e-ISSN: 2582-5208
International Research Journal of Modernization in Engineering Technology and Science
Volume:02/Issue:03/March-2020 www.irjmets.com
www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science
[197]
QUARTER CAR ACTIVE SUSPENSION SYSTEMDESIGN USING OPTIMAL AND
ROBUST CONTROL METHOD
Mustefa Jibril*1
, Eliyas Alemayehu Tadese*2
*1
Dept. of Electrical & Computer Engineering, DireDawa Institute of Technology, Dire Dawa Ethiopia
*2
Faculty of Electrical & Computer Engineering, Jimma Institute of Technology, Jimma, Ethiopia
ABSTRACT
This paper offers with the theoretical and computational evaluation of optimal& robust controlproblems, with the
goal of providing answers to them with MATLAB simulation.For the robust control,  -synthesis controller and for
the optimal control, LQR controller are designed for a quarter car active suspension system to maximize the ride
comfort and road handling criteria’s of the vehicle. The proposed controllers are designed using Matlab script
program using time domain analysis for the four road disturbances (bump, random sine pavement and white noise)
for the control targets suspension deflection, body acceleration and body travel. Finally the simulation result proves
the effectiveness of the active suspension system with  -synthesis controller.
Keywords- Quarter car active suspension system, optimal control, robust control, linear quadratic regulator
I. INTRODUCTION
Active suspension system are designed to satisfy specific necessities. In suspension systems, normally two maximum
vital capabilities are anticipated to be advanced – disturbance shocking up (i.e. Passenger consolation) and attenuation
of the disturbance transfer to the road (i.e. Vehicle dealing with). The first requirement might be supplied as an
attenuation of the damped mass acceleration or as a peak minimization of the damped mass vertical displacement.
The second one is characterized as an attenuation of the pressure acting on the road or in simple vehicle model as an
attenuation of the unstrung mass acceleration. It is apparent that there's a contradiction among those requirements.
Effort devoted to passive suspension design is ineffective, due to the fact there is a contradiction among both
requirements. The nice end result (in experience of necessities development) can be done by active suspension; this
means that that a few additional force can act on system.
The concept of optimal control has been nicely advanced for over forty years. With the advances of computer
technique, optimal control is now widely used in multi-disciplinary applications which include biological structures,
conversation networks and socio-monetary systems and so forth. As an end result, increasingly people will benefit
greatly via gaining knowledge of to resolve the optimal control problems numerically. Realizing such growing
desires, books on optimum control put extra weight on numerical strategies. Necessary situations for diverse systems
had been derived and specific solutions were given whilst possible. LQR is a control system that gives the pleasant
viable performance with admire to some given degree of performance. The LQR design problem is to design a state
feedback controller K such that the objective function J is minimized. In this approach a remarks advantage matrix is
designed which minimizes the goal characteristic as a way to obtain some compromise among the use of control
effort, the significance, and the speed of reaction so that it will assure a stable system.
II. MATHEMATICAL MODEL
A. Quarter Vehicle Active Suspension System Mathematical Model
Let’s begin with the most effective active suspension system model as shown in Figure 1. It carries two springs (one
in suspension and second representing vehicle tires), one dumper and source of energy as actuator.
The model is described by way of the differential motion equations:
     1 1b b b w b wm y F k y y D y y      
       1 2 2w w b w w r b wm y F k y y k y y D y y         
e-ISSN: 2582-5208
International Research Journal of Modernization in Engineering Technology and Science
Volume:02/Issue:03/March-2020 www.irjmets.com
www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science
[198]
Figure 1: Quarter car active suspension model
Table 1: Parameters of Quarter vehicle Model
Model parameters symbol symbol Values
Vehicle body mass mb 300 Kg
Wheel assembly mass mw 40 Kg
Suspension stiffness k1 15,000 N/m
Suspension damping k2 150,000 N/m
Tyre stiffness D 1000 N-s/m
III. ROAD DISTURBANCE INPUT SIGNALS
A. Bump Road Disturbance
Bump input signal is a simple input to research the suspension system. It simulated a completely intense pressure for
a very quick time, such as a car drive through a speed hump. This road disturbance has a maximum height of 5 cm as
shown in Figure 2.
Figure 2: Bump road disturbance
e-ISSN: 2582-5208
International Research Journal of Modernization in Engineering Technology and Science
Volume:02/Issue:03/March-2020 www.irjmets.com
www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science
[199]
B. Random Road Disturbance
Numerous researches show that it's far vital to test a vehicle to a random road disturbance to test the spring and
damper reply speedy and efficiently. The random road disturbance has a maximum height of 15 cm and minimum
height of -15 cm as shown in Figure 3.
Figure 3: Random road disturbance
C. Sine Pavement Road Disturbance
Sine wave input signal can be used to simulate periodic pavement fluctuations. It can take a look at the vehicle
suspension system elastic resilience capacity whilst the vehicle reviews a periodic wave pavement. Sine input
pavement test is made by means of each car industries before a new automobile drives on road. The sine pavement
road disturbance has a height of -10 cm to 10 cm as shown in Figure 4.
Figure 4: Sine pavement road disturbance
D. White Noise Road Disturbance
Numerous researches display that once the automobile speed is consistent, the road roughness is a stochastic system
that's subjected to Gauss distribution, and it can't be described accurately by means of mathematical model. The
automobile velocity electricity spectral density is a constant, which correspond with the definition and statistical
function of the white noise, so it is able to be virtually transformed to the road roughness time domain model as
shown in Figure 5.
e-ISSN: 2582-5208
International Research Journal of Modernization in Engineering Technology and Science
Volume:02/Issue:03/March-2020 www.irjmets.com
www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science
[200]
Figure 5: White noise road disturbance
IV. THE PROPOSED µ-SYNTHESIS CONTROL DESIGN
A. µ-Synthesis Controller Design
In the active suspension system, µ-synthesis design covered the hydraulic actuator dynamics. In order to account for
the distinction between the actuator model and the real actuator dynamics, we used a second order model of the
actuator dynamics as well as an uncertainty model. The active suspension system with µ-synthesis controller block
diagram is shown in Figure 6.
Figure 6: Active suspension system with μ - synthesis controller system interconnections block diagram
The output or feedback signal y is
The nominal model for the hydraulic actuator is
2
4 1
2
a t m
s
c no
s s


