Better lives through livestock
Preventing the next pandemic:
Zoonotic diseases and how to break
the chain of transmission
Kristina Roesel on behalf of
Animal and Human Health program
International Livestock Research Institute, Kenya
International Student Week in Ilmenau (ISWI)
31 May 2021
2
Outline
1. Who is ILRI?
2. Crash course infectious disease terminology
3. What are drivers of pandemics?
4. Recommendations to break the chain of transmission
5. ILRI‘s One Health approach
3
Who is ILRI?
CGIAR global partnership for a food
secure future
Poverty alleviation through agricultural
research
15 research centres
More than 8,000 scientists, researchers,
technicians and support staff
https://www.cgiar.org
4
Who is ILRI?
Livestock contributes >40% to the global
GDP
At least 1.3 bn people depend on
livestock for their livelihoods
Our impact pathways:
(1) securing the assets of the poor,
(2) improving smallholder and pastoral
productivity, and
(3) increasing market participation by
the poor.
https://www.ilri.org
(c) ILRI/Phil Thornton, adapted by Delia Grace
5
Opportunities and challenges
in the livestock sector
Human health Economies Environment
Opportunities Population growth: food and
nutrition security
Regional and global demand for
livestock products
Manure, fertilizer,
regenerative energies
Challenges overconsumption, food safety,
(emerging) zoonoses
Equity, urbanization, trans-
boundary diseases
Land/water degradation,
human-wildlife conflict,
pollution, GHG emissions
Source: ILRI Flickr
6
Source: ILRI Flickr
Red Maasai sheep x Dorper for improved helminth resistance
(vegetation) Index-Based Livestock Insurance for resilient pastoralism in drought-prone systems:
https://journals.sagepub.com/doi/10.1177/0030727019866840
https://www.spiegel.de/ausland/corona-wie-tierforscher-das-virus-
bekaempfen-a-41a0e564-c0b6-491e-a71f-16dbdc7ce08d
7
co-hosted by both the
governments of Ethiopia
and Kenya, with offices in
12 other countries.
approximately 600
permanent staff
ILRI offices and
staff worldwide
Location of program partners
Location of projects
8
Crash course infectious disease terminology
• Communicable vs.
Non-communicable diseases
• Zoonoses: communicable diseases
transmitted between vertebrate
animals („respect nature“)
• The spillover event and the
pace of transmission:
mutation (“I change”)
and virulence factors
• Endemic, epidemic, pandemic
Source: London School of Hygiene and Tropical Medicine
9
When zoonoses become an epidemic.... and a pandemic
Source: Reprinted from The Lancet, Vol.380, Karesh et al., Ecology of zoonoses: natural and unnatural histories, Page 1942, Copyright (2012).
10
Drivers of
zoonotic disease transmission
July 2020
Preventing the Next Pandemic:
Zoonotic diseases and how to break the chain of transmission.
https://hdl.handle.net/10568/108707
Lead Author: Delia Grace Randolph (NRI & ILRI)
Co-Authors: Johannes Refisch (UNEP), Susan MacMillan (ILRI), Caradee Yael Wright (South
African Medical Research Council), Bernard Bett (ILRI), Doreen Robinson (UNEP),
Bianca Wernecke (South African Medical Research Council), Hu Suk Lee (ILRI), William B. Karesh
(EcoHealth Alliance), Catherine Machalaba (EcoHealth Alliance), Amy Fraenkel (Secretariat of
the Convention on the Conservation of Migratory Species of Wild Animal), Marco Barbieri
(Secretariat of the Convention on the Conservation of Migratory Species of
Wild Animals) and Maarten Kappelle (UNEP).
