This document summarizes a paper on learning to remember rare events using a memory-augmented neural network. The paper proposes a memory module that stores examples from previous tasks to help learn new rare tasks from only a single example. The memory module is trained end-to-end with the neural network on two tasks: one-shot learning on Omniglot characters and machine translation of rare words. The implementation uses a TensorFlow memory module that stores key-value pairs to retrieve examples similar to a query. Experiments show the memory module improves one-shot learning performance and handles rare words better than baselines.