 
We describe the actuator modelerror as a hard and fast of viable models using a weighting function due to the fact the
actuator model itself is uncertain. The model uncertainty is represented through weight Wunc which corresponds to
the frequency variant of the model uncertainty and the uncertain LTI dynamics object Unc that is
2
5 15
67 16 1
unc
s
W
s s


 
Unc =UncertainLTI dynamics”unc”with1outputs,1inputs, andgainlessthan1
  1 3 1 ny x x d W   
e-ISSN: 2582-5208
International Research Journal of Modernization in Engineering Technology and Science
Volume:02/Issue:03/March-2020 www.irjmets.com
www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science
[201]
B. LQR Controller
In order to overcome a few problems that confronted via PID controller, the opposite sort of control strategies may be
evolved such as Linear-Quadratic Regulator (LQR) most beneficial control. LQR is a control system that offers the
satisfactory viable performance with recognize to some given measure of overall performance. The overall
performance degree is a quadratic function composed of state vector and control input.
Linear Quadratic Regulator (LQR) is the most effective idea of pole placement technique. LQR set of rules defines
the optimal pole location based on two cost function. To discover the optimal gains, one must outline the optimal
performance index first off after which resolve algebraic Riccati equation. LQR does now not have any specific
solution to outline the cost function to gain the most suitable gains and the cost function must be defined in iterative
manner.
LQR is a control scheme that gives the high-quality viable overall performance with respect to a few given degree of
performance. The LQR design hassle is to design a state feedback controller K such that the objective function J is
minimized. In this technique a feedback gain matrix is designed which minimizes the objective function a good way
to gain some compromise among the usage of control effort, the magnitude, and the speed of response on the way to
assure a stable system. For a continuous-time linear system defined by means of
 3x Ax Bu 
With a cost functional defined as
   4T T
J x Qx u Ru dt 
Where Q and R are the weight matrices, Q is required to be positive definite or positive semi-definite symmetry
matrix. R is required to be positive definite symmetry matrix. One practical method is to Q and R to be diagonal
matrix. The value of the factors in Q and R is associated with its contribution to the cost function J. The comments
control law that minimizes the value of the cost is:
 5u Kx 
K is given by
 1
6T
K R B P

And P can be located through solving the continuous time algebraic Riccati equation:
 1
0 7T T
A P PA PBR B P Q
   