11
Driver 1: increasing demand for animal protein
Asia: 4.4 bn (60%)
Africa: 1.2 bn (16%)
Europe: 738 Mio (10%)
North America:
358 Mio (4.9%)
Ozeania:
39 Mio (0.1%)
1900: 1.6 bn
South America and
the Caribbean: 634 Mio (9%)
12
Driver 1: increasing demand for animal protein
http://www.ifpri.org/
13
Driver 2: Unsustainable agricultural intensification
• Genetically
homogenous host
populations
• Crowding
Source: Bloomberg/Getty Images Source: Afrik21
Source: Afrik21
14
Coronaviruses have been around for a while!
post
WWII
Pig
intensif
Wildlife
and
camel
intensif
1920 1930 1940 1950-1970 1980-1990 2000 2010 2020
post
WWI
Poultry
intensif
Source: ILRI/UNEP report 2020
15
Driver 3: Increased use and exploitation of wildlife
Change in weight of vertebrate land animals from 10,000 years ago to today.
(Source: Optimum Population Trust, Smil 2011 via
https://www.savetheearth.info/infographics.html)
• Harvesting meat (low input)
• Recreational: hunting, status
• Trade in live animals: pets, zoos, research/medical
testing
• decorative, medicinal and other commercial products
16
Driver 4: Unsustainable use of natural resources
Annual loss
of 10 mio
ha per year
Disturbance of habitats of ticks, mosquitoes, bats,
monkeys, other wildlife
19th century: 1 bn
21st century: 8 bn
Disturbed
habitats
favor
opportunistic
/generalist
species
Dilution
effect: more
natural virus
transmission
events within
fewer host
species
More
frequent
contact
Opportunistic/generalist species need
to find new habitats for food and
shelter
More animals, less genetically
diverse, crowded
Source: ILRI/UNEP report 2020
17
Co-evolution effect Dilution effect
Zohdy et al., 2019. https://doi.org/10.1016/j.pt.2019.03.010
Generalists: blue jay, western scrub jay, common grackle, house finch,
American crow, house sparrow and American robin
Osfeld RS. Biodiversity loss and the rise of zoonotic pathogens.
Clin Microbiol Infect 2009; 15 (Suppl. 1): 40–43
18
Driver 5: Travel and transportation
James Horner; Source: YouTube https://youtu.be/yx7_yzypm5w (UMG (on behalf of Varese Sarabande); ASCAP, Sony ATV Publishing, Polaris Hub AB, and 11 Music Rights Societies)
19
© ILRI/Stevie Mann
© ILRI/Ben Lukuyu
© ILRI/Apollo Habtamu
© ILRI/Brad Collins
© ILRI/Stevie Mann © SUA/Fortunate Shija
© ILRI/Dave Elsworth
Driver 6: Changes in food supply systems
20
Driver 7: Climate change
Ixodes ricinus (c) ECDC
Liu-Helmersson et al. 2019. Estimating Past, Present, and
Future Trends in the Global Distribution and Abundance of
the Arbovirus Vector Aedes aegypti Under Climate Change
Scenarios. Front. Public Health 7:148.
doi: 10.3389/fpubh.2019.00148
21
Drivers of disease emergence
1. Increasing demand for animal protein
2. Unsustainable agricultural intensification
3. Increased use and exploitation of wildlife
4. Unsustainable use of natural resources accelerated by
urbanization, land use change and extractive industries
5. Travel and transportation
6. Changes in food supply systems
7. Climate change Predominantly anthropogenic
(= made by humans)
22
Recommendation
Adopt a One Health approach
• Inter- and transdisciplinary
• Multi-sectoral
• Evidence-based
• Collaborative local, regional, global
• Towards a common goal
https://www.youtube.com/watch?v=kfluP-tFC2k
language
culture
Political
system
willingne
ss
KAP
language
equity
Economi
c system
Time
23
Prepare
Detect
Respond
United Nations Environment Programme and International Livestock Research Institute (2020).
Preventing the Next Pandemic: Zoonotic diseases and how to break the chain of transmission. Nairobi, Kenya.
https://hdl.handle.net/10568/108707.
24
1. COVID-19
2. Crimean-Congo haemorrhagic fever
3. Ebola virus disease and Marburg
virus disease
4. Lassa fever
5. Middle East respiratory syndrome
coronavirus (MERS-CoV) and Severe
Acute Respiratory Syndrome (SARS)
6. Nipah and henipaviral diseases
7. Rift Valley fever
8. Zika virus
9. „Disease X“
Food for thought
COVID-19 was a warning sign by
mother nature
Top 9 infectious diseases with a
potential for a pandemic
Antimicrobial resistance, a silent
pandemic
25
ILRI One Health Research Education and Outreach Center
Gender and socio-economics: incentives, value chains, impacts, livelihoods, etc.
