Chapter 11Muscles
Structure Muscles cellsgenerate force and movements used to regulate the internal environment, and they also produce movements in the external environment. Ex. skeletal muscle, smooth muscle, and cardiac muscle
Types of Muscle TissuesSkeletal musclesits contraction is responsible for supporting and moving the skeleton. contraction of skeletal muscle is initiated by impulses in the neurons to the muscle and is usually under voluntary control
Types of Muscle TissuesSmooth musclesSurround various hollow organs and tubes, Ex. stomach, intestines, urinary bladder, uterus, blood vessels, and airways in the lungs.  The autonomic nervous system, hormones, autocrine/paracrine agents, and other local chemical signals control smooth muscle contraction. Some smooth muscles contract autonomously, however, even in the absence of such signals. Smooth muscle is not normally under voluntary control.
Types of Muscle TissuesStraited (Cardiac) MuscleMuscle of the heartContraction propels blood through the circulatory system
Skeletal musclesMuscle fiber A single skeletal muscle cellFormed by fusion of undifferentiated, mononucleated cells, known as myoblasts into single cylindrical, multinucleated cell.
StructuresSkeletal muscle differentiation is completed around the time of birthContinue to increase in size during growth from infancy to adult, but no new fibers are formed from myoblasts.If skeletal-muscle fibers are destroyed after birth as a result of injury, they cannot be replaced.New fibers can be formed, however, from undifferentiated cells known as satellite cellsDoes not restore a severely damaged muscle to full strength.
StructuresMusclerefers to a number of musclefibers bound together by connective tissue. TendonsCollagen fibers that links the muscles and bonesLocated at each end of the muscles
StructuresStriated musclesUnder light microscope, is a series of light and dark bands perpendicular to the long axis of the fiber  ex. Cardiac musclesMyofibrilscylindrical bundles with thick and thin filaments in the cytoplasmCytoplasm of fiber is filled with myofibrils Skeletal-muscle fibers viewed through a light microscope. Each bracket at the left indicates one muscle fiber. Arrowindicates a blood vessel containing red blood cells.
MyofibrilsSarcomereOne repeating unit of thick and thin filament in the myofibrilThick filamentsComposed of contractile protein myosinFound in middle of sarcomere where their order parallel produces wide, dark A bands  Thin filaments Composed of contractile protein actinAs well as Troponin and Tropomyosin (regulation contraction)
StructuresEach sarcomere contains 2 sets of thin filamentsOne end of each thin filament is anchored to a network of interconnecting protein called Z lineOther end overlaps a portion of the thick filament I bandsLight bands that lies between the ends of the A bands of two adjacent sarcomeres and contains those portions of the thin filaments that do not overlap the thick filaments.H zone Narrow light band in the center of the A bandOnly thick filaments, specifically their central parts, are found in the H zoneM lineNarrow, dark band in the center of the H zoneCorresponds to proteins that link together the central region of the thick filaments
M line
Structures TitinA protein that functions as a molecular spring which is responsible for the passive elasticity of muscleExtends from Z line to M linelinked to both the M-line proteins and the thick filaments
StructuresCross bridgesProjections that bridges the space between overlapping thick and thin filamentsportions of myosin molecules that extend from the surface of the thick filaments toward the thin filamentsDuring contraction, the cross bridges make contact with the thin filaments and exert force on them
Molecular Mechanisms of Contraction
Contraction-turning on of the force-generating sites( cross bridges) in a muscle fiber.Relaxation- force generation is turned off and tension declines.the emotional state of low tension.Contraction and Relaxation
The sliding filament theory is the explanation for how muscles produce force (or, usually, shorten).  It explains that the thick and thin filaments within the sarcomere slide past one another, shortening the entire length of the sarcomere. Sliding filament mechanism
Actin- globular proteins composed of a single polypeptide that polymerizes with other actins to form two intertwined helical chains. Actin-thin filament.Myosin-thick filament.