The value of weighted matrix Q(state penalty) and R (control penalty) relies upon on designer. Designer pick the
ideal cost of Q and R to locate an appropriate advantage matrix K the use of MATLAB. The State variable feedback
configuration is shown below in Figure 7.
Figure 7: State variable feedback configuration
e-ISSN: 2582-5208
International Research Journal of Modernization in Engineering Technology and Science
Volume:02/Issue:03/March-2020 www.irjmets.com
www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science
[202]
By taking
5 0 0 0
0 5 0 0
0 0 5 0
0 0 0 5
Q
 
 
 
 
 
 
And
1 0
0 1
R
 
  
 
The value of obtained feedback gain matrix K of LQR is given by
4.1189 0.1434 3.4141 0.2485
1.4657 0.0557 1.4983 0.0999
K
  
    
V. RESULT AND DISCUSSION
A. Comparison of the active suspension system with µ−synthesis and LQR controllers
The simulation outcomes for bump input roadprofile for suspension deflection, body acceleration and body travel is
shown in Figure 8, Figure 9 and Figure 10 respectively.
Figure 8: Suspension deflection for bump road disturbance
Figure 9: Body acceleration for bump road disturbance
e-ISSN: 2582-5208
International Research Journal of Modernization in Engineering Technology and Science
Volume:02/Issue:03/March-2020 www.irjmets.com
www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science
[203]
Figure 10: Body travel for Bump road disturbance
The simulation outcomes for random input roadprofile for suspension deflection, body acceleration and body travel is
shown in Figure 11, Figure 12 and Figure 13 respectively.
Figure 11: Suspension deflection for random road disturbance
Figure 12: Body acceleration for random road disturbance
e-ISSN: 2582-5208
International Research Journal of Modernization in Engineering Technology and Science
Volume:02/Issue:03/March-2020 www.irjmets.com
www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science
[204]
Figure 13: Body travel for random road disturbance
The simulation outcomes for sine pavement input roadprofile for suspension deflection, body acceleration and body
travel is shown in Figure 14, Figure 15 and Figure 16 respectively.
Figure 14: Suspension deflection for sine pavement road disturbance
Figure 15: Body acceleration for sine pavement road disturbance
e-ISSN: 2582-5208
International Research Journal of Modernization in Engineering Technology and Science
Volume:02/Issue:03/March-2020 www.irjmets.com
www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science
[205]
Figure 16: Body travel for sine pavement road disturbance
The simulation outcomes for white noise input roadprofile for suspension deflection, body acceleration and body
travel is shown in Figure 17, Figure 18and Figure 19 respectively.
Figure 17: Suspension deflection for white noise road disturbance
Figure 18: Body acceleration for white noise road disturbance
e-ISSN: 2582-5208
International Research Journal of Modernization in Engineering Technology and Science
Volume:02/Issue:03/March-2020 www.irjmets.com
www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science
[206]
Figure 19: Body travel for white noise road disturbance
In the suspension deflection for the 4 roadinput profiles, Figure 8, Figure 14 and Figure 17 suggests that the active
suspension system with µ−synthesis controller has the excellent overall performance and Figure 11 suggests the
active suspension system with LQR controller has the best performance.
In the body acceleration all of the simulation shows that the active suspension system with LQR controller has the
best overall performance.
In the body travel all the four simulation indicates that the active suspension system with µ−synthesis controller has
the best performance. From all of the simulation results, we conclude that the active suspension system with