Management unit
Graduate Fellowships: fellowship program; Science communication
Field practitioners: community-based surveillance; value chain actors; lab technicians
Policy makers and mitigation agents: simulation exercises (link to international health
regulations; action plans, contingency plans, disease control policies
EMERGING
INFECTIOUS
DISEASES
NEGLECTED
ZOONOTIC
DISEASES
FOOD SAFETY
& INFORMAL
MARKETS
ANTI
MICROBIAL
RESISTANCE
Thematic areas
Applied research
Biomedical science: epidemiology, surveillance and diagnostics, disease control, etc.
Environment: climate and other environment drivers, animal waste management, etc.
Capacity building
Integration of
thematic areas:
Work in
common
systems,
integrated
surveillance
systems,
common tools,
environment,
strengthening of
One Health
units, etc.
https://www.ilri.org/research/facilities/one-health-centre https://www.ilri.org/one-health
ONE-HEALTH INVESTMENT REPORT
REPORT TO BE PUBLISHED BY JULY 2021
SEVEN ‘why it matters’ fact
sheets
Seven messages + 22 Action Areas
‘what works, what delivers’ case
studies
One-Health
investment
report
Blogs Op-Eds
Podcasts Animation
Infographics
Stories
Presentations
Evidence briefs
https://whylivestockmatter.org/livestock-pathways-2030-one-health
27
 Biosciences
• Animal Research Facilities:
o Biological Safety Level 2 plus animal containment facility
• High end molecular laboratory facilities, BSL2 & BLS 3 labs
for CGIAR researchers and NARS
o Azizi liquid nitrogen biorepository
 Mazingira environmental research centre
• Greenhouse gas emission & climate change studies in
crops, livestock and land-use changes in Africa
 One Health Centre in Africa
• Improving the health of humans, animals and ecosystems
o Capacity building
o Strengthening local, regional and global networks
o Evidence-based policy advice
 CGIAR Antimicrobial Resistance Hub
• Evidence linking antimicrobial resistance in agriculture and
public health outcomes
• Development of locally relevant and applicable evidence-
based interventions
• 66 hectares (167 acres or 660,000 m2)
• 116 buildings
• 7,342 m2 office space
ILRI Nairobi facilities
28
ILRI’s Kapiti Research Station and
Wildlife Conservancy in Kenya
 Run as a livestock research station, commercial
livestock ranch and wildlife conservancy
 13,000 hectares (32,000 acres)
 85 km east of Nairobi in Machakos County
 Semi-arid lands
 3288 cattle, 1474 sheep, 607 goats, 34 camels
 Thousands of wildlife species including various
species of carnivores and herbivores as well as
birds and reptiles
 Conservancy plans with Kenya Wildlife Service
29
ILRI sequencing and bioinformatics capacity
 Sanger capillary sequencing
 Illumina - two MiSeq and one NextSeq 550
 Oxford Nanopore Technology - MinION
 High-performance servers
• Computer nodes: 11
• Number of CPU cores: 220
• Total RAM: 2.6 TB
• Storage capacity: 317 TB
 Whole genome sequencing; amplicon sequencing; meta-genomics;
RNAseq; single cell; de novo assembly; ref mapping; annotation
pipelines;
THANK YOU

Preventing the next pandemic: Zoonotic diseases and how to break the chain of transmission

  • 1.
    Better lives throughlivestock Preventing the next pandemic: Zoonotic diseases and how to break the chain of transmission Kristina Roesel on behalf of Animal and Human Health program International Livestock Research Institute, Kenya International Student Week in Ilmenau (ISWI) 31 May 2021
  • 2.
    2 Outline 1. Who isILRI? 2. Crash course infectious disease terminology 3. What are drivers of pandemics? 4. Recommendations to break the chain of transmission 5. ILRI‘s One Health approach
  • 3.