Is the sequence of events that occur between the time a cross bridge binds to a thin filament, moves, and then is set to repeat the process. Cross bridge cycle
1. attachment of the cross bridge to the thin filament.2. movement of cross bridge, producing tension on the thin filament.3. detachment of  the cross bridge from the thin filament. 4. energizing of the cross bridge for it to repeat the cycle.Cross bridge cycle
1. (ATP hydrolysis) provides energy for cross-bridge movement2. ATP binding tom myosin breaks the link formed between actin and myosin during cycle, allowing the cycle to be repeated. Roles of ATP
Roles of Troponin, Tropomyosin, and Calcium in contraction.
Tropomyosin and troponin are proteins that prevents cross bridges from interacting with actinin resting muscle fiber. Calcium triggers contraction by reaction with regulatory proteins that in the absence of calcium prevent interaction of actin and myosin.Introduction
Is a complex of three regulatory proteins that is essential to muscle contraction. Troponin is attached to the protein tropomyosin and lies within the groove between actin filaments in muscle tissue. Troponin
Troponin C-binds to calcium ions to produce a conformational change in TnITroponin T-binds to tropomyosin, interlocking them to form a troponin-tropomyosin complexTroponin I-binds to actin in thin myofilaments to hold the troponin-tropomyosin complex in placeIndividual subunits serve different functions:
Is an actin-binding protein that regulates actin mechanics.Chains of tropomyosin molecules are arranged end to end along the actin filament.It inhibits contraction by blocking the interaction of actin and myosin, except when influenced by troponin.Tropomyosin 
Muscle contraction is regulated by calcium ions, which will change thin filament into an activated state by binding to troponin.Removal of calcium from troponin reverses the process, turning off contractions. Calcium

part 7a

  • 1.
  • 2.
    Structure Muscles cellsgenerateforce and movements used to regulate the internal environment, and they also produce movements in the external environment. Ex. skeletal muscle, smooth muscle, and cardiac muscle
  • 3.
    Types of MuscleTissuesSkeletal musclesits contraction is responsible for supporting and moving the skeleton. contraction of skeletal muscle is initiated by impulses in the neurons to the muscle and is usually under voluntary control
  • 4.
    Types of MuscleTissuesSmooth musclesSurround various hollow organs and tubes, Ex. stomach, intestines, urinary bladder, uterus, blood vessels, and airways in the lungs. The autonomic nervous system, hormones, autocrine/paracrine agents, and other local chemical signals control smooth muscle contraction. Some smooth muscles contract autonomously, however, even in the absence of such signals. Smooth muscle is not normally under voluntary control.
  • 5.
    Types of MuscleTissuesStraited (Cardiac) MuscleMuscle of the heartContraction propels blood through the circulatory system
  • 6.
    Skeletal musclesMuscle fiberA single skeletal muscle cellFormed by fusion of undifferentiated, mononucleated cells, known as myoblasts into single cylindrical, multinucleated cell.
  • 7.
    StructuresSkeletal muscle differentiationis completed around the time of birthContinue to increase in size during growth from infancy to adult, but no new fibers are formed from myoblasts.If skeletal-muscle fibers are destroyed after birth as a result of injury, they cannot be replaced.New fibers can be formed, however, from undifferentiated cells known as satellite cellsDoes not restore a severely damaged muscle to full strength.
  • 8.
    StructuresMusclerefers to anumber of musclefibers bound together by connective tissue. TendonsCollagen fibers that links the muscles and bonesLocated at each end of the muscles
  • 9.
    StructuresStriated musclesUnder lightmicroscope, is a series of light and dark bands perpendicular to the long axis of the fiber ex. Cardiac musclesMyofibrilscylindrical bundles with thick and thin filaments in the cytoplasmCytoplasm of fiber is filled with myofibrils Skeletal-muscle fibers viewed through a light microscope. Each bracket at the left indicates one muscle fiber. Arrowindicates a blood vessel containing red blood cells.