µ−synthesis controller has the best overall performance over the active suspension system with LQR controller.
VI. CONCLUSION
In this paper, optimal control and robust control have been successfully designed (µ−synthesis and LQR controllers)
using Matlab/Script program using time domain analysis using a control targets suspension deflection, body
acceleration and body travel for a bump, random, sine pavement and white noise road profiles.
Finally, the simulation results prove the effectiveness of the active suspension system with µ−synthesis controller for
improving the passenger ride comfort and road handling criteria for the suspension system.
VII. ACKNOWLEDGMENT
First and foremost, I would like to express my deepest thanks and gratitude to Dr. Parashante and Mr.
Tesfabirhan for their invaluable advices, encouragement, continuous guidance and caring support during my journal
preparation.
Last but not least, I am always indebted to my brother, Taha Jibril, my sister, Nejat Jibril and my family members for
their endless support and love throughout these years. They gave me additional motivation and determination during
my journal preparation.
VIII. REFERENCES
[1]. Sairoel Amertet “Design of Optimal Linear Quadratic Regulator (LQR) Control for Full Car Active Suspension
System Using Reduced Order “National Academic Digital Respiratory of Ethiopia, October 15, 2019.
[2]. Julian Asenov Genov et.al “A Linear Quadratic Regulator synthesis for a semi-active Vehicle Suspension Part-2
Multi-Objective Synthesis” AIP Conference Proceedings 2172, 110007, 2019.
[3]. Haijing Yan et.al “The Optimal Control of Semi-active Suspension based on Improved Particle Swarm
Optimization” Mathimatical Models in Engineering, Vol. 4 Issue 3, p.157-163, 2018.
[4]. I.A Daniyan et.al “Design and Simulation of a Controller for an Active Suspension System of a Rail Car” Journal
of Cogent Engineering, 2018.
e-ISSN: 2582-5208
International Research Journal of Modernization in Engineering Technology and Science
Volume:02/Issue:03/March-2020 www.irjmets.com
www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science
[207]
[5]. Satyanarayana et.al “Parameters Optimisation of Vehicle Suspension System for Better Ride Comfort”
International Journal of Vehicle Performance, Vol.4 No.2, 2018.
[6]. Jeng-Lang Wu “A Simultaneous Mixed LQR/H  Control Approach to the Design of Reliable Active
Suspension System” Asian Journal of Control, March, 2017.
[7]. Van Tan Vu “Using the LQR Control Method on the Active Suspension System of Automobiles” National
Conference on Mechanics, 2017.
[8]. Huan XIE, Hong-yan WANG and Qiang RUI “Research on Optimal Control Method of Active Suspension
Based on AMEsim Modeling” 2017 2nd International Conference on Mechanical Control and Automation
(ICMCA 2017) ISBN: 978-1-60595-460-8, 2017.
[9]. Fumiaki Yamada and Kohei Suzuki “Robust Control of Active Suspension to Improve Ride Comfort with
Structural Constraints” IEEE Advanced Motion Control, Auckland New Zealand, April 22-24, 2016.
[10]. Mohammed JawadAubad and HatemRahemWasmi “A New Proposed Variable Stiffness of the Vehicle
Suspension System Passive Case: I” Innovative Systems Design and Engineering www.iiste.org ISSN 2222-1727
(Paper) ISSN 2222-2871 (Online) Vol.7, No.5, 2016.
[11]. K. Dhananjay Rao and K. Pavani “Modelling and Vibration Control of Suspension System for Automobiles
using LQR and PID Controllers” IJLTEMAS ISSN 2278 - 2540, Volume IV, Issue VIII, August 2015.
[12]. B. Sepehri and A.Hemati “Active Suspension vibration control using Linear H-Infinity and optimal control”
International Journal of Automotive Engineering Vol. 4, Number 3, Sept 2014.
[13]. Md. Kaleemullah and Waleed F. Faris ”Active Suspension Control of Vehicle with Uncertainties using
Robust Controllers” Int. J. Vehicle Systems Modelling and Testing, Vol. 9, Nos. 3/4, 2014.

