This document discusses anti-tubercular drugs used to treat tuberculosis (TB), a chronic infectious disease caused mainly by Mycobacterium tuberculosis bacteria. It describes the first-line drugs isoniazid, rifampin, pyrazinamide, ethambutol, and streptomycin that are routinely used to treat TB. It explains their mechanisms of action, how drug resistance develops, pharmacokinetics, adverse effects, and interactions. The unique cell wall structure of mycobacteria that makes them intrinsically resistant to many drugs is also outlined.
TUBERCULOSIS(TB)
ï¶Chronic granulomatous inflammatory
diseaseand a major health problem in
developing countries.
ï¶Primarily affects lungs, other organs such
as brain, liver, kidney, spleen, bone etc.
ï¶As per WHO reports(2010), approx. 9.4
million active TB cases globally
ï¶India: 2.3 million cases
ï¶Other common names included âwasting
diseaseâ and the âwhite plagueâ.
ï¶Etiology: TB is caused by Mycobacterium
species mainly by Mycobacterium
tuberculosis which is aerobic atypical
slender, rod shaped bacteria.
âą Other strains which causes TB are
ïŒ M. Avium Complex (MAC): M. avium & M.
intracellulare
âą Less common strains which causes TB
are
ïŒ M. africanum
ïŒ M. microti
ïŒ M. pinnipeddi
ïŒ M. cannetti
âą Less pathogenic strains are
ïŒ M. abscessus
ïŒ M. fortuitum
ïŒ M. chelonae
ïŒ M. ulcerans
âą Non pathogenic strains are M. smegmatis
âą M.tuberculi also called as Kochâs bacilli or Acid
Fast bacilli (with lipid-rich cell walls that stain poorly with
the Gram stain, but once stained, the walls cannot be easily
decolorized by treatment with acidified organic solvents).
â Stained by carbofuscine
3.
TYPES AND SOMEFACTS OF TUBERCULOSIS
âą Based on anatomical side:
ïŒPulmunary TB (lungs)
ïŒMilliary (Spleen, kidney, liver, brain etc)
âą Based on presence of signs and
symptom:
ïŒ Active TB (only shows signs and
symptoms).
ïŒ Latent TB (Signs and symptoms
absent, Dormant)
âą Based on type of tissue response
ïŒ Primary TB: First time, Childhood TB
No Immunization or infection
ïŒSecondary TB: Re-infection
sp. which makes resultant disease
Chronic and necessitates prolong
treatment
ïŒ Slow growing
ïŒIntracellular infection
ïŒFormation of slow growing granuloma
results in destruction of host tissue
âą Biology of Mycobacterium: distinct
populations
ïŒRapidly growing with high bacillary
load
ïŒSlow growing
ïŒSpurters
ïŒDormant
4.
UNIQUE CELL WALL
Mycobacterialcell wall
âą Presence of Mycolic acid (90âcâ
atoms arranged in a ring like
structure) in Mycobacterium
species.
âą Mycolic acids
ïŒ Prevents ,resists against
hydrophilic and lipophilic
antibiotics, loss of water,
transport of various
substances
ïŒ Helps in evading from
immune system.
âą High potential to become
Resistant
âą Mycobacteria areintrinsically
resistant to most antibiotics
â Grows more slowly than other
bacteria â antibiotics active
against rapidly growing cells
â lipid-rich mycobacterial cell
wall is impermeable to many
agents
â It grows inside macrophage â
poorly penetrated by drugs
â Excellent ability to develop
resistance â Multiple Drug
Resistant (MDR)
âą Combinations of two or more drugs
â to overcome these obstacles
â to prevent emergence of
resistance during the course
of therapy
âą The response of mycobacterial
infections to chemotherapy is slow
- treatment must be administered
for months to years, depending on
which drugs are used
7.
