Periodic Trends
Elemental Properties and Patterns
www.tmcleod.org/Level1/0809ch6per
iodictrend.ppt
The Periodic Law
• Dimitri Mendeleev was the first scientist to
publish an organized periodic table of the
known elements.
• He was perpetually in trouble with the
Russian government and the Russian
Orthodox Church, but he was brilliant
never-the-less.
The Periodic Law
• Mendeleev even went out on a limb and
predicted the properties of 2 at the time
undiscovered elements.
• He was very accurate in his predictions,
which led the world to accept his ideas
about periodicity and a logical periodic
table.
The Periodic Law
• Mendeleev understood the ‘Periodic Law’
which states:
• When arranged by increasing atomic
number, the chemical elements display a
regular and repeating pattern of chemical
and physical properties.
The Periodic Law
• Atoms with similar properties appear in
groups or families (vertical columns) on the
periodic table.
• They are similar because they all have the
same number of valence (outer shell)
electrons, which governs their chemical
behavior.
Valence Electrons
• Do you remember how to tell the number of
valence electrons for elements in the s- and
p-blocks?
• How many valence electrons will the atoms
in the d-block (transition metals) and the f-
block (inner transition metals) have?
• Most have 2 valence e-, some only have 1.
A Different Type of Grouping
• Besides the 4 blocks of the table, there is
another way of classifying element:
• Metals
• Nonmetals
• Metalloids or Semi-metals.
• The following slide shows where each
group is found.
Metals, Nonmetals, Metalloids
Metals, Nonmetals, Metalloids
• There is a zig-zag or
staircase line that
divides the table.
• Metals are on the left
of the line, in blue.
• Nonmetals are on the
right of the line, in
orange.
Metals, Nonmetals, Metalloids
• Elements that border
the stair case, shown
in purple are the
metalloids or semi-
metals.
• There is one important
exception.
• Aluminum is more
metallic than not.
Metals, Nonmetals, Metalloids
• How can you identify a metal?
• What are its properties?
• What about the less common nonmetals?
• What are their properties?
• And what the heck is a metalloid?
Metals
• Metals are lustrous
(shiny), malleable,
ductile, and are good
conductors of heat and
electricity.
• They are mostly solids
at room temp.
• What is one
exception?
Nonmetals
• Nonmetals are the
opposite.
• They are dull, brittle,
nonconductors
(insulators).
• Some are solid, but
many are gases, and
Bromine is a liquid.
Metalloids
• Metalloids, aka semi-metals
are just that.
• They have characteristics of
both metals and nonmetals.
• They are shiny but brittle.
• And they are
semiconductors.
• What is our most important
semiconductor?
Periodic Trends
• There are several important atomic
characteristics that show predictable trends
that you should know.
• The first and most important is atomic
radius.
• Radius is the distance from the center of the
nucleus to the “edge” of the electron cloud.
AtomicRadius
• Since a cloud’s edge is difficult to define,
scientists use define covalent radius, or half
the distance between the nuclei of 2 bonded
atoms.
Atomic Radius
• The trend for atomic radius in a vertical
column is to go from smaller at the top to
larger at the bottom of the family.
• Why?
• With each step down the family, we add an
entirely new PEL to the electron cloud,
making the atoms larger with each step.
Atomic Radius
• The trend across a horizontal period is less
obvious.
• What happens to atomic structure as we step
from left to right?
• Each step adds a proton and an electron
(and 1 or 2 neutrons).
• Electrons are added to existing PELs or
sublevels.
Atomic Radius
• The effect is that the more positive nucleus
has a greater pull on the electron cloud.
• The nucleus is more positive and the
electron cloud is more negative.
• The increased attraction pulls the cloud
in, making atoms smaller as we move from
left to right across a period.
Atomic Radius
• The overall trend in atomic radius looks like
this.
Atomic Radius
• Here is an animation to explain the trend.
• On your help sheet, draw arrows like this:
Ionization Energy
• This is the second important periodic trend.