More Related Content

PDF
Optimal and robust controllers based design of quarter car active suspension ...
PDF
Modeling and simulation of vehicle windshield wiper system using h infinity l...
PDF
Discrete and continuous model of three-phase linear induction motors consider...
PDF
A1102030105
PDF
Adaptive dynamic programing based optimal control for a robot manipulator
PDF
Comparative analysis of FACTS controllers by tuning employing GA and PSO
PDF
Model Validation and Control of an In-Wheel DC Motor Prototype for Hybrid El...
PDF
Application and evaluation of the neural network in gearbox
Optimal and robust controllers based design of quarter car active suspension ...
Modeling and simulation of vehicle windshield wiper system using h infinity l...
Discrete and continuous model of three-phase linear induction motors consider...
A1102030105
Adaptive dynamic programing based optimal control for a robot manipulator
Comparative analysis of FACTS controllers by tuning employing GA and PSO
Model Validation and Control of an In-Wheel DC Motor Prototype for Hybrid El...
Application and evaluation of the neural network in gearbox

What's hot (19)

PDF
30120130406002
PDF
Model Predictive Current Control of a Seven-phase Voltage Source Inverter
PPT
MPC Tuning Based On Desired Frequency Domain Closed Loop Response
PDF
Comparative Analysis for NN-Based Adaptive Back-stepping Controller and Back-...
PDF
Optimal backstepping control of quadrotor UAV using gravitational search opti...
PDF
IRJET- Business Scaling and Rebalancing in Shared Bicycle Systems
DOC
Analysis of Automobile Suspension
PDF
MODELLING ANALYSIS & DESIGN OF DSP BASED NOVEL SPEED SENSORLESS VECTOR CONTRO...
PDF
A MODEL BASED APPROACH FOR DESIGN OF SEMIACTIVE SUSPENSION USING VARIABLE STR...
PDF
Enhanced Performance of Matrix Converter using Adaptive Computing Techniques
PDF
Basics Of Kalman Filter And Position Estimation Of Front Wheel Automatic Stee...
PDF
Vehicle counting without background modeling
PPTX
predictive current control of a 3-phase inverter
PDF
Estimation efficiency of rewound induction motors in situ using a numerical m...
PDF
Controller design for gantry crane system using modified sine cosine optimiza...
PDF
Investigation Effect of Outage Line on the Transmission Line for Karbalaa-132...
PPTX
Thesis_PPT
PPS
Autonomous Ground Vehicles The Darpa Grand Challenge
PDF
IRJET- A Review of Approximate Adders for Energy-Efficient Digital Signal Pro...
30120130406002
Model Predictive Current Control of a Seven-phase Voltage Source Inverter
MPC Tuning Based On Desired Frequency Domain Closed Loop Response
Comparative Analysis for NN-Based Adaptive Back-stepping Controller and Back-...
Optimal backstepping control of quadrotor UAV using gravitational search opti...
IRJET- Business Scaling and Rebalancing in Shared Bicycle Systems
Analysis of Automobile Suspension
MODELLING ANALYSIS & DESIGN OF DSP BASED NOVEL SPEED SENSORLESS VECTOR CONTRO...
A MODEL BASED APPROACH FOR DESIGN OF SEMIACTIVE SUSPENSION USING VARIABLE STR...
Enhanced Performance of Matrix Converter using Adaptive Computing Techniques
Basics Of Kalman Filter And Position Estimation Of Front Wheel Automatic Stee...
Vehicle counting without background modeling
predictive current control of a 3-phase inverter
Estimation efficiency of rewound induction motors in situ using a numerical m...
Controller design for gantry crane system using modified sine cosine optimiza...
Investigation Effect of Outage Line on the Transmission Line for Karbalaa-132...
Thesis_PPT
Autonomous Ground Vehicles The Darpa Grand Challenge
IRJET- A Review of Approximate Adders for Energy-Efficient Digital Signal Pro...
Ad

Similar to Quarter car active suspension systemdesign using optimal and robust control method (20)

PDF
Optimization of automobile active suspension system using minimal order
PDF
Comparison of active and semi active suspension systems using robust controller
PDF
Comparison of active and semi active suspension systems using robust controller
PDF
Suspension state space controller design-lqr
PDF
The active suspension system with hydraulic actuator for half car model analy...
PDF
Mathematical Modeling and Simulation of Two Degree of Freedom Quarter Car Model
PDF
IRJET- Experimental Analysis of Passive/Active Suspension System
DOCX
suspension system project report
PDF
Cy4301578585
DOCX
Fuzzy logic based active suspension
PDF
Integrated inerter design and application
PDF
Eu25900906
PDF
Neural network based controllers design for nonlinear quarter car active susp...
PDF
International Journal of Computational Engineering Research(IJCER)
PDF
Observer-based controller design and simulation for an active suspension system
PDF
Advanced Control for Vehicle Active Suspension Systems Weichao Sun
PDF
Do31774777
PPTX
PNEUMATIC VEHICLE ACTIVE SUSPENSION SYSTEM USING PID CONTROLLER
PDF
IRJET- Vibration and Suspension Deflection Controlling of Half Car Model usin...
PDF
Optimization of automobile active suspension system using minimal order
Comparison of active and semi active suspension systems using robust controller
Comparison of active and semi active suspension systems using robust controller
Suspension state space controller design-lqr
The active suspension system with hydraulic actuator for half car model analy...
Mathematical Modeling and Simulation of Two Degree of Freedom Quarter Car Model
IRJET- Experimental Analysis of Passive/Active Suspension System
suspension system project report
Cy4301578585
Fuzzy logic based active suspension
Integrated inerter design and application
Eu25900906
Neural network based controllers design for nonlinear quarter car active susp...
International Journal of Computational Engineering Research(IJCER)
Observer-based controller design and simulation for an active suspension system
Advanced Control for Vehicle Active Suspension Systems Weichao Sun
Do31774777
PNEUMATIC VEHICLE ACTIVE SUSPENSION SYSTEM USING PID CONTROLLER
IRJET- Vibration and Suspension Deflection Controlling of Half Car Model usin...
Ad

