PyTorch constructs dynamic computational graphs that allow for maximum flexibility and speed for deep learning research. Dynamic graphs are useful when the computation cannot be fully determined ahead of time, as they allow the graph to change on each iteration based on variable data. This makes PyTorch well-suited for problems with dynamic or variable sized inputs. While static graphs can optimize computation, dynamic graphs are easier to debug and create extensions for. PyTorch aims to be a simple and intuitive platform for neural network programming and research.