SlideShare a Scribd company logo
2
Most read
3
Most read
4
Most read
Python Numpy/Pandas Libraries
Machine Learning
Portland Data Science Group
Created by Andrew Ferlitsch
Community Outreach Officer
July, 2017
Libraries - Numpy
• A popular math library in Python for Machine Learning
is ‘numpy’.
import numpy as np
Keyword to import a library Keyword to refer to library by an alias (shortcut) name
Numpy.org : NumPy is the fundamental package for scientific computing with Python.
• a powerful N-dimensional array object
• sophisticated (broadcasting) functions
• tools for integrating C/C++ and Fortran code
• useful linear algebra, Fourier transform, and random number capabilities
Libraries - Numpy
The most import data structure for scientific computing in Python
is the NumPy array. NumPy arrays are used to store lists of numerical
data and to represent vectors, matrices, and even tensors.
NumPy arrays are designed to handle large data sets efficiently and
with a minimum of fuss. The NumPy library has a large set of routines
for creating, manipulating, and transforming NumPy arrays.
Core Python has an array data structure, but it’s not nearly as versatile,
efficient, or useful as the NumPy array.
http://www.physics.nyu.edu/pine/pymanual/html/chap3/chap3_arrays.html
Numpy – Multidimensional Arrays
• Numpy’s main object is a multi-dimensional array.
• Creating a Numpy Array as a Vector:
data = np.array( [ 1, 2, 3 ] )
Numpy function to create a numpy array
Value is: array( [ 1, 2, 3 ] )
• Creating a Numpy Array as a Matrix:
data = np.array( [ [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8, 9 ] ] )
Outer Dimension Inner Dimension (rows)
Value is: array( [ 1, 2, 3 ],
[ 4, 5, 6 ],
[ 7, 8, 9 ] )
Numpy – Multidimensional Arrays
• Creating an array of Zeros:
data = np.zeros( ( 2, 3 ), dtype=np.int )
Numpy function to create an array of zeros
Value is: array( [ 0, 0, 0 ],
[ 0, 0, 0 ] )
• Creating an array of Ones:
data = np.ones( (2, 3), dtype=np.int )
rows
columns
data type (default is float)
Numpy function to create an array of onesValue is: array( [ 1, 1, 1 ],
[ 1, 1, 1 ] )
And many more functions: size, ndim, reshape, arange, …
Libraries - Pandas
• A popular library for importing and managing datasets in Python
for Machine Learning is ‘pandas’.
import pandas as pd
Keyword to import a library Keyword to refer to library by an alias (shortcut) name
PyData.org : high-performance, easy-to-use data structures and data analysis tools for the
Python programming language.
Used for:
• Data Analysis
• Data Manipulation
• Data Visualization
Pandas – Indexed Arrays
• Pandas are used to build indexed arrays (1D) and matrices (2D),
where columns and rows are labeled (named) and can be accessed
via the labels (names).
1 2 3 4
4 5 6 7
8 9 10 11
1 2 3 4
4 5 6 7
8 9 10 11
one
two
three
x1 x2 x3 x4
raw data
Row (samples)
index
Columns (features)
index
Panda Indexed Matrix
Pandas – Series and Data Frames
• Pandas Indexed Arrays are referred to as Series (1D) and
Data Frames (2D).
• Series is a 1D labeled (indexed) array and can hold any data type,
and mix of data types.
s = pd.Series( data, index=[ ‘x1’, ‘x2’, ‘x3’, ‘x4’ ] )
Series Raw data Column Index Labels
• Data Frame is a 2D labeled (indexed) matrix and can hold any
data type, and mix of data types.
df = pd.DataFrame( data, index=[‘one’, ‘two’], columns=[ ‘x1’, ‘x2’, ‘x3’, ‘x4’ ] )
Data Frame Row Index Labels Column Index Labels
Pandas – Selecting
• Selecting One Column
x1 = df[ ‘x1’ ]
Selects column labeled x1 for all rows
1
4
8
• Selecting Multiple Columns
x1 = df[ [ ‘x1’, ‘x3’ ] ]
Selects columns labeled x1 and x3 for all rows
1 3
4 6
8 10
x1 = df.ix[ :, ‘x1’:’x3’ ]
Selects columns labeled x1 through x3 for all rows
1 2 3
4 5 6
8 9 10
Note: df[‘x1’:’x3’ ] this python syntax does not work!
rows (all) columns
Slicing function
And many more functions: merge, concat, stack, …
Libraries - Matplotlib
• A popular library for plotting and visualizing data in Python
import matplotlib.pyplot as plt
Keyword to import a library Keyword to refer to library by an alias (shortcut) name
matplotlib.org: Matplotlib is a Python 2D plotting library which produces publication quality
figures in a variety of hardcopy formats and interactive environments across platforms.
Used for:
• Plots
• Histograms
• Bar Charts
• Scatter Plots
• etc
Matplotlib - Plot
• The function plot plots a 2D graph.
plt.plot( x, y )
Function to plot
X values to plot
Y values to plot
• Example:
plt.plot( [ 1, 2, 3 ], [ 4, 6, 8 ] ) # Draws plot in the background
plt.show() # Displays the plot
X Y
1
2
4
6
8
2 3
Matplotlib – Plot Labels
• Add Labels for X and Y Axis and Plot Title (caption)
plt.plot( [ 1, 2, 3 ], [ 4, 6, 8 ] )
plt.xlabel( “X Numbers” ) # Label on the X-axis
plt.ylabel( “Y Numbers” ) # Label on the Y-axis
plt.title( “My Plot of X and Y”) # Title for the Plot
plt.show()
1
2
4
6
8
2 3
X Numbers
YNumbers
My Plot of X and Y
Matplotlib – Multiple Plots and Legend
• You can add multiple plots in a Graph
plt.plot( [ 1, 2, 3 ], [ 4, 6, 8 ], label=‘ 1st Line’ ) # Plot for 1st Line
plt.plot( [ 1, 2, 3 ], [ 2, 4, 6 ], label=‘2nd Line’ ) # Plot for 2nd Line
plt.xlabel( “X Numbers” )
plt.ylabel( “Y Numbers” )
plt.title( “My Plot of X and Y”)
plt.legend() # Show Legend for the plots
plt.show()
1
2
4
6
8
2 3
X Numbers
YNumbers
My Plot of X and Y
---- 1st Line
---- 2nd Line
Matplotlib – Bar Chart
• The function bar plots a bar graph.
plt.plot( [ 1, 2, 3 ], [ 4, 6, 8 ] ) # Plot for 1st Line
plt.bar() # Draw a bar chart
plt.show()
1
2
4
6
8
2 3
And many more functions: hist, scatter, …
Ad