    3 Who is ILRI? CGIARglobal partnership for a food secure future Poverty alleviation through agricultural research 15 research centres More than 8,000 scientists, researchers, technicians and support staff https://www.cgiar.org
  • 4.
    4 Who is ILRI? Livestockcontributes >40% to the global GDP At least 1.3 bn people depend on livestock for their livelihoods Our impact pathways: (1) securing the assets of the poor, (2) improving smallholder and pastoral productivity, and (3) increasing market participation by the poor. https://www.ilri.org (c) ILRI/Phil Thornton, adapted by Delia Grace
  • 5.
    5 Opportunities and challenges inthe livestock sector Human health Economies Environment Opportunities Population growth: food and nutrition security Regional and global demand for livestock products Manure, fertilizer, regenerative energies Challenges overconsumption, food safety, (emerging) zoonoses Equity, urbanization, trans- boundary diseases Land/water degradation, human-wildlife conflict, pollution, GHG emissions Source: ILRI Flickr
  • 6.
    6 Source: ILRI Flickr RedMaasai sheep x Dorper for improved helminth resistance (vegetation) Index-Based Livestock Insurance for resilient pastoralism in drought-prone systems: https://journals.sagepub.com/doi/10.1177/0030727019866840 https://www.spiegel.de/ausland/corona-wie-tierforscher-das-virus- bekaempfen-a-41a0e564-c0b6-491e-a71f-16dbdc7ce08d
  • 7.
    7 co-hosted by boththe governments of Ethiopia and Kenya, with offices in 12 other countries. approximately 600 permanent staff ILRI offices and staff worldwide Location of program partners Location of projects
  • 8.
    8 Crash course infectiousdisease terminology • Communicable vs. Non-communicable diseases • Zoonoses: communicable diseases transmitted between vertebrate animals („respect nature“) • The spillover event and the pace of transmission: mutation (“I change”) and virulence factors • Endemic, epidemic, pandemic Source: London School of Hygiene and Tropical Medicine
  • 9.
    9 When zoonoses becomean epidemic.... and a pandemic Source: Reprinted from The Lancet, Vol.380, Karesh et al., Ecology of zoonoses: natural and unnatural histories, Page 1942, Copyright (2012).
  • 10.
    10 Drivers of zoonotic diseasetransmission July 2020 Preventing the Next Pandemic: Zoonotic diseases and how to break the chain of transmission. https://hdl.handle.net/10568/108707 Lead Author: Delia Grace Randolph (NRI & ILRI) Co-Authors: Johannes Refisch (UNEP), Susan MacMillan (ILRI), Caradee Yael Wright (South African Medical Research Council), Bernard Bett (ILRI), Doreen Robinson (UNEP), Bianca Wernecke (South African Medical Research Council), Hu Suk Lee (ILRI), William B. Karesh (EcoHealth Alliance), Catherine Machalaba (EcoHealth Alliance), Amy Fraenkel (Secretariat of the Convention on the Conservation of Migratory Species of Wild Animal), Marco Barbieri (Secretariat of the Convention on the Conservation of Migratory Species of Wild Animals) and Maarten Kappelle (UNEP).
  • 11.
    11 Driver 1: increasingdemand for animal protein Asia: 4.4 bn (60%) Africa: 1.2 bn (16%) Europe: 738 Mio (10%) North America: 358 Mio (4.9%) Ozeania: 39 Mio (0.1%) 1900: 1.6 bn South America and the Caribbean: 634 Mio (9%)
  • 12.
    12 Driver 1: increasingdemand for animal protein http://www.ifpri.org/
  • 13.
    13 Driver 2: Unsustainableagricultural intensification • Genetically homogenous host populations • Crowding Source: Bloomberg/Getty Images Source: Afrik21 Source: Afrik21
  • 14.
    14 Coronaviruses have beenaround for a while! post WWII Pig intensif Wildlife and camel intensif 1920 1930 1940 1950-1970 1980-1990 2000 2010 2020 post WWI Poultry intensif Source: ILRI/UNEP report 2020
  • 15.