  • 10.
    MyofibrilsSarcomereOne repeating unitof thick and thin filament in the myofibrilThick filamentsComposed of contractile protein myosinFound in middle of sarcomere where their order parallel produces wide, dark A bands Thin filaments Composed of contractile protein actinAs well as Troponin and Tropomyosin (regulation contraction)
  • 12.
    StructuresEach sarcomere contains2 sets of thin filamentsOne end of each thin filament is anchored to a network of interconnecting protein called Z lineOther end overlaps a portion of the thick filament I bandsLight bands that lies between the ends of the A bands of two adjacent sarcomeres and contains those portions of the thin filaments that do not overlap the thick filaments.H zone Narrow light band in the center of the A bandOnly thick filaments, specifically their central parts, are found in the H zoneM lineNarrow, dark band in the center of the H zoneCorresponds to proteins that link together the central region of the thick filaments
  • 13.
  • 14.
    Structures TitinA proteinthat functions as a molecular spring which is responsible for the passive elasticity of muscleExtends from Z line to M linelinked to both the M-line proteins and the thick filaments
  • 15.
    StructuresCross bridgesProjections thatbridges the space between overlapping thick and thin filamentsportions of myosin molecules that extend from the surface of the thick filaments toward the thin filamentsDuring contraction, the cross bridges make contact with the thin filaments and exert force on them
  • 16.
  • 17.
    Contraction-turning on ofthe force-generating sites( cross bridges) in a muscle fiber.Relaxation- force generation is turned off and tension declines.the emotional state of low tension.Contraction and Relaxation
  • 18.
    The sliding filamenttheory is the explanation for how muscles produce force (or, usually, shorten).  It explains that the thick and thin filaments within the sarcomere slide past one another, shortening the entire length of the sarcomere. Sliding filament mechanism
  • 19.
    Actin- globular proteinscomposed of a single polypeptide that polymerizes with other actins to form two intertwined helical chains. Actin-thin filament.Myosin-thick filament.
  • 20.
    Is the sequenceof events that occur between the time a cross bridge binds to a thin filament, moves, and then is set to repeat the process. Cross bridge cycle
  • 21.
    1. attachment ofthe cross bridge to the thin filament.2. movement of cross bridge, producing tension on the thin filament.3. detachment of the cross bridge from the thin filament. 4. energizing of the cross bridge for it to repeat the cycle.Cross bridge cycle
  • 22.
    1. (ATP hydrolysis)provides energy for cross-bridge movement2. ATP binding tom myosin breaks the link formed between actin and myosin during cycle, allowing the cycle to be repeated. Roles of ATP
  • 23.
    Roles of Troponin,Tropomyosin, and Calcium in contraction.
  • 24.
    Tropomyosin and troponinare proteins that prevents cross bridges from interacting with actinin resting muscle fiber. Calcium triggers contraction by reaction with regulatory proteins that in the absence of calcium prevent interaction of actin and myosin.Introduction
  • 25.
    Is a complexof three regulatory proteins that is essential to muscle contraction. Troponin is attached to the protein tropomyosin and lies within the groove between actin filaments in muscle tissue. Troponin
  • 26.
    Troponin C-binds tocalcium ions to produce a conformational change in TnITroponin T-binds to tropomyosin, interlocking them to form a troponin-tropomyosin complexTroponin I-binds to actin in thin myofilaments to hold the troponin-tropomyosin complex in placeIndividual subunits serve different functions:
  • 28.
    Is an actin-bindingprotein that regulates actin mechanics.Chains of tropomyosin molecules are arranged end to end along the actin filament.It inhibits contraction by blocking the interaction of actin and myosin, except when influenced by troponin.Tropomyosin 
  • 29.
    Muscle contraction isregulated by calcium ions, which will change thin filament into an activated state by binding to troponin.Removal of calcium from troponin reverses the process, turning off contractions. Calcium