Recommended

Data Analysis in Python-NumPy
Data Analysis in Python-NumPy
Devashish Kumar
 
Pandas
Pandas
Jyoti shukla
 
Visualization and Matplotlib using Python.pptx
Visualization and Matplotlib using Python.pptx
SharmilaMore5
 
Numpy
Numpy
Jyoti shukla
 
Pandas
Pandas
maikroeder
 
NumPy.pptx
NumPy.pptx
EN1036VivekSingh
 
Python Pandas
Python Pandas
Sunil OS
 
Python pandas Library
Python pandas Library
Md. Sohag Miah
 
Data Structures in Python
Data Structures in Python
Devashish Kumar
 
Python NumPy Tutorial | NumPy Array | Edureka
Python NumPy Tutorial | NumPy Array | Edureka
Edureka!
 
Introduction to NumPy (PyData SV 2013)
Introduction to NumPy (PyData SV 2013)
PyData
 
Python Seaborn Data Visualization
Python Seaborn Data Visualization
Sourabh Sahu
 
NUMPY
NUMPY
Global Academy of Technology
 
NumPy
NumPy
AbhijeetAnand88
 
Introduction to Python Pandas for Data Analytics
Introduction to Python Pandas for Data Analytics
Phoenix
 
Introduction to numpy
Introduction to numpy
Gaurav Aggarwal
 
Introduction to pandas
Introduction to pandas
Piyush rai
 
Python Functions
Python Functions
Mohammed Sikander
 
RDM 2020: Python, Numpy, and Pandas
RDM 2020: Python, Numpy, and Pandas
Henry Schreiner
 
Python programming : Files
Python programming : Files
Emertxe Information Technologies Pvt Ltd
 
Python Functions Tutorial | Working With Functions In Python | Python Trainin...
Python Functions Tutorial | Working With Functions In Python | Python Trainin...
Edureka!
 
Introduction to python for Beginners
Introduction to python for Beginners
Sujith Kumar
 
List,tuple,dictionary
List,tuple,dictionary
nitamhaske
 
Python: Modules and Packages
Python: Modules and Packages
Damian T. Gordon
 
Introduction to matplotlib
Introduction to matplotlib
Piyush rai
 
File handling in Python
File handling in Python
Megha V
 
Python Class | Python Programming | Python Tutorial | Edureka
Python Class | Python Programming | Python Tutorial | Edureka
Edureka!
 