    15 Driver 3: Increaseduse and exploitation of wildlife Change in weight of vertebrate land animals from 10,000 years ago to today. (Source: Optimum Population Trust, Smil 2011 via https://www.savetheearth.info/infographics.html) • Harvesting meat (low input) • Recreational: hunting, status • Trade in live animals: pets, zoos, research/medical testing • decorative, medicinal and other commercial products
  • 16.
    16 Driver 4: Unsustainableuse of natural resources Annual loss of 10 mio ha per year Disturbance of habitats of ticks, mosquitoes, bats, monkeys, other wildlife 19th century: 1 bn 21st century: 8 bn Disturbed habitats favor opportunistic /generalist species Dilution effect: more natural virus transmission events within fewer host species More frequent contact Opportunistic/generalist species need to find new habitats for food and shelter More animals, less genetically diverse, crowded Source: ILRI/UNEP report 2020
  • 17.
    17 Co-evolution effect Dilutioneffect Zohdy et al., 2019. https://doi.org/10.1016/j.pt.2019.03.010 Generalists: blue jay, western scrub jay, common grackle, house finch, American crow, house sparrow and American robin Osfeld RS. Biodiversity loss and the rise of zoonotic pathogens. Clin Microbiol Infect 2009; 15 (Suppl. 1): 40–43
  • 18.
    18 Driver 5: Traveland transportation James Horner; Source: YouTube https://youtu.be/yx7_yzypm5w (UMG (on behalf of Varese Sarabande); ASCAP, Sony ATV Publishing, Polaris Hub AB, and 11 Music Rights Societies)
  • 19.
    19 © ILRI/Stevie Mann ©ILRI/Ben Lukuyu © ILRI/Apollo Habtamu © ILRI/Brad Collins © ILRI/Stevie Mann © SUA/Fortunate Shija © ILRI/Dave Elsworth Driver 6: Changes in food supply systems
  • 20.
    20 Driver 7: Climatechange Ixodes ricinus (c) ECDC Liu-Helmersson et al. 2019. Estimating Past, Present, and Future Trends in the Global Distribution and Abundance of the Arbovirus Vector Aedes aegypti Under Climate Change Scenarios. Front. Public Health 7:148. doi: 10.3389/fpubh.2019.00148
  • 21.
    21 Drivers of diseaseemergence 1. Increasing demand for animal protein 2. Unsustainable agricultural intensification 3. Increased use and exploitation of wildlife 4. Unsustainable use of natural resources accelerated by urbanization, land use change and extractive industries 5. Travel and transportation 6. Changes in food supply systems 7. Climate change Predominantly anthropogenic (= made by humans)
  • 22.
    22 Recommendation Adopt a OneHealth approach • Inter- and transdisciplinary • Multi-sectoral • Evidence-based • Collaborative local, regional, global • Towards a common goal https://www.youtube.com/watch?v=kfluP-tFC2k language culture Political system willingne ss KAP language equity Economi c system Time
  • 23.
    23 Prepare Detect Respond United Nations EnvironmentProgramme and International Livestock Research Institute (2020). Preventing the Next Pandemic: Zoonotic diseases and how to break the chain of transmission. Nairobi, Kenya. https://hdl.handle.net/10568/108707.
  • 24.
    24 1. COVID-19 2. Crimean-Congohaemorrhagic fever 3. Ebola virus disease and Marburg virus disease 4. Lassa fever 5. Middle East respiratory syndrome coronavirus (MERS-CoV) and Severe Acute Respiratory Syndrome (SARS) 6. Nipah and henipaviral diseases 7. Rift Valley fever 8. Zika virus 9. „Disease X“ Food for thought COVID-19 was a warning sign by mother nature Top 9 infectious diseases with a potential for a pandemic Antimicrobial resistance, a silent pandemic
  • 25.
