PENGOLAHAN DATA POLYGON DENGAN METODE TRANSIT
Titik
1
2
3
4
5
6

SYARAT

A-B
B-C
C-D
D-E
E-F
F-G
∑
(N-2)*180

β
Jarak
Desimal
(d)
73.98305556
76
198.0002778
69.2
88.96722222
64.9
121.5330556
79.7
128.9836111
80.6
108.9161111
100.3
720.3833333
470.7
720

fβ
-0.38333
-0.38333
-0.38333
-0.38333
-0.38333
-0.38333

Koreksi
β
73.9191667
197.936389
88.9033333
121.469167
128.919722
108.852222

α
81.016944

98.95333289
7.856666222
309.3258329
258.2455551
187.0977773
81.016944

∆X
d sin α
75.06782653
68.35682762
8.871529354
-61.65229838
-78.90979152
-12.39336702
-0.659273416
0.659273416
fx=-(∑∆x)

∆Y
d cos α
11.86682016
-10.76959228
64.29079224
50.50825779
-16.41964685
-99.53137422
-0.054743163
0.054743163
fy=-(∑∆y)

[d sin α]
75.06782653
68.35682762
8.871529354
61.65229838
78.90979152
12.39336702
305.2516404

[d cos α]

bobot ∆X

11.86682016
10.76959228
64.29079224
50.50825779
16.41964685
99.53137422
253.3864835

0.245921124
0.223935988
0.029063003
0.201972046
0.258507346
0.040600493
1

METODE TRANSIT

960

940

920

900

880

860

840

820
700

720

740

760

780

800

820

840

860

880

bobot ∆Y
0.046832885
0.042502631
0.25372621
0.199332881
0.0648008
0.392804592
1

Koordinat
X
716.5
791.7299558
860.2344184
869.1251083
807.6059647
728.8666002
716.5

Y
826.25
838.1193839
827.3521184
891.6568004
942.1759703
925.7598709
826.25

Luas ((Xn.Yn+1)-(Yn.Xn+1))/2
Xn.Yn+1
Yn.Xn+1
600512.5386
654166.8760
655039.4561
720979.1408
767033.8691
719072.4995
818868.7922
720107.3505
747649.1936
686720.5963
602226.0284
663306.9475
4191329.8780
4164353.4105
13488.2338

PENGOLAHAN DATA POLIGON METODE TRANSIT _ RIZKY MUHAMMAD FAISAL.pdf

  • 1.
    PENGOLAHAN DATA POLYGONDENGAN METODE TRANSIT Titik 1 2 3 4 5 6 SYARAT A-B B-C C-D D-E E-F F-G ∑ (N-2)*180 β Jarak Desimal (d) 73.98305556 76 198.0002778 69.2 88.96722222 64.9 121.5330556 79.7 128.9836111 80.6 108.9161111 100.3 720.3833333 470.7 720 fβ -0.38333 -0.38333 -0.38333 -0.38333 -0.38333 -0.38333 Koreksi β 73.9191667 197.936389 88.9033333 121.469167 128.919722 108.852222 α 81.016944 98.95333289 7.856666222 309.3258329 258.2455551 187.0977773 81.016944 ∆X d sin α 75.06782653 68.35682762 8.871529354 -61.65229838 -78.90979152 -12.39336702 -0.659273416 0.659273416 fx=-(∑∆x) ∆Y d cos α 11.86682016 -10.76959228 64.29079224 50.50825779 -16.41964685 -99.53137422 -0.054743163 0.054743163 fy=-(∑∆y) [d sin α] 75.06782653 68.35682762 8.871529354 61.65229838 78.90979152 12.39336702 305.2516404 [d cos α] bobot ∆X 11.86682016 10.76959228 64.29079224 50.50825779 16.41964685 99.53137422 253.3864835 0.245921124 0.223935988 0.029063003 0.201972046 0.258507346 0.040600493 1 METODE TRANSIT 960 940 920 900 880 860 840 820 700 720 740 760 780 800 820 840 860 880 bobot ∆Y 0.046832885 0.042502631 0.25372621 0.199332881 0.0648008 0.392804592 1 Koordinat X 716.5 791.7299558 860.2344184 869.1251083 807.6059647 728.8666002 716.5 Y 826.25 838.1193839 827.3521184 891.6568004 942.1759703 925.7598709 826.25 Luas ((Xn.Yn+1)-(Yn.Xn+1))/2 Xn.Yn+1 Yn.Xn+1 600512.5386 654166.8760 655039.4561 720979.1408 767033.8691 719072.4995 818868.7922 720107.3505 747649.1936 686720.5963 602226.0284 663306.9475 4191329.8780 4164353.4105 13488.2338