ์ = {1, 2, 3, 4} → ทุกตัวในเซตหน้าและหลัง ต้องถูกโยง เป็นฟังก์ชัน → ตัวหน้าทุกตัวในโดเมน ต้องได้โยงตัวละ 1 เส้น (แต่ตัวหลังอาจโยงหลายเส็นได้) ซึ่งข้อ 1 จะสอดคล้องกับเงื่อนไขดังกล่าวทุกข้อ 2. ไม่เป็น เพราะ 3 ในเซตหน้าไม่ถูกโยง 3. ไม่เป็น เพราะ 4 ในเซตหน้า ได้โยง 2 เส้น 4. ไม่เป็น เพราะ 1 ในเซตหลังไม่ถูกโยง 5. ไม่เป็น เพราะ 3 ในเซตหน้า ได้โยง 2 เส้น 13. 3 วาดกราฟ = ก่อน เนื่องจากอสมการเป็น จึงต้องวาดด้วยเส้นทึบ จะได้เป็นพาราโบลา เปิดขวา จะเห็นว่า กราฟที่ได้ จะแบ่งพื้นที่ทั้งหมดบนแกน เป็น 2 ส่วน คือ นอกโค้งฝั่งซ้าย และ ในโค้งฝั่งขวา ดังรูป สุ่มจุดไหนก็ได้ จากแต่ละบริเวณมาแทนในอสมการ ( 1, 0) : 0 จริง , ( 0) : 0 ไม่จริง ดังนั้น ต้องแรเงานอกโค้งฝั่งซ้าย ตามรูปซ้าย และ 0 คือ บริเวณ เอานอกโค้งฝั่งซ้ายมา “และ” กัน จะกลายเป็นส่วนที่ซ้อนทับกัน ดังรูป 14. 5 หาเรนจ์ แบบมี | | ต้องจัดรูปให้ | | ไปอยู่ตัวเดียว แล้วอ้างว่า | | ≥ 0 = | | → | | = → | | = + 1 เนื่องจาก | | ≥ 0 ดังนั้น + 1 ≥ 0 ด้วย → ≥ 0 แก้อสมการ ต้องวาดเส้นจานวน แล้วใส่ + + โดยตัวหารห้ามเป็น 0 จะได้ ดังรูป 15. 2 ปกติ เราจะให้ตัวที่จะหาค่าน้อยสุดเป็น แต่ข้อนี้ใช้ ในความหมายอื่นไปแล้ว จึงต้องระวัง อย่าสับสนระหว่าง ค่าน้อยสุด กับค่า จาก = 1 ดังนั้น = …( ) แทนใน จะกลายเป็น ( ) = ดังนั้น ต้องหาค่าน้อยสุดของ → เทียบกับรูป จะได้ = 1, = 1, = 0 + 3 + 7( ) = ( 7) = 0 = 0 01 + + (1,0)( 1,0)
15.
O-NET (ก.พ. 56)
15 ดังนั้น ค่าน้อยสุด จะเกิดเมื่อ = = → แทนหาค่า ใน ( ) ได้ = = → = √ หา ได้สาเร็จ ดังนั้น = ใช้ได้จริง และจะได้ค่าน้อยสุด = = ( )( ) ( ) = 16. 3 จากพีทากอรัส จะได้ AD = √( ) = √ = √ และจาก sin 45° = แทนค่า จะได้ √ = √ ตัด √ ทั้งสองข้าง และย้ายข้าง จะได้ AC = 4 17. 1 จะเห็นว่า ∆ADE ≅ ∆BCE (ด้าน เท่ากัน , ด้าน เท่ากัน , มุมฉากเท่ากัน) ดังนั้น D̂A = ĈB แต่ ÂB = 90° ดังนั้น D̂A = = 45° ∆ADE จะเหลือ D̂E = 180° – 45° – 90° = 45° จะเห็นว่า ∆ADE มีมุม 45° สองมุมเท่ากัน ดังนั้น ∆ADE เป็นหน้าจั่ว โดย = พีทากอรัสที่ ∆ADC จะได้ AC = √( ) = √ = √ = √ ดังนั้น sin B̂C = = √ = √ = √ 18. 3 จากรูป จะได้ A = 180° – C – B = 180° – 90° – B = 90° – B ดังนั้น cot(90° – B) = cot A = = แต่โจทย์ให้ cot(90° – B) = 3 ดังนั้น = → + 8 = 3 → = = 4 19. 1 เรือจะอยู่ใกล้หรือไกล ขึ้นกับมุมก้ม → ก้มมากอยู่ใกล้ ก้มน้อยอยู่ไกล ระหว่าง กับ ให้มุมใหญ่ = , มุมเล็ก = จะได้ = 90° และจะวาดได้ดังรูป พิจารณา ∆ABC เนื่องจาก = 90° และ ÂB = ดังนั้น B̂C = ดังนั้น tan B̂C = tan = = แต่ถ้าดูจาก ∆ABC จะเห็นว่า tan = = จับ tan เป็นตัวเชื่อม จะได้ = คูณไขว้ และย้ายข้าง จะได้ 0 00 = 0 แยกตัวประกอบเป็น ( 0)( 0) = 0 เนื่องจาก เป็นลบไม่ได้ จะได้ = 10 ค่าเดียว ดังนั้น เรือลาไกล อยู่ห่างจาก ประภาคาร = 10 + 80 = 90 20. 3 จากสูตรลาดับเลขคณิต = ( ) จะได้ = = …( ) และ = = …( ) หา และ จากการแก้สองสมการนี้: (2) – (1) จะได้ 5 = → = 3 C A B 45° D 3 A B CD E A B C+ 8 30 80 A B C D อิทธิ เรือ เรือ
16.