More from Mustefa Jibril (20)

PDF
Design and simulation of a steam turbine generator using observer based and l...
PDF
Modelling design and control of an electromechanical mass lifting system usin...
PDF
Tank liquid level control using narma l2 and mpc controllers
PDF
Design and simulation of voltage amplidyne system using robust control technique
PDF
Design & control of vehicle boom barrier gate system using augmented h 2 ...
PDF
Mechanically actuated capacitor microphone control using mpc and narma l2 con...
PDF
Design and performance investigation of a low cost portable ventilator for co...
PDF
Metal cutting tool position control using static output feedback and full sta...
PDF
Design and simulation of a steam turbine generator using observer based and l...
PDF
Speed control of ward leonard layout system using h infinity optimal control
PDF
Tank liquid level control using narma l2 and mpc controllers
PDF
Performance investigation of hydraulic actuator based mass lift system using ...
PDF
Modelling design and control of an electromechanical mass lifting system usin...
PDF
Comparison of a triple inverted pendulum stabilization using optimal control ...
PDF
Design and simulation of a steam turbine generator using observer based and l...
PDF
Design and control of steam flow in cement production process using neural ne...
PDF
Body travel performance improvement of space vehicle electromagnetic suspensi...
PDF
Nonlinear autoregressive moving average l2 model based adaptive control of no...
PDF
Comparison of dc motor speed control performance using fuzzy logic and model ...
PDF
Comparisons of fuzzy mras and pid controllers for ems maglev train
Design and simulation of a steam turbine generator using observer based and l...
Modelling design and control of an electromechanical mass lifting system usin...
Tank liquid level control using narma l2 and mpc controllers
Design and simulation of voltage amplidyne system using robust control technique
Design & control of vehicle boom barrier gate system using augmented h 2 ...
Mechanically actuated capacitor microphone control using mpc and narma l2 con...
Design and performance investigation of a low cost portable ventilator for co...
Metal cutting tool position control using static output feedback and full sta...
Design and simulation of a steam turbine generator using observer based and l...
Speed control of ward leonard layout system using h infinity optimal control
Tank liquid level control using narma l2 and mpc controllers
Performance investigation of hydraulic actuator based mass lift system using ...
Modelling design and control of an electromechanical mass lifting system usin...
Comparison of a triple inverted pendulum stabilization using optimal control ...
Design and simulation of a steam turbine generator using observer based and l...
Design and control of steam flow in cement production process using neural ne...
Body travel performance improvement of space vehicle electromagnetic suspensi...
Nonlinear autoregressive moving average l2 model based adaptive control of no...
Comparison of dc motor speed control performance using fuzzy logic and model ...
Comparisons of fuzzy mras and pid controllers for ems maglev train

Recently uploaded (20)