Data Visualization in Python
Data Visualization in Python
Jagriti Goswami
 
python-numwpyandpandas-170922144956.pptx
python-numwpyandpandas-170922144956.pptx
smartashammari
 
python-numpyandpandas-170922144956 (1).pptx
python-numpyandpandas-170922144956 (1).pptx
Akashgupta517936
 

More Related Content

What's hot (20)

Data Structures in Python
Data Structures in Python
Devashish Kumar
 
Python NumPy Tutorial | NumPy Array | Edureka
Python NumPy Tutorial | NumPy Array | Edureka
Edureka!
 
Introduction to NumPy (PyData SV 2013)
Introduction to NumPy (PyData SV 2013)
PyData
 
Python Seaborn Data Visualization
Python Seaborn Data Visualization
Sourabh Sahu
 
NUMPY
NUMPY
Global Academy of Technology
 
NumPy
NumPy
AbhijeetAnand88
 
Introduction to Python Pandas for Data Analytics
Introduction to Python Pandas for Data Analytics
Phoenix
 
Introduction to numpy
Introduction to numpy
Gaurav Aggarwal
 
Introduction to pandas
Introduction to pandas
Piyush rai
 
Python Functions
Python Functions
Mohammed Sikander
 
RDM 2020: Python, Numpy, and Pandas
RDM 2020: Python, Numpy, and Pandas
Henry Schreiner
 
Python programming : Files
Python programming : Files
Emertxe Information Technologies Pvt Ltd
 
Python Functions Tutorial | Working With Functions In Python | Python Trainin...
Python Functions Tutorial | Working With Functions In Python | Python Trainin...
Edureka!
 
Introduction to python for Beginners
Introduction to python for Beginners
Sujith Kumar
 
List,tuple,dictionary
List,tuple,dictionary
nitamhaske
 
Python: Modules and Packages
Python: Modules and Packages
Damian T. Gordon
 
Introduction to matplotlib
Introduction to matplotlib
Piyush rai
 
File handling in Python
File handling in Python
Megha V
 
Python Class | Python Programming | Python Tutorial | Edureka
Python Class | Python Programming | Python Tutorial | Edureka
Edureka!
 
Data Visualization in Python
Data Visualization in Python
Jagriti Goswami
 
Data Structures in Python
Data Structures in Python
Devashish Kumar
 
Python NumPy Tutorial | NumPy Array | Edureka
Python NumPy Tutorial | NumPy Array | Edureka
Edureka!
 
Introduction to NumPy (PyData SV 2013)
Introduction to NumPy (PyData SV 2013)
PyData
 
Python Seaborn Data Visualization
Python Seaborn Data Visualization
Sourabh Sahu
 
Introduction to Python Pandas for Data Analytics
Introduction to Python Pandas for Data Analytics
Phoenix
 
Introduction to pandas
Introduction to pandas
Piyush rai
 
RDM 2020: Python, Numpy, and Pandas
RDM 2020: Python, Numpy, and Pandas
Henry Schreiner
 
Python Functions Tutorial | Working With Functions In Python | Python Trainin...
Python Functions Tutorial | Working With Functions In Python | Python Trainin...
Edureka!
 
Introduction to python for Beginners
Introduction to python for Beginners
Sujith Kumar
 
List,tuple,dictionary
List,tuple,dictionary
nitamhaske
 
Python: Modules and Packages
Python: Modules and Packages
Damian T. Gordon
 
Introduction to matplotlib
Introduction to matplotlib
Piyush rai
 
File handling in Python
File handling in Python
Megha V
 
Python Class | Python Programming | Python Tutorial | Edureka
Python Class | Python Programming | Python Tutorial | Edureka
Edureka!
 