âą Drugs usedin the treatment of tuberculosis can be
divided into two major categories
- First Line : high antitubercular efficacy as well as
low toxicity â routinely used: - HRZES
Isoniazid (H) , Rifampin (R),
Pyrazinamide (Z), Ethambutol (E),
Streptomycin (S)
â Second Line : low antitubercular efficacy or high
toxicity
âą Paraminosalicylic Acid (PAS), Cycloserine,
ethionamide, prothionamide, Rifabutin,
thiacetazone
âą Flouroquinolones: Ciprofloxacin, Olfloxacin,
levofloxacine, moxifloxacine Kanamycin,
Amikacin, capreomycine
âą Macrolides:Clarithromycin,Azithromycin
âą First Line Drugs
âą Isoniazide
âą Synthetic analogue of pyridoxine
âą Primary tubercilocidal
âą bacteriostatic for resting bacilli, but is
bactericidal for rapidly dividing
microorganisms
âą inhibits synthesis of mycolic acids -
essential components of mycobacterial
cell walls, not active against other
microorganism
âą Highly selective for mycobacterium
âą Resistance
ïŒ Its prodrug â activated by enzyme catalase-
peroxidase
ïŒ Mutation causes inhibition of this enzyme
ïŒ No cross resistance occurs with other
antitubercular drug
ïŒ Always given in combination
8.
MECHANISM OF ACTIONAND RESISTANCE
Resistance
â Mycobacteria may develops resistance towards
H due to change in genes coding for catalase
peroxidase (katG).
â Alteration in KasA and InhA and in structure of
efflux pumps of bacteria.
âą Pharmacokinetics:
â Orally well absorbed
â Well distributed
â Metabolized in Liver by N-acetylation (NAT2)
â Based on acylation
âą Slow acetylators (Half life- 3h)
âą Fast acetylators( Half life-1h)
â Excreted through urine
âą Adverse effects:
â GI disturbances,
â Hepatotoxicity
â Peripheral Neuritis
â Hypersensitivity reactions
âą Interaction: alluminium hydroxide inhibits
absorption, Potent enzyme inhibitor (cyp2c19,
cyp3a4)
Isoniazide
Mycobacterial Catalase peroxidase (katG)
activates
Aducts with
NAD NADP
Mycobacerial
Dihydrofolate
reductase
Type II fatty acid synthase (FAS)
system
Inhibition of Mycolic acid
Inhibition of
DNA synthesis
Bactericidal action
Active
metabolite
beta-ketoacyl
ACP synthase
(kasA)
Enoyl acyl
carrier protein
reductase (inhA)
9.
RIFAMPICIN/ RIFAMPIN (R)
âąDerived from the soil mold Streptomyces
mediterranei
âą Bactericidal to M. tuberculosis and other
gram positive and gram negative bacteria
including M. leprae
âą Both extracellular and intracellular
organisms are affected
âą Against TB bacilli, it is as efficacious as
INH and better than all other drugs
âą Mechanism of action: Rifampin inhibits
DNA dependent RNA synthesis. Probably,
the basis of selective toxicity is that
mammalian RNA polymerase does not
avidly bind rifampin
âą Resistance: nearly always due to
subunit of RNA polymerase-the target of
rifampin action) reducing its affinity for the
drug.
âą No cross resistance with any other
antitubercular drug has been noted.
âą Pharmacokinetics: well absorbed orally,
âą widely distributed in the body: penetrates
cavities, caseous masses, placenta and
meninges.
âą metabolized in liver to an active
deacetylated metabolite which is excreted
mainly in bile, some in urine also.
âą Rifampin and its desacetyl derivative
undergo enterohepatic circulation. The
t1/2 of rifampin is variable (2-5 hours).
10.
âą Interactions: microsomalenzyme
inducer-increases several CYP450
isoenzymes, including CYP3A4, CYP2D6,
CYP1A2 and CYP2C subfamily.
âą It thus enhances its own metabolism as
well as that of many drugs including
warfarin, oral contraceptives,
corticosteroids, sulfonylureas, digitoxin,
steroids, HIV protease inhibitors, non-
nucleoside reverse transcriptase inhibitors
(NNRTis), theophylline, metoprolol,
fluconazole, ketoconazole, etc.
âą Contraceptive failures have occurred
âą Adverse Effects: similar to INH.
âą Hepatitis, a major adverse effect, generally
occurs in patients with preexisting liver
disease and is dose-related
âą 'Respiratory syndrome': breathlessness
âą Purpura, haemolysis, shock and renal
failure.
Minor reactions usually not requiring drug
withdrawal are:
âą 'Cutaneous syndrome': flushing, pruritus +
rash (especially on face and scalp),
redness and watering of eyes
âą 'Flu syndrome': with chills, fever,
headache, malaise and bone pain.