• If an electron is given enough energy (in the
form of a photon) to overcome the effective
nuclear charge holding the electron in the
cloud, it can leave the atom completely.
• The atom has been “ionized” or charged.
• The number of protons and electrons is no
longer equal.
Ionization Energy
• The energy required to remove an electron
from an atom is ionization energy. (measured
in kilojoules, kJ)
• The larger the atom is, the easier its electrons
are to remove.
• Ionization energy and atomic radius are
inversely proportional.
• Ionization energy is always endothermic, that
is energy is added to the atom to remove the
electron.
Ionization Energy
Ionization Energy (Potential)
• Draw arrows on your help sheet like this:
Electron Affinity
• What does the word ‘affinity’ mean?
• Electron affinity is the energy change that
occurs when an atom gains an electron
(also measured in kJ).
• Where ionization energy is always
endothermic, electron affinity is usually
exothermic, but not always.
Electron Affinity
• Electron affinity is exothermic if there is an
empty or partially empty orbital for an
electron to occupy.
• If there are no empty spaces, a new orbital
or PEL must be created, making the process
endothermic.
• This is true for the alkaline earth metals and
the noble gases.
Electron Affinity
• Your help sheet should look like this:
+
+
Electronegativity
• Electronegativity is a measure of an atom’s
attraction for another atom’s electrons.
• It is an arbitrary scale that ranges from 0 to 4.
• The units of electronegativity are Paulings.
• Generally, metals are electron givers and have
low electronegativities.
• Nonmetals are are electron takers and have
high electronegativities.
• What about the noble gases?
Electronegativity
• Your help sheet should look like this:
0
Overall Reactivity
• This ties all the previous trends together in
one package.
• However, we must treat metals and
nonmetals separately.
• The most reactive metals are the largest
since they are the best electron givers.
• The most reactive nonmetals are the
smallest ones, the best electron takers.
Overall Reactivity
• Your help sheet will look like this:
0

Periodic Trends

  • 1.
    Periodic Trends Elemental Propertiesand Patterns www.tmcleod.org/Level1/0809ch6per iodictrend.ppt
  • 2.
    The Periodic Law •Dimitri Mendeleev was the first scientist to publish an organized periodic table of the known elements. • He was perpetually in trouble with the Russian government and the Russian Orthodox Church, but he was brilliant never-the-less.
  • 3.
    The Periodic Law •Mendeleev even went out on a limb and predicted the properties of 2 at the time undiscovered elements. • He was very accurate in his predictions, which led the world to accept his ideas about periodicity and a logical periodic table.
  • 4.
    The Periodic Law •Mendeleev understood the ‘Periodic Law’ which states: • When arranged by increasing atomic number, the chemical elements display a regular and repeating pattern of chemical and physical properties.
  • 5.
    The Periodic Law •Atoms with similar properties appear in groups or families (vertical columns) on the periodic table. • They are similar because they all have the same number of valence (outer shell) electrons, which governs their chemical behavior.
  • 6.
    Valence Electrons • Doyou remember how to tell the number of valence electrons for elements in the s- and p-blocks? • How many valence electrons will the atoms in the d-block (transition metals) and the f- block (inner transition metals) have? • Most have 2 valence e-, some only have 1.
  • 7.
    A Different Typeof Grouping • Besides the 4 blocks of the table, there is another way of classifying element: • Metals • Nonmetals • Metalloids or Semi-metals. • The following slide shows where each group is found.
  • 8.
  • 9.
    Metals, Nonmetals, Metalloids •There is a zig-zag or staircase line that divides the table. • Metals are on the left of the line, in blue. • Nonmetals are on the right of the line, in orange.
  • 10.
    Metals, Nonmetals, Metalloids •Elements that border the stair case, shown in purple are the metalloids or semi- metals. • There is one important exception. • Aluminum is more metallic than not.
  • 11.
    Metals, Nonmetals, Metalloids •How can you identify a metal? • What are its properties? • What about the less common nonmetals? • What are their properties? • And what the heck is a metalloid?