Data Visualization in Python
Data Visualization in Python
Jagriti Goswami
 

Similar to Python - Numpy/Pandas/Matplot Machine Learning Libraries (20)

python-numwpyandpandas-170922144956.pptx
python-numwpyandpandas-170922144956.pptx
smartashammari
 
python-numpyandpandas-170922144956 (1).pptx
python-numpyandpandas-170922144956 (1).pptx
Akashgupta517936
 
Python pandas I .pdf gugugigg88iggigigih
Python pandas I .pdf gugugigg88iggigigih
rajveerpersonal21
 
data science for engineering reference pdf
data science for engineering reference pdf
fatehiaryaa
 
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python.pptx
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python.pptx
kalai75
 
DATA ANALYSIS AND VISUALISATION using python
DATA ANALYSIS AND VISUALISATION using python
ChiragNahata2
 
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python.pptx
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python.pptx
Ogunsina1
 
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python (3).pptx
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python (3).pptx
smartashammari
 
Chapter 5-Numpy-Pandas.pptx python programming
Chapter 5-Numpy-Pandas.pptx python programming
ssuser77162c
 
Unit 3_Numpy_Vsp.pptx
Unit 3_Numpy_Vsp.pptx
prakashvs7
 
python-pandas-For-Data-Analysis-Manipulate.pptx
python-pandas-For-Data-Analysis-Manipulate.pptx
PLOKESH8
 
Unit 3_Numpy_VP.pptx
Unit 3_Numpy_VP.pptx
vishnupriyapm4
 
Python 8416516 16 196 46 5163 51 63 51 6.pptx
Python 8416516 16 196 46 5163 51 63 51 6.pptx
ChetanRaut43
 
Unit 3_Numpy_VP.pptx
Unit 3_Numpy_VP.pptx
vishnupriyapm4
 
Introduction to a Python Libraries and python frameworks
Introduction to a Python Libraries and python frameworks
yokeshmca
 
MatplotLib.pptx
MatplotLib.pptx
Paras Intotech
 
Numpy_Pandas_for beginners_________.pptx
Numpy_Pandas_for beginners_________.pptx
Abhi Marvel
 
matplotlib.pptxdsfdsfdsfdsdsfdsdfdsfsdf cvvf
matplotlib.pptxdsfdsfdsfdsdsfdsdfdsfsdf cvvf
zmulani8
 
Panda data structures and its importance in Python.pdf
Panda data structures and its importance in Python.pdf
sumitt6_25730773
 
getting started with numpy and pandas.pptx
getting started with numpy and pandas.pptx
workvishalkumarmahat
 
python-numwpyandpandas-170922144956.pptx
python-numwpyandpandas-170922144956.pptx
smartashammari
 
python-numpyandpandas-170922144956 (1).pptx
python-numpyandpandas-170922144956 (1).pptx
Akashgupta517936
 
Python pandas I .pdf gugugigg88iggigigih
Python pandas I .pdf gugugigg88iggigigih
rajveerpersonal21
 
data science for engineering reference pdf
data science for engineering reference pdf
fatehiaryaa
 
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python.pptx
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python.pptx
kalai75
 
DATA ANALYSIS AND VISUALISATION using python
DATA ANALYSIS AND VISUALISATION using python
ChiragNahata2
 
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python.pptx
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python.pptx
Ogunsina1
 
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python (3).pptx
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python (3).pptx
smartashammari
 
Chapter 5-Numpy-Pandas.pptx python programming
Chapter 5-Numpy-Pandas.pptx python programming
ssuser77162c
 
Unit 3_Numpy_Vsp.pptx
Unit 3_Numpy_Vsp.pptx
prakashvs7
 
python-pandas-For-Data-Analysis-Manipulate.pptx
python-pandas-For-Data-Analysis-Manipulate.pptx
PLOKESH8
 
Python 8416516 16 196 46 5163 51 63 51 6.pptx
Python 8416516 16 196 46 5163 51 63 51 6.pptx
ChetanRaut43
 
Introduction to a Python Libraries and python frameworks
Introduction to a Python Libraries and python frameworks
yokeshmca
 
Numpy_Pandas_for beginners_________.pptx
Numpy_Pandas_for beginners_________.pptx
Abhi Marvel
 
matplotlib.pptxdsfdsfdsfdsdsfdsdfdsfsdf cvvf
matplotlib.pptxdsfdsfdsfdsdsfdsdfdsfsdf cvvf
zmulani8
 
Panda data structures and its importance in Python.pdf
Panda data structures and its importance in Python.pdf
sumitt6_25730773
 
getting started with numpy and pandas.pptx
getting started with numpy and pandas.pptx
workvishalkumarmahat
 
Ad

More from Andrew Ferlitsch (20)

AI - Intelligent Agents
AI - Intelligent Agents
Andrew Ferlitsch
 
Pareto Principle Applied to QA
Pareto Principle Applied to QA
Andrew Ferlitsch
 
Whiteboarding Coding Challenges in Python
Whiteboarding Coding Challenges in Python
Andrew Ferlitsch
 