âą 'Abdominal syndrome': nausea, vomiting,
abdominal cramps with or without
diarrhoea.
âą Urine and secretions may become orange-
redbut this is harmless.
11.
PYRIZINAMIDE (Z)
âą Chemicallysimilar to INH
âą It is weakly tuberculocidal but more active in acidic
medium
âą It is more lethal to Slow Growing, intracellularly
located bacilli and to those at sites showing an
inflammatory response (pH is acidic at both these
locations.
âą highly effective during the first 2 months of therapy
âą PHARMACOKINETICS:
â Rapidly absorbed from GI tract
â It is widely distributed in the body and achieves a
concentration in the CSF equal to the plasma
levels.
â Deaminated in the liver.
â Degradation products and he free drug are
eliminated in urine
âą ADVERSE EFFECTS:
â Hyperuricemia (precipitating gout)
â Hepatotoxicity
â Arthralgia, nausea,vomiting, anorexia, malaise,
â Rarely photosensitivity reaction
â Loss of diabetes control
âą Used in both Extrapulmonary and pulmonary
TB
âą Resistance: mutation of pncA geneMECHANISM OF ACTION
PYRAZINAMIDE
PYRAZINOIC ACID
mycolic acid synthesis Disrupts
cell
membrane
integrity
Tuberculocidal effect
Pyrizinamidase (pncA
gene)
12.
ETHAMBUTOL
âą Ethambutol isselectively tuberculostatic
âą Active against MAC as well as other mycobacteria but
not other types of bacteria
âą Fast multiplying bacilli are more susceptible
âą Added to three drug regimen RHZ, primarily to prevent
resistance development
âą Mechanism of Action: inhibits embAB gene encoded
Arabinoacyl transferase
Resistance: mutation of embAB gene
âą PHARMACOKINETICS:
â 70% is absorbed
â Penetrates into erythrocytes, gets deposited,
and released into circulation
â 50% of oral dose excreted unchanged in
urine with in 24h
â 15% excreted in the form of two metabolites
â Accumulates in presence of renal damage
âą ADVERSE EFFECTS:
â Retrobulbular optic neuritis on prolonged
therapy which results in decrease visual
acuity.
â Others are
Nausea,headache,anorexia,allergic
reactions,and confusion
â Hyperuricimia and Gout (Urate excretion
decreased)
âą If any visual disturbances are seen in the
patient,Ethambutol should be removed from
patientâs regimen
âą Safe in pregnancy
Ethambutol
Inhibits Arabinosyl transferase
Inhibits Synthesis of ARABINO
GLYCANS
Inhibits cell wall synthesis
13.
STREPTOMYCIN
âą First anti-tuberculardrug
âą Tuberocidal but less effective than isoniazide or rifampicine
âą Acts only on extracellular bacilli
Pharmacokinetics:
â Not absorbed orally and must be given in IM.
Well absorbed when instilled in intrapleurally
â It doesnât cross BBB. However, high
concentrations are seen in CSF during
meningeal inflammation.
â It is mainly concentrated in kidneys, liver,
and skeletal tissues.
â It crosses Placental barrier,
â Excreted unchanged by GFR. And
approximately 50-60% of drug is eliminated in
urine in active form within 24h.
âą ADVERSE EFFECTS:
â Pain at the site of injection
â 8th cranial nerve damage
â Neuromuscular blockade
â Nephrotoxicity and ototoxicity
â Super infections with Staphylococcus
aureus and candida
Contraindication: Elderly and in those with
impaired renal functions
MECHANISM OF ACTION
STREPTOMYCIN
Binds to 30S subuint of
ribosomes
Which results in production
Abnormal proteins
Accumulates in
mycobacterium
Destruction of
mycobacterium
14.