16 O-NET (ก.พ.
56) แทน = 3 ใน (1) จะได้ = → = 2 ดังนั้น = = 2 + 98(3) = 2 + 294 = 296 21. 3 จะเห็นว่า แต่ละคู่ เพิ่มขึ้นอย่างคงที่ โดย (–15) – (–24) = (–6) – (– ) = … = ดังนั้น ลาดับนี้เป็น ลาดับเลขคณิค โดยมี = 9 และ = 24 จะหาว่ามีกี่พจน์ ต้องหาว่า พจน์สุดท้าย คือพจน์ที่เท่าไหร่ โดยแทน = พจน์สุดท้าย แล้วแก้หา จากสูตรลาดับเลขคณิต = ( ) → 77 = –24 + ( )( ) จะได้ = + 1 = 200 + 1 = 201 22. 3 ประโยค = หมายความว่า แต่ละพจน์ จะเท่ากับ สองพจน์ก่อนหน้าบวกกันนั่นเอง 23. 2 สูตรพจน์ทั่วไป เป็นกาลัง 1 จะเป็นลาดับเลขคณิต ลองหา … ของลาดับนี้ดู จะได้ จะเห็นว่าเป็นลาดับเลขคณิตที่ = 7 และ = (–4) – (–7) = 3 ดังนั้น หาได้จากสูตร ( ( ) ) = ( ( 7) ( )( )) = ( ) = ( ) = 598 24. 4 สูตรผลบวกอนุกรมเรขาคณิตคือ = ( ) จากที่โจทย์ให้ จะได้ 3069 = ( ) แก้สมการ จะได้ = = 3 จากสูตรพจน์ทั่วไปของลาดับเรขาคณิต = จะได้ = ( ) = 12 25. 3 หา ได้โดยแทน = 1, 2, 3 ในสูตรพจน์ทั่วไปที่โจทย์ให้ ดังนั้น ผลบวก 3 พจน์แรก = = ( ) ( ) ( ) ( ) ( ) ( ) = + + = = 26. 2 จ่ายเพิ่มขึ้นคงที่ ดังนั้น เงินที่ต้องจ่ายจะเป็นลาดับเลขคณิต โดย = 5,500 และ = 400 หา : ชาระ 4 ปี แสดงว่าจ่ายทั้งหมด 4 × 12 = 48 เดือน ดังนั้น เดือนสุดท้ายคือ จากสูตร = ( ) จะได้ = 5,500 + (48 – 1)(400) = 5,500 + 18,800 = 24,300 2 1 3 4 7 11 18 29 47 76 123 + + + + + + + + +โจทย์กาหนด = 3(1) – 10 = 7 = 3(2) – 10 = 4 = 3(3) – 10 = 1 ⋮
17.