Object Oriented Programming Principles
Object Oriented Programming Principles
Andrew Ferlitsch
 
Python - OOP Programming
Python - OOP Programming
Andrew Ferlitsch
 
Python - Installing and Using Python and Jupyter Notepad
Python - Installing and Using Python and Jupyter Notepad
Andrew Ferlitsch
 
Natural Language Processing - Groupings (Associations) Generation
Natural Language Processing - Groupings (Associations) Generation
Andrew Ferlitsch
 
Natural Language Provessing - Handling Narrarive Fields in Datasets for Class...
Natural Language Provessing - Handling Narrarive Fields in Datasets for Class...
Andrew Ferlitsch
 
Machine Learning - Introduction to Recurrent Neural Networks
Machine Learning - Introduction to Recurrent Neural Networks
Andrew Ferlitsch
 
Machine Learning - Introduction to Convolutional Neural Networks
Machine Learning - Introduction to Convolutional Neural Networks
Andrew Ferlitsch
 
Machine Learning - Introduction to Neural Networks
Machine Learning - Introduction to Neural Networks
Andrew Ferlitsch
 
Machine Learning - Accuracy and Confusion Matrix
Machine Learning - Accuracy and Confusion Matrix
Andrew Ferlitsch
 
Machine Learning - Ensemble Methods
Machine Learning - Ensemble Methods
Andrew Ferlitsch
 
ML - Multiple Linear Regression
ML - Multiple Linear Regression
Andrew Ferlitsch
 
ML - Simple Linear Regression
ML - Simple Linear Regression
Andrew Ferlitsch
 
Machine Learning - Dummy Variable Conversion
Machine Learning - Dummy Variable Conversion
Andrew Ferlitsch
 
Machine Learning - Splitting Datasets
Machine Learning - Splitting Datasets
Andrew Ferlitsch
 
Machine Learning - Dataset Preparation
Machine Learning - Dataset Preparation
Andrew Ferlitsch
 
Machine Learning - Introduction to Tensorflow
Machine Learning - Introduction to Tensorflow
Andrew Ferlitsch
 
Introduction to Machine Learning
Introduction to Machine Learning
Andrew Ferlitsch
 
Pareto Principle Applied to QA
Pareto Principle Applied to QA
Andrew Ferlitsch
 
Whiteboarding Coding Challenges in Python
Whiteboarding Coding Challenges in Python
Andrew Ferlitsch
 
Object Oriented Programming Principles
Object Oriented Programming Principles
Andrew Ferlitsch
 
Python - Installing and Using Python and Jupyter Notepad
Python - Installing and Using Python and Jupyter Notepad
Andrew Ferlitsch
 
Natural Language Processing - Groupings (Associations) Generation
Natural Language Processing - Groupings (Associations) Generation
Andrew Ferlitsch
 
Natural Language Provessing - Handling Narrarive Fields in Datasets for Class...
Natural Language Provessing - Handling Narrarive Fields in Datasets for Class...
Andrew Ferlitsch
 
Machine Learning - Introduction to Recurrent Neural Networks
Machine Learning - Introduction to Recurrent Neural Networks
Andrew Ferlitsch
 
Machine Learning - Introduction to Convolutional Neural Networks
Machine Learning - Introduction to Convolutional Neural Networks
Andrew Ferlitsch
 
Machine Learning - Introduction to Neural Networks
Machine Learning - Introduction to Neural Networks
Andrew Ferlitsch
 
Machine Learning - Accuracy and Confusion Matrix
Machine Learning - Accuracy and Confusion Matrix
Andrew Ferlitsch
 
Machine Learning - Ensemble Methods
Machine Learning - Ensemble Methods
Andrew Ferlitsch
 
ML - Multiple Linear Regression
ML - Multiple Linear Regression
Andrew Ferlitsch
 
ML - Simple Linear Regression
ML - Simple Linear Regression
Andrew Ferlitsch
 
Machine Learning - Dummy Variable Conversion
Machine Learning - Dummy Variable Conversion
Andrew Ferlitsch
 
Machine Learning - Splitting Datasets
Machine Learning - Splitting Datasets
Andrew Ferlitsch
 
Machine Learning - Dataset Preparation
Machine Learning - Dataset Preparation
Andrew Ferlitsch
 
Machine Learning - Introduction to Tensorflow
Machine Learning - Introduction to Tensorflow
Andrew Ferlitsch
 