PPTX
Chemical Technological Processes, Feasibility Study and Chemical Process Indu...
PDF
LOW POWER CLASS AB SI POWER AMPLIFIER FOR WIRELESS MEDICAL SENSOR NETWORK
DOC
T Pandian CV Madurai pandi kokkaf illaya
PPTX
mechattonicsand iotwith sensor and actuator
PDF
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
PDF
Cryptography and Network Security-Module-I.pdf
PDF
distributed database system" (DDBS) is often used to refer to both the distri...
PDF
Exploratory_Data_Analysis_Fundamentals.pdf
PDF
Influence of Green Infrastructure on Residents’ Endorsement of the New Ecolog...
PPTX
Chapter 2 -Technology and Enginerring Materials + Composites.pptx
PPTX
Amdahl’s law is explained in the above power point presentations
PPTX
Micro1New.ppt.pptx the mai themes of micfrobiology
PDF
UEFA_Carbon_Footprint_Calculator_Methology_2.0.pdf
PDF
First part_B-Image Processing - 1 of 2).pdf
PDF
Unit I -OPERATING SYSTEMS_SRM_KATTANKULATHUR.pptx.pdf
PPTX
ai_satellite_crop_management_20250815030350.pptx
PPTX
ASME PCC-02 TRAINING -DESKTOP-NLE5HNP.pptx
PPTX
MAD Unit - 3 User Interface and Data Management (Diploma IT)
PPTX
CONTRACTS IN CONSTRUCTION PROJECTS: TYPES
PDF
Design of Material Handling Equipment Lecture Note
Chemical Technological Processes, Feasibility Study and Chemical Process Indu...
LOW POWER CLASS AB SI POWER AMPLIFIER FOR WIRELESS MEDICAL SENSOR NETWORK
T Pandian CV Madurai pandi kokkaf illaya
mechattonicsand iotwith sensor and actuator
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
Cryptography and Network Security-Module-I.pdf
distributed database system" (DDBS) is often used to refer to both the distri...
Exploratory_Data_Analysis_Fundamentals.pdf
Influence of Green Infrastructure on Residents’ Endorsement of the New Ecolog...
Chapter 2 -Technology and Enginerring Materials + Composites.pptx
Amdahl’s law is explained in the above power point presentations
Micro1New.ppt.pptx the mai themes of micfrobiology
UEFA_Carbon_Footprint_Calculator_Methology_2.0.pdf
First part_B-Image Processing - 1 of 2).pdf
Unit I -OPERATING SYSTEMS_SRM_KATTANKULATHUR.pptx.pdf
ai_satellite_crop_management_20250815030350.pptx
ASME PCC-02 TRAINING -DESKTOP-NLE5HNP.pptx
MAD Unit - 3 User Interface and Data Management (Diploma IT)
CONTRACTS IN CONSTRUCTION PROJECTS: TYPES
Design of Material Handling Equipment Lecture Note

Quarter car active suspension systemdesign using optimal and robust control method