    25 ILRI One HealthResearch Education and Outreach Center Gender and socio-economics: incentives, value chains, impacts, livelihoods, etc. Management unit Graduate Fellowships: fellowship program; Science communication Field practitioners: community-based surveillance; value chain actors; lab technicians Policy makers and mitigation agents: simulation exercises (link to international health regulations; action plans, contingency plans, disease control policies EMERGING INFECTIOUS DISEASES NEGLECTED ZOONOTIC DISEASES FOOD SAFETY & INFORMAL MARKETS ANTI MICROBIAL RESISTANCE Thematic areas Applied research Biomedical science: epidemiology, surveillance and diagnostics, disease control, etc. Environment: climate and other environment drivers, animal waste management, etc. Capacity building Integration of thematic areas: Work in common systems, integrated surveillance systems, common tools, environment, strengthening of One Health units, etc. https://www.ilri.org/research/facilities/one-health-centre https://www.ilri.org/one-health
  • 26.
    ONE-HEALTH INVESTMENT REPORT REPORTTO BE PUBLISHED BY JULY 2021 SEVEN ‘why it matters’ fact sheets Seven messages + 22 Action Areas ‘what works, what delivers’ case studies One-Health investment report Blogs Op-Eds Podcasts Animation Infographics Stories Presentations Evidence briefs https://whylivestockmatter.org/livestock-pathways-2030-one-health
  • 27.
    27  Biosciences • AnimalResearch Facilities: o Biological Safety Level 2 plus animal containment facility • High end molecular laboratory facilities, BSL2 & BLS 3 labs for CGIAR researchers and NARS o Azizi liquid nitrogen biorepository  Mazingira environmental research centre • Greenhouse gas emission & climate change studies in crops, livestock and land-use changes in Africa  One Health Centre in Africa • Improving the health of humans, animals and ecosystems o Capacity building o Strengthening local, regional and global networks o Evidence-based policy advice  CGIAR Antimicrobial Resistance Hub • Evidence linking antimicrobial resistance in agriculture and public health outcomes • Development of locally relevant and applicable evidence- based interventions • 66 hectares (167 acres or 660,000 m2) • 116 buildings • 7,342 m2 office space ILRI Nairobi facilities
  • 28.
    28 ILRI’s Kapiti ResearchStation and Wildlife Conservancy in Kenya  Run as a livestock research station, commercial livestock ranch and wildlife conservancy  13,000 hectares (32,000 acres)  85 km east of Nairobi in Machakos County  Semi-arid lands  3288 cattle, 1474 sheep, 607 goats, 34 camels  Thousands of wildlife species including various species of carnivores and herbivores as well as birds and reptiles  Conservancy plans with Kenya Wildlife Service
  • 29.
    29 ILRI sequencing andbioinformatics capacity  Sanger capillary sequencing  Illumina - two MiSeq and one NextSeq 550  Oxford Nanopore Technology - MinION  High-performance servers • Computer nodes: 11 • Number of CPU cores: 220 • Total RAM: 2.6 TB • Storage capacity: 317 TB  Whole genome sequencing; amplicon sequencing; meta-genomics; RNAseq; single cell; de novo assembly; ref mapping; annotation pipelines;
  • 30.

Editor's Notes

  • #9 Communicable diseases used to be important in HIC but the burden reduced due to better sanitation, medical care including antimicrobials Non-communicable diseases dominated in HICs countries and medical doctors neglected infectious diseases (these persisted in LMICs) Zoonoses often explained to be as diseases transmitted between animals and people but it is only a partial truth – people are also vertebrate animals, and people can be reservoirs for diseases that are causing disease in other vertebrate animals (reverse zoonoses or zoo-anthropozoonoses) The spillover event and the pace of transmission: mutation and virulence factors are part of natural evolution, has been there forever. But selection pressure was more localized and at a much slower pace (fewer interfaces, slow pace) – video global air traffic
  • #12 Rapid population growth (up to 11 bn until 2100) Currently: China (1.4 bn) and India (1.3 bn) More than half of population growth expected in Africa (doubling between 2010-2030) More people + increased income Little change of meat consumption in HICs over past 50 decades Rapid increase in SE Asia since 1960s (doubled daily protein intake from ASF) Sub-Saharan Africa followed the pattern but less marked. strong growth in meat production (+260 %), milk (+90 %), and eggs (+340 %) over the last 50 years. This trend is predicted to continue in Compared: trend for pulses is of sustained consumption levels.