Introduction to Machine Learning
Introduction to Machine Learning
Andrew Ferlitsch
 
Ad

Recently uploaded (20)

“Why It’s Critical to Have an Integrated Development Methodology for Edge AI,...
“Why It’s Critical to Have an Integrated Development Methodology for Edge AI,...
Edge AI and Vision Alliance
 
FIDO Alliance Seminar State of Passkeys.pptx
FIDO Alliance Seminar State of Passkeys.pptx
FIDO Alliance
 
OWASP Barcelona 2025 Threat Model Library
OWASP Barcelona 2025 Threat Model Library
PetraVukmirovic
 
Securing Account Lifecycles in the Age of Deepfakes.pptx
Securing Account Lifecycles in the Age of Deepfakes.pptx
FIDO Alliance
 
National Fuels Treatments Initiative: Building a Seamless Map of Hazardous Fu...
National Fuels Treatments Initiative: Building a Seamless Map of Hazardous Fu...
Safe Software
 
OpenACC and Open Hackathons Monthly Highlights June 2025
OpenACC and Open Hackathons Monthly Highlights June 2025
OpenACC
 
Artificial Intelligence in the Nonprofit Boardroom.pdf
Artificial Intelligence in the Nonprofit Boardroom.pdf
OnBoard
 
“Key Requirements to Successfully Implement Generative AI in Edge Devices—Opt...
“Key Requirements to Successfully Implement Generative AI in Edge Devices—Opt...
Edge AI and Vision Alliance
 
Kubernetes Security Act Now Before It’s Too Late
Kubernetes Security Act Now Before It’s Too Late
Michael Furman
 
Murdledescargadarkweb.pdfvolumen1 100 elementary
Murdledescargadarkweb.pdfvolumen1 100 elementary
JorgeSemperteguiMont
 
vertical-cnc-processing-centers-drillteq-v-200-en.pdf
vertical-cnc-processing-centers-drillteq-v-200-en.pdf
AmirStern2
 
SAP Modernization Strategies for a Successful S/4HANA Journey.pdf
SAP Modernization Strategies for a Successful S/4HANA Journey.pdf
Precisely
 
Enabling BIM / GIS integrations with Other Systems with FME
Enabling BIM / GIS integrations with Other Systems with FME
Safe Software
 
“Addressing Evolving AI Model Challenges Through Memory and Storage,” a Prese...
“Addressing Evolving AI Model Challenges Through Memory and Storage,” a Prese...
Edge AI and Vision Alliance
 
Mastering AI Workflows with FME - Peak of Data & AI 2025
Mastering AI Workflows with FME - Peak of Data & AI 2025
Safe Software
 
Viral>Wondershare Filmora 14.5.18.12900 Crack Free Download
Viral>Wondershare Filmora 14.5.18.12900 Crack Free Download
Puppy jhon
 
AI VIDEO MAGAZINE - June 2025 - r/aivideo
AI VIDEO MAGAZINE - June 2025 - r/aivideo
1pcity Studios, Inc
 
“From Enterprise to Makers: Driving Vision AI Innovation at the Extreme Edge,...
“From Enterprise to Makers: Driving Vision AI Innovation at the Extreme Edge,...
Edge AI and Vision Alliance
 
June Patch Tuesday
June Patch Tuesday
Ivanti
 
Bridging the divide: A conversation on tariffs today in the book industry - T...
Bridging the divide: A conversation on tariffs today in the book industry - T...
BookNet Canada
 
“Why It’s Critical to Have an Integrated Development Methodology for Edge AI,...
“Why It’s Critical to Have an Integrated Development Methodology for Edge AI,...
Edge AI and Vision Alliance
 
FIDO Alliance Seminar State of Passkeys.pptx
FIDO Alliance Seminar State of Passkeys.pptx
FIDO Alliance
 
OWASP Barcelona 2025 Threat Model Library
OWASP Barcelona 2025 Threat Model Library
PetraVukmirovic
 
Securing Account Lifecycles in the Age of Deepfakes.pptx
Securing Account Lifecycles in the Age of Deepfakes.pptx
FIDO Alliance
 
National Fuels Treatments Initiative: Building a Seamless Map of Hazardous Fu...
National Fuels Treatments Initiative: Building a Seamless Map of Hazardous Fu...
Safe Software
 
OpenACC and Open Hackathons Monthly Highlights June 2025
OpenACC and Open Hackathons Monthly Highlights June 2025
OpenACC
 