  • 12.
    Metals • Metals arelustrous (shiny), malleable, ductile, and are good conductors of heat and electricity. • They are mostly solids at room temp. • What is one exception?
  • 13.
    Nonmetals • Nonmetals arethe opposite. • They are dull, brittle, nonconductors (insulators). • Some are solid, but many are gases, and Bromine is a liquid.
  • 14.
    Metalloids • Metalloids, akasemi-metals are just that. • They have characteristics of both metals and nonmetals. • They are shiny but brittle. • And they are semiconductors. • What is our most important semiconductor?
  • 15.
    Periodic Trends • Thereare several important atomic characteristics that show predictable trends that you should know. • The first and most important is atomic radius. • Radius is the distance from the center of the nucleus to the “edge” of the electron cloud.
  • 16.
    AtomicRadius • Since acloud’s edge is difficult to define, scientists use define covalent radius, or half the distance between the nuclei of 2 bonded atoms.
  • 17.
    Atomic Radius • Thetrend for atomic radius in a vertical column is to go from smaller at the top to larger at the bottom of the family. • Why? • With each step down the family, we add an entirely new PEL to the electron cloud, making the atoms larger with each step.
  • 18.
    Atomic Radius • Thetrend across a horizontal period is less obvious. • What happens to atomic structure as we step from left to right? • Each step adds a proton and an electron (and 1 or 2 neutrons). • Electrons are added to existing PELs or sublevels.
  • 19.
    Atomic Radius • Theeffect is that the more positive nucleus has a greater pull on the electron cloud. • The nucleus is more positive and the electron cloud is more negative. • The increased attraction pulls the cloud in, making atoms smaller as we move from left to right across a period.
  • 20.
    Atomic Radius • Theoverall trend in atomic radius looks like this.
  • 21.
    Atomic Radius • Hereis an animation to explain the trend. • On your help sheet, draw arrows like this:
  • 22.
    Ionization Energy • Thisis the second important periodic trend. • If an electron is given enough energy (in the form of a photon) to overcome the effective nuclear charge holding the electron in the cloud, it can leave the atom completely. • The atom has been “ionized” or charged. • The number of protons and electrons is no longer equal.
  • 23.
    Ionization Energy • Theenergy required to remove an electron from an atom is ionization energy. (measured in kilojoules, kJ) • The larger the atom is, the easier its electrons are to remove. • Ionization energy and atomic radius are inversely proportional. • Ionization energy is always endothermic, that is energy is added to the atom to remove the electron.
  • 24.
  • 25.
    Ionization Energy (Potential) •Draw arrows on your help sheet like this:
  • 26.
    Electron Affinity • Whatdoes the word ‘affinity’ mean? • Electron affinity is the energy change that occurs when an atom gains an electron (also measured in kJ). • Where ionization energy is always endothermic, electron affinity is usually exothermic, but not always.
  • 27.
    Electron Affinity • Electronaffinity is exothermic if there is an empty or partially empty orbital for an electron to occupy. • If there are no empty spaces, a new orbital or PEL must be created, making the process endothermic. • This is true for the alkaline earth metals and the noble gases.
  • 28.
    Electron Affinity • Yourhelp sheet should look like this: + +
  • 29.
    Electronegativity • Electronegativity isa measure of an atom’s attraction for another atom’s electrons. • It is an arbitrary scale that ranges from 0 to 4. • The units of electronegativity are Paulings. • Generally, metals are electron givers and have low electronegativities. • Nonmetals are are electron takers and have high electronegativities. • What about the noble gases?
  • 30.
    Electronegativity • Your helpsheet should look like this: 0
  • 31.
    Overall Reactivity • Thisties all the previous trends together in one package. • However, we must treat metals and nonmetals separately. • The most reactive metals are the largest since they are the best electron givers. • The most reactive nonmetals are the smallest ones, the best electron takers.
  • 32.
    Overall Reactivity • Yourhelp sheet will look like this: 0