  • #14 Increasing demand for animal-source foods  intensification and industrialization of animal production. large numbers of genetically similar animals in close proximity  genetically homogenous host populations are more vulnerable to infection than genetically diverse populations, because the latter are more likely to include some individuals that better resist disease. Crowding  “traffic accidents”, masking hygiene practices In poorer countries, there are additional risk factors in that livestock production often occurs close to cities, while biosecurity and basic husbandry practices are often inadequate, animal waste is often poorly managed Since 1940, agricultural intensification measures such as dams, irrigation projects and factory farms have been associated with more than 25 per cent of all—and more than 50 per cent of zoonotic—infectious diseases that have emerged in humans. Moreover, around one third of croplands are used for animal feed. In some countries, this is driving deforestation.
  • #15 Better diagnostics but also more clinical cases that warranted diagnostics RNA viruses
  • #16 >> increased close contact >> increased income >> infrastructural development
  • #17 In communities of higher biodiversity, disease-transmitting vectors feed on a larger variety of hosts that are poor reservors for a pathogen (e.g. West Nile virus, Lyme disease) -- Ostfeld  counties in the USA with high avian diversity should have a low human incidence of WNV disease, whereas those with low avian diversity should have a high WNV incidence
  • #18 Spillover is normal but due to ecosystem fragmentation it happens concurrently, several spillover events at a given time locally, regionally or globally Dilution effect WNV: mosquitoes in areas of low avian diversity have a high probability of encountering a competent reservoir for WNV, and therefore a high probability of acquiring infection during blood meals. In contrast, mosquitoes occurring in areas of high avian diversity should have a higher probability of taking a blood meal from one of the many species that are less competent or incompetent as reservoirs for WNV. (other diseases: Lyme disease and JE) In nature, West Nile virus cycles between mosquitoes (especially Culex species) and birds. Some infected birds, can develop high levels of the virus in their bloodstream and mosquitoes can become infected by biting these infected birds. After about a week, infected mosquitoes can pass the virus to more birds when they bite. Mosquitoes with West Nile virus also bite and infect people, horses and other mammals. However, humans, horses and other mammals are ‘dead end’ hosts. This means that they do not develop high levels of virus in their bloodstream and cannot pass the virus on to other biting mosquitoes.
  • #19 Diseases can now move around the world in periods shorter than their incubation periods (the time between exposure to a pathogen and the first clinical sign of illness).
  • #20 1. increased opportunities for cross contamination. 2. more difficult to identify where a given food comes from. Traceability challenges make it harder for officials to follow up 3. Changes in processing can encourage the proliferation of zoonotic diseases (e.g., biofilms—microbial ecosystems—in food processing plants). 4. Rapidly expanding and poorly managed informal wildlife and fresh produce markets (including so called “wet” markets) bring products along poorly regulated supply chains to supply rapidly growing cities. convenience, lower costs, sales of traditional foods, livelihoods (especially women) their levels of hygiene are often low, and biosecurity is poor, increasing the risks of disease. 5. Industrial meat processing plants can also be sites of disease transmission. For example, there have been many outbreaks of COVID-19 from the massive, crowded, artificially chilled industrial meat plants in Europe and America, but much fewer from smaller, naturally ventilated meat plants in many LMICs. Thus, it cannot always be assumed that the modernization of food value chains will reduce risk. Moreover, especially in LMICs, people are consuming more animal-source foods than in the past, which results in potential exposure to pathogens, including zoonotic pathogens.
  • #21 Many zoonoses are climate sensitive and a number of them will thrive in a warmer, wetter, more disaster-prone world foreseen in future scenarios. Some pathogens, vectors and host animals probably fare more poorly under changing environmental conditions, disappearing in places and resulting in the loss of their population-moderating effects or the establishment of other species in the new ecological niches created by their departure.
  • #25 COVID-19 Crimean-Congo haemorrhagic fever Ebola virus disease and Marburg virus disease Lassa fever Middle East respiratory syndrome coronavirus (MERS-CoV) and Severe Acute Respiratory Syndrome (SARS) Nipah and henipaviral diseases Rift Valley fever Zika virus „Disease X“