Artificial Intelligence in the Nonprofit Boardroom.pdf
Artificial Intelligence in the Nonprofit Boardroom.pdf
OnBoard
 
“Key Requirements to Successfully Implement Generative AI in Edge Devices—Opt...
“Key Requirements to Successfully Implement Generative AI in Edge Devices—Opt...
Edge AI and Vision Alliance
 
Kubernetes Security Act Now Before It’s Too Late
Kubernetes Security Act Now Before It’s Too Late
Michael Furman
 
Murdledescargadarkweb.pdfvolumen1 100 elementary
Murdledescargadarkweb.pdfvolumen1 100 elementary
JorgeSemperteguiMont
 
vertical-cnc-processing-centers-drillteq-v-200-en.pdf
vertical-cnc-processing-centers-drillteq-v-200-en.pdf
AmirStern2
 
SAP Modernization Strategies for a Successful S/4HANA Journey.pdf
SAP Modernization Strategies for a Successful S/4HANA Journey.pdf
Precisely
 
Enabling BIM / GIS integrations with Other Systems with FME
Enabling BIM / GIS integrations with Other Systems with FME
Safe Software
 
“Addressing Evolving AI Model Challenges Through Memory and Storage,” a Prese...
“Addressing Evolving AI Model Challenges Through Memory and Storage,” a Prese...
Edge AI and Vision Alliance
 
Mastering AI Workflows with FME - Peak of Data & AI 2025
Mastering AI Workflows with FME - Peak of Data & AI 2025
Safe Software
 
Viral>Wondershare Filmora 14.5.18.12900 Crack Free Download
Viral>Wondershare Filmora 14.5.18.12900 Crack Free Download
Puppy jhon
 
AI VIDEO MAGAZINE - June 2025 - r/aivideo
AI VIDEO MAGAZINE - June 2025 - r/aivideo
1pcity Studios, Inc
 
“From Enterprise to Makers: Driving Vision AI Innovation at the Extreme Edge,...
“From Enterprise to Makers: Driving Vision AI Innovation at the Extreme Edge,...
Edge AI and Vision Alliance
 
June Patch Tuesday
June Patch Tuesday
Ivanti
 
Bridging the divide: A conversation on tariffs today in the book industry - T...
Bridging the divide: A conversation on tariffs today in the book industry - T...
BookNet Canada
 