O-NET (ก.พ. 56)
17 หา : ต้องหาผลบวกของเงินที่จ่ายในช่วง 2 ปีแรก เนื่องจาก 2 ปี = 2 × 12 = 24 เดือน ดังนั้น ต้องหา จากสูตร = ( ( ) ) จะได้ = ( ( 00) ( ) 00) = 12(11,000 + 9,200) = 242,400 27. 4 ในการคิดความน่าจะเป็น เราจะคิดให้ของทุกชิ้นไม่ซ้ากันเสมอ หาจานวนแบบทั้งหมดก่อน : คน 4 คน เรียงเป็นวงกลม จะเรียงได้ (4 – 1)! = 6 แบบ จานวนแบบที่ฝาแฝดนั่งติดกัน : เอาฝาแฝดมัดติดกันเป็นคนใหม่ 1 คน จะกลายเป็นมีแค่ 3 คน จะเรียงได้ (3 – 1)! และฝาแฝดสลับกันเองภายในมัด ได้ 2 แบบ จะได้จานวนแบบ = (3 – 1)! (2) = 4 แบบ ดังนั้น ความน่าจะเป็น = = 28. 2 ให้ น้าท่วม = , ภัยแล้ง = ดังนั้น ( ) = , ( ) = , ( ) = แล้วถาม ( ) = ? จากสูตร Inclusive – Exclusive จะได้ 29. 2 ข้อนี้ผมไม่แน่ใจนะครับ จากความเห็นส่วนตัว ผมเลือกข้อ 2 ด้วยเหตุผลดังนี้ครับ 1. “น้าหนักตัวของชาวจังหวัดเชียงใหม่” เป็นข้อมูลที่คลุมเครือ เพราะในแต่ละช่วงเวลา “น้าหนัก” และ “จานวนคน” จะ เปลี่ยนตลอด จึงเป็นข้อมูลที่ไม่ชัดเจน ไม่สามารถหาค่ากลางที่เหมาะสมได้ 2. ข้อมูลมีความชัดเจนกว่าข้อแรกในด้านวิธีการสารวจและกรอบเวลา เนื่องจากเป็นข้อมูลเชิงปริมาณที่ไม่น่าจะ แตกต่างกันมาก จึงเหมาะสมที่จะใช้ค่าเฉลี่ย 3. ข้อนี้ไม่กาหนดกรอบเวลาเหมือนข้อแรก และยังมีปัญหาเรื่องวิธีการคิด เนื่องจากมี 2 ขั้นตอน คือ ค่าใช้จ่าย “ต่อ เดือน” ของแต่ละคน กับค่าใช้จ่าย “ต่อคน” ของคนไทย ซึ่งขั้นแรก ค่าใช้จ่ายของแต่ละคนเป็นข้อมูลเชิงปริมาณที่ไม่ น่าจะต่างกันมาก จึงควรใช้ค่าเฉลี่ย แต่ขั้นที่ 2 ควรใช้มัธยฐานเพราะข้อมูลรายจ่ายของแต่ละคนแตกต่างกันได้มาก 4. ความสูงเป็นข้อมูลเชิงปริมาณ ควรใช้ ค่าเฉลี่ย หรือไม่ก็มัธยฐาน ไม่มีเหตุผลอะไรที่จะใช้ฐานนิยม 5. คะแนนสอบเป็นข้อมูลเชิงปริมาณ ไม่มีเหตุผลอะไรที่จะใช้ฐานนิยม 30. 5 ข้อนี้ผมเองก็ไม่รู้อะครับ ลองหาจากแหล่งอ้างอิงหลายที่ พบว่าทุกที่มี “กาหนดขอบเชต” , “เลือกตัวอย่าง” และ “สร้าง แบบสารวจ” เหมือนกัน แต่ถ้าอ้างอิงตามหนังสือสาระการเรียนรู้พื้นฐาน ม.5 จะมีพูดถึง “ประมวลผลและวิเคราะห์” ด้วย อย่างไรก็ตาม บางแหล่งอ้างอิงที่หาได้ ก็มีพูดถึง “การนาเสนอ” ด้วย ความเห็นส่วนตัว + แหล่งอ้างอิงที่หาได้ทั้งหมดแล้ว ผมคิดว่าข้อ 5 มีโอกาสจะเป็นคาตอบมากที่สุดครับ ( ) = ( ) ( ) ( ) = + ( ) ( ) = + = =
18.
18 O-NET (ก.พ.
56) 31. (5.8) จากสมบัติของค่าเฉลี่ยเลขคณิต จะได้ ข้อมูลทุกตัวบวกกัน = 15 × 11 = 165 แต่จะเห็นว่าทุกตัวบวกกัน = 148 + ดังนั้น 165 = 148 + จะได้ = 17 จะได้ กาลังสองของ = ∑( ̅) = ( ) ( ) ( ) ( ) = = ~ 5.8 หมายเหตุ : ข้อนี้ถ้าใช้สูตร ส่วนเบี่ยงเบนมาตรฐานของ “กลุ่มตัวอย่าง” = √ ∑( ̅) ตัวหาร จะเปลี่ยนจาก 11 เป็น 10 และจะได้คาตอบ = = 6.4 ซึ่งจะตรงกับตัวเลือกข้อ 1 ข้อนี้คนออกข้อสอบคงใช้สูตรของ “กลุ่มตัวอย่าง” ในการคิด แต่คงลืมบอกในโจทย์ว่าข้อมูลชุดนี้เป็นกลุ่มตัวอย่าง แต่เนื่องจากโจทย์บอกชัดเจนว่า "ข้อมูลชุดหนึ่งมี 11 จานวน" จึงต้องตอบ 5.8 (แต่ถ้าต้องเดาก็คงเลือก 6.4) 32. 