SECOND LINE DRUGS
âąThese are less effective and/or less well tolerated
âą Used only in case the bacilli are resistant to one or more
first line drugs or when they are not well tolerated and/or
contraindicated
1. Kanamycin and Amikacin:
âą Tuberculocidal aminoglycosides
âą Pharmacological profile similar to Streptomycin
âą Part of Regimen for S-resistant or MDR-TB
âą AM is less toxic
âą Cross resistance common
âą Equally nephrotoxic
2. Capreomycin:
âą Cyclic peptide antibiotic
âą Chemically different from aminoglycode but similar anti-
tb effect and ototoxicity and nephrotoxicity
âą Used against Aminoglycosides resistant and MDR âTB
strains
3. Flouroquinolones: useful new addition to the
antitubercular drugs
âą Ofloxacin(Ofx), levofloxacin (Lfx),ciprofloxacin (Cfx)and
moxifloxacin (Mfx)
âą Alternative to first line drugs
âą Active against MAC, M. fortuitum, other atypical
mycobacteria
âą Anti- mycobacterial tuberculosis Activity Mfx> Lfx> Ofx &
Cfx
âą Anti atypical mycobacteria activity Cfx> Lfx
âą FQs penetrate macrophages too
âą Cfx not used now because of its extensive use against
other bacteria too
âą Primary indication is for treatment of MDR-TB
âą Resistance against Mfx is slow to develop
15.
SECOND LINE DRUGS
3.Ethionamide: chemically resembles Isoniazid
âą MECHANISM OF ACTION: Blocks the synthesis of
mycolic acids and it is a tuberculostatic drug.
âą PHARMACOKINETICS: ABSORPTION is similar to H,
Metabolized in liver and only 1% excreted
unchanged in urine
âą Because of its Intense gastric irritation and neurological
toxicity(optic and peripheral neuritis) and
hepatotoxicity, it is rarely used,
âą Used only for Drug Resistant TB, MDR-TB regimen. MAC
infection in AIDS
âą Also reserved drug for Leprosy.
4. Prothionamide: congener of Ethionamide and
resembles pharmacologically in all aspects to
ethionamide Interchangiable to Ethionamide in use
5. Cycloserine: MECHANISM OF ACTION :It is D-alanine
analogue and hence inhibits bacterial cell wall synthesis
by inactivating the enzyme which racimize the L-alanine
and link two D-alanine residues.
tuberculostatic
âą PHARMACOKINETICS: Rapidly absorbed from
gut,distributed through out the body (csf and plasma
concentrations are equal in meningitis condition).50%
of orally administered dose gets excreted in urine in
unchanged form and 65% is excreted by kidneys within
72h.
âą Broad spectrum antibiotic and it is tuberculostatic.
âą It is effective against tubercle bacilli resistant to H or S
and against atypical mycobacterium.
âą ADVERSE EFFECTS:
â Peripheral neuropathy,
â Delusions, Nervousness etc.
â Contanindicated in patients with seizures
Uses: MDR-TB
NO cross resistance with any anti-TB drugs.
6. Terizidone: contains two molecules of Cycloserine
âą properties MOA similar to cycloserine
âą less Neurotoxic
âą interchangeable in use
16.
7. Para aminosalicylic acid (PAS)
âą Sulphonamide derivative
âą Inhibits Folate synthase
âą Selective Mycobacterial Folate synthase inhibitor
âą Tuberculostatic
âą Resistance poor to develop
âą Adverse effects: Epigastric Pain, anorexia, nausea, rashes,
goiter, liver dysfuction etc. poor patient tolerability
âą Uses: only in resistant TB, MDR-TB
8. Thiacetazone: not used nowadays due to questionable
efficacy
9. Rifabutin:
âą chemically and pharmacologically similar to Rifampicine
âą Less active against M. Tuberculosis
âą R-resistant strains exhibit cross resistance
âą Rifabutin is weak enzyme inducer
âą Specially used in HIV âTB Infection who receive
protease inhibitors and NNRTI
âą Prophylaxis and treatment of MAC-TB
MULTI DRUG RESISTANTOR
HIGHLY RESISTANT
CONTINUOUS PHASE
(12-18months)
E
OFLOXACIN/LEVOFLOXA
CIN
CYCLOSERINE
ETHIONAMIDE+
PYRIDOXINE
âą INTENSIVE PHASE
âą (6months)
Z
âąE
AMIKACIN/KANAMYCIN
âą OFLOXACIN/
âą LEVOFLOXACIN
âą CYCLOSERINE
ETHIONAMIDE+
âą PYRIDOXINE For H resistance: R+Z+E for 12Months
For R resistance: H+Z+E for 12Months
For both H+R resistance: Z+E+S(Et)+CIROFLOXACIN(OR OFLOXAC
OR LEVOFLOXACIN),for 12-18 Months