Python - Numpy/Pandas/Matplot Machine Learning Libraries

  • 1. Python Numpy/Pandas Libraries Machine Learning Portland Data Science Group Created by Andrew Ferlitsch Community Outreach Officer July, 2017
  • 2. Libraries - Numpy • A popular math library in Python for Machine Learning is ‘numpy’. import numpy as np Keyword to import a library Keyword to refer to library by an alias (shortcut) name Numpy.org : NumPy is the fundamental package for scientific computing with Python. • a powerful N-dimensional array object • sophisticated (broadcasting) functions • tools for integrating C/C++ and Fortran code • useful linear algebra, Fourier transform, and random number capabilities
  • 3. Libraries - Numpy The most import data structure for scientific computing in Python is the NumPy array. NumPy arrays are used to store lists of numerical data and to represent vectors, matrices, and even tensors. NumPy arrays are designed to handle large data sets efficiently and with a minimum of fuss. The NumPy library has a large set of routines for creating, manipulating, and transforming NumPy arrays. Core Python has an array data structure, but it’s not nearly as versatile, efficient, or useful as the NumPy array. http://www.physics.nyu.edu/pine/pymanual/html/chap3/chap3_arrays.html
  • 4. Numpy – Multidimensional Arrays • Numpy’s main object is a multi-dimensional array. • Creating a Numpy Array as a Vector: data = np.array( [ 1, 2, 3 ] ) Numpy function to create a numpy array Value is: array( [ 1, 2, 3 ] ) • Creating a Numpy Array as a Matrix: data = np.array( [ [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8, 9 ] ] ) Outer Dimension Inner Dimension (rows) Value is: array( [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8, 9 ] )
  • 5. Numpy – Multidimensional Arrays • Creating an array of Zeros: data = np.zeros( ( 2, 3 ), dtype=np.int ) Numpy function to create an array of zeros Value is: array( [ 0, 0, 0 ], [ 0, 0, 0 ] ) • Creating an array of Ones: data = np.ones( (2, 3), dtype=np.int ) rows columns data type (default is float) Numpy function to create an array of onesValue is: array( [ 1, 1, 1 ], [ 1, 1, 1 ] ) And many more functions: size, ndim, reshape, arange, …
  • 6. Libraries - Pandas • A popular library for importing and managing datasets in Python for Machine Learning is ‘pandas’. import pandas as pd Keyword to import a library Keyword to refer to library by an alias (shortcut) name PyData.org : high-performance, easy-to-use data structures and data analysis tools for the Python programming language. Used for: • Data Analysis • Data Manipulation • Data Visualization
  • 7. Pandas – Indexed Arrays • Pandas are used to build indexed arrays (1D) and matrices (2D), where columns and rows are labeled (named) and can be accessed via the labels (names). 1 2 3 4 4 5 6 7 8 9 10 11 1 2 3 4 4 5 6 7 8 9 10 11 one two three x1 x2 x3 x4 raw data Row (samples) index Columns (features) index Panda Indexed Matrix
  • 8. Pandas – Series and Data Frames • Pandas Indexed Arrays are referred to as Series (1D) and Data Frames (2D). • Series is a 1D labeled (indexed) array and can hold any data type, and mix of data types. s = pd.Series( data, index=[ ‘x1’, ‘x2’, ‘x3’, ‘x4’ ] ) Series Raw data Column Index Labels • Data Frame is a 2D labeled (indexed) matrix and can hold any data type, and mix of data types. df = pd.DataFrame( data, index=[‘one’, ‘two’], columns=[ ‘x1’, ‘x2’, ‘x3’, ‘x4’ ] ) Data Frame Row Index Labels Column Index Labels
  • 9. Pandas – Selecting • Selecting One Column x1 = df[ ‘x1’ ] Selects column labeled x1 for all rows 1 4 8 • Selecting Multiple Columns x1 = df[ [ ‘x1’, ‘x3’ ] ] Selects columns labeled x1 and x3 for all rows 1 3 4 6 8 10 x1 = df.ix[ :, ‘x1’:’x3’ ] Selects columns labeled x1 through x3 for all rows 1 2 3 4 5 6 8 9 10 Note: df[‘x1’:’x3’ ] this python syntax does not work! rows (all) columns Slicing function And many more functions: merge, concat, stack, …
  • 10. Libraries - Matplotlib • A popular library for plotting and visualizing data in Python import matplotlib.pyplot as plt Keyword to import a library Keyword to refer to library by an alias (shortcut) name matplotlib.org: Matplotlib is a Python 2D plotting library which produces publication quality figures in a variety of hardcopy formats and interactive environments across platforms. Used for: • Plots • Histograms • Bar Charts • Scatter Plots • etc
  • 11. Matplotlib - Plot • The function plot plots a 2D graph. plt.plot( x, y ) Function to plot X values to plot Y values to plot • Example: plt.plot( [ 1, 2, 3 ], [ 4, 6, 8 ] ) # Draws plot in the background plt.show() # Displays the plot X Y 1 2 4 6 8 2 3
  • 12. Matplotlib – Plot Labels • Add Labels for X and Y Axis and Plot Title (caption) plt.plot( [ 1, 2, 3 ], [ 4, 6, 8 ] ) plt.xlabel( “X Numbers” ) # Label on the X-axis plt.ylabel( “Y Numbers” ) # Label on the Y-axis plt.title( “My Plot of X and Y”) # Title for the Plot plt.show() 1 2 4 6 8 2 3 X Numbers YNumbers My Plot of X and Y
  • 13. Matplotlib – Multiple Plots and Legend • You can add multiple plots in a Graph plt.plot( [ 1, 2, 3 ], [ 4, 6, 8 ], label=‘ 1st Line’ ) # Plot for 1st Line plt.plot( [ 1, 2, 3 ], [ 2, 4, 6 ], label=‘2nd Line’ ) # Plot for 2nd Line plt.xlabel( “X Numbers” ) plt.ylabel( “Y Numbers” ) plt.title( “My Plot of X and Y”) plt.legend() # Show Legend for the plots plt.show() 1 2 4 6 8 2 3 X Numbers YNumbers My Plot of X and Y ---- 1st Line ---- 2nd Line
  • 14. Matplotlib – Bar Chart • The function bar plots a bar graph. plt.plot( [ 1, 2, 3 ], [ 4, 6, 8 ] ) # Plot for 1st Line plt.bar() # Draw a bar chart plt.show() 1 2 4 6 8 2 3 And many more functions: hist, scatter, …