4 จะได้จานวนนักเรียนทั้งหมด = 44 + 46 + 42 = 132 คน จากสมบัติของค่าเฉลี่ยเลขคณิต จะได้ ผลรวมน้าหนัก = 50 × 132 = 6600 กก แต่ห้องแรก ชั่งได้สูงเกินจริง คนละ 1 กก. แต่ห้องแรกมี 44 คน ดังนั้น ผลรวมน้าหนักจะสูงเกินจริงไป 1 × 44 = 44 กก. ดังนั้น ผลรวมน้าหนัดที่ถูกต้อง = 6600 – 44 = 6556 กก ดังนั้น ค่าเฉลี่ยที่ถูกต้อง = = = = 33. 9 จากสมบัติของค่าสัมบูรณ์ จะได้ บวก 3 ตลอด จะได้ 7 ดังนั้น = 1, 0 … 7 ทั้งหมด 9 จานวน 34. 10 จากสูตร Inclusive – Exclusive แบบ 3 เซต จะได้ ( ) = (แต่ละวงรวมกัน) – (ผลรวมของสองวงซ้อนกัน) + (สามวงซ้อนกัน) = (49 + 48 + 59) – (22 + 32 + 27) + (15) = 156 – 81 + 15 = 90 นักเรียนที่ไม่ชอบทั้งสามชนิด คือนักเรียนที่อยู่นอก นั่นเอง ซึ่งจะมีจานวน 100 – 90 = 10 คน 35. 500 ให้ค่าเรียงพิมพ์ = บาท และค่าพิมพ์ แผ่นละ บาท จากที่โจทย์ให้ จะได้ 00 = 800 …( ) + 200 = 1100 …( ) โจทย์ถามค่า เราจะเอา 2(1) – (2) ให้ ตัดกัน : 2 = 1600 – 1100 จะได้ = 500 36. 680 ให้พี่มีเงิน บาท น้องมีเงิน บาท ดังนั้น = 0 …( ) และ 0 …( ) โจทย์ถามค่ามากสุดของ ดังนั้น เราจะกาจัด จาก (1) จะได้ = 0 แทนใน (2) จะได้ 0 0 → 0 → 0 ดังนั้น ค่ามากสุดของ คือ 680
19.
O-NET (ก.พ. 56)
19 37. 0.6 มีลูกแก้วทั้งหมด = 6 + 3 + 1 = 10 ลูก หยิบ 2 ลูกพร้อมกัน จะได้ จานวนแบบทั้งหมด = ( ) = = 45 แบบ แบบที่ได้สีต่างกัน จะแบ่งเป็น 3 กรณี คือ แดงเขียว + แดงเหลือง + เขียวเหลือง = (6)(3) + (6)(1) + (3)(1) = 18 + 6 + 3 = 27 ดังนั้น ความน่าจะเป็น = = = 0.6 38. 2 สูตรพจน์ทั่วไปของลาดับเรขาคณิต คือ = จากโจทย์ จะได้ 54 = …( ) และ 1458 = …( ) โจทย์ถาม เราจะกาจัด โดย ( ) ÷ (2) ให้ ตัดกัน จะได้ : = ตัดเลข จะเหลือ 2 = 39. 66 จะอยู่ตัวที่ ( ) = 0 = 67.2 จากช่องความถี่สะสม (F) จะได้ ตัวที่ 67 มีค่า 65 และ ตัวที่ 68 มีค่า 70 ดังนั้น ตัวที่ 67.2 = ตัวที่ 67 + 0.2 × (ตัวที่ 68 – ตัวที่ 67) = 65 + 0.2 × ( 70 – 65 ) = 65 + 1 = 66 40. 61.3 หาค่าเฉลี่ยเลขคณิตแบบอัตรภาคชั้น จะประมาณให้ค่า ของแต่ละชั้น = จุดกึ่งกลางชึ้น เช่น ชั้นแรก จะมี จุดกึ่งกลางชั้น = = 10.5 คะแนนแต่ละชั้นเพิ่มทีละ 20 ดังนั้น จุดกึ่งกลางชั้นที่เหลือให้ +20 ไปเรื่อยๆ หาผลรวมคะแนนแต่ละชั้น ( ) แล้วบวกกันดังตาราง จะได้ ̅ = จานวนนักเรียน = = 61.3 เครดิต ขอบคุณ คุณ Kue Kung สาหรับข้อสอบและเฉลยนะครับ ขอบคุณ คุณ Ntt Dks สาหรับข้อสังเกตเรื่องกลุ่มตัวอย่างในข้อ 31 ด้วยครับ คะแนนที่ได้ จานวนนักเรียน (คน) F 52 13 13 55 12 25 57 17 42 60 9 51 62 10 61 65 6 67 70 14 81 75 14 ⋮ ⋮ จุดกึ่งกลาง ชั้น ( ) จานวน นักเรียน ( ) 10.5 3 31.5 30.5 5 152.5 50.5 13 656.5 70.5 20 141.0 90.5 9 814.5 3065.0
Download