  • 1. e-ISSN: 2582-5208 International Research Journal of Modernization in Engineering Technology and Science Volume:02/Issue:03/March-2020 www.irjmets.com www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science [197] QUARTER CAR ACTIVE SUSPENSION SYSTEMDESIGN USING OPTIMAL AND ROBUST CONTROL METHOD Mustefa Jibril*1 , Eliyas Alemayehu Tadese*2 *1 Dept. of Electrical & Computer Engineering, DireDawa Institute of Technology, Dire Dawa Ethiopia *2 Faculty of Electrical & Computer Engineering, Jimma Institute of Technology, Jimma, Ethiopia ABSTRACT This paper offers with the theoretical and computational evaluation of optimal& robust controlproblems, with the goal of providing answers to them with MATLAB simulation.For the robust control,  -synthesis controller and for the optimal control, LQR controller are designed for a quarter car active suspension system to maximize the ride comfort and road handling criteria’s of the vehicle. The proposed controllers are designed using Matlab script program using time domain analysis for the four road disturbances (bump, random sine pavement and white noise) for the control targets suspension deflection, body acceleration and body travel. Finally the simulation result proves the effectiveness of the active suspension system with  -synthesis controller. Keywords- Quarter car active suspension system, optimal control, robust control, linear quadratic regulator I. INTRODUCTION Active suspension system are designed to satisfy specific necessities. In suspension systems, normally two maximum vital capabilities are anticipated to be advanced – disturbance shocking up (i.e. Passenger consolation) and attenuation of the disturbance transfer to the road (i.e. Vehicle dealing with). The first requirement might be supplied as an attenuation of the damped mass acceleration or as a peak minimization of the damped mass vertical displacement. The second one is characterized as an attenuation of the pressure acting on the road or in simple vehicle model as an attenuation of the unstrung mass acceleration. It is apparent that there's a contradiction among those requirements. Effort devoted to passive suspension design is ineffective, due to the fact there is a contradiction among both requirements. The nice end result (in experience of necessities development) can be done by active suspension; this means that that a few additional force can act on system. The concept of optimal control has been nicely advanced for over forty years. With the advances of computer technique, optimal control is now widely used in multi-disciplinary applications which include biological structures, conversation networks and socio-monetary systems and so forth. As an end result, increasingly people will benefit greatly via gaining knowledge of to resolve the optimal control problems numerically. Realizing such growing desires, books on optimum control put extra weight on numerical strategies. Necessary situations for diverse systems had been derived and specific solutions were given whilst possible. LQR is a control system that gives the pleasant viable performance with admire to some given degree of performance. The LQR design problem is to design a state feedback controller K such that the objective function J is minimized. In this approach a remarks advantage matrix is designed which minimizes the goal characteristic as a way to obtain some compromise among the use of control effort, the significance, and the speed of reaction so that it will assure a stable system. II. MATHEMATICAL MODEL A. Quarter Vehicle Active Suspension System Mathematical Model Let’s begin with the most effective active suspension system model as shown in Figure 1. It carries two springs (one in suspension and second representing vehicle tires), one dumper and source of energy as actuator. The model is described by way of the differential motion equations:      1 1b b b w b wm y F k y y D y y              1 2 2w w b w w r b wm y F k y y k y y D y y         
  • 2. e-ISSN: 2582-5208 International Research Journal of Modernization in Engineering Technology and Science Volume:02/Issue:03/March-2020 www.irjmets.com www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science [198] Figure 1: Quarter car active suspension model Table 1: Parameters of Quarter vehicle Model Model parameters symbol symbol Values Vehicle body mass mb 300 Kg Wheel assembly mass mw 40 Kg Suspension stiffness k1 15,000 N/m Suspension damping k2 150,000 N/m Tyre stiffness D 1000 N-s/m III. ROAD DISTURBANCE INPUT SIGNALS A. Bump Road Disturbance Bump input signal is a simple input to research the suspension system. It simulated a completely intense pressure for a very quick time, such as a car drive through a speed hump. This road disturbance has a maximum height of 5 cm as shown in Figure 2. Figure 2: Bump road disturbance
  • 3. e-ISSN: 2582-5208 International Research Journal of Modernization in Engineering Technology and Science Volume:02/Issue:03/March-2020 www.irjmets.com www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science [199] B. Random Road Disturbance Numerous researches show that it's far vital to test a vehicle to a random road disturbance to test the spring and damper reply speedy and efficiently. The random road disturbance has a maximum height of 15 cm and minimum height of -15 cm as shown in Figure 3. Figure 3: Random road disturbance C. Sine Pavement Road Disturbance Sine wave input signal can be used to simulate periodic pavement fluctuations. It can take a look at the vehicle suspension system elastic resilience capacity whilst the vehicle reviews a periodic wave pavement. Sine input pavement test is made by means of each car industries before a new automobile drives on road. The sine pavement road disturbance has a height of -10 cm to 10 cm as shown in Figure 4. Figure 4: Sine pavement road disturbance D. White Noise Road Disturbance Numerous researches display that once the automobile speed is consistent, the road roughness is a stochastic system that's subjected to Gauss distribution, and it can't be described accurately by means of mathematical model. The automobile velocity electricity spectral density is a constant, which correspond with the definition and statistical function of the white noise, so it is able to be virtually transformed to the road roughness time domain model as shown in Figure 5.
  • 4. e-ISSN: 2582-5208 International Research Journal of Modernization in Engineering Technology and Science Volume:02/Issue:03/March-2020 www.irjmets.com www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science [200] Figure 5: White noise road disturbance IV. THE PROPOSED µ-SYNTHESIS CONTROL DESIGN A. µ-Synthesis Controller Design In the active suspension system, µ-synthesis design covered the hydraulic actuator dynamics. In order to account for the distinction between the actuator model and the real actuator dynamics, we used a second order model of the actuator dynamics as well as an uncertainty model. The active suspension system with µ-synthesis controller block diagram is shown in Figure 6. Figure 6: Active suspension system with μ - synthesis controller system interconnections block diagram The output or feedback signal y is The nominal model for the hydraulic actuator is 2 4 1 2 a t m s c no s s     We describe the actuator modelerror as a hard and fast of viable models using a weighting function due to the fact the actuator model itself is uncertain. The model uncertainty is represented through weight Wunc which corresponds to the frequency variant of the model uncertainty and the uncertain LTI dynamics object Unc that is 2 5 15 67 16 1 unc s W s s     Unc =UncertainLTI dynamics”unc”with1outputs,1inputs, andgainlessthan1   1 3 1 ny x x d W   
  • 5. e-ISSN: 2582-5208 International Research Journal of Modernization in Engineering Technology and Science Volume:02/Issue:03/March-2020 www.irjmets.com www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science [201] B. LQR Controller In order to overcome a few problems that confronted via PID controller, the opposite sort of control strategies may be evolved such as Linear-Quadratic Regulator (LQR) most beneficial control. LQR is a control system that offers the satisfactory viable performance with recognize to some given measure of overall performance. The overall performance degree is a quadratic function composed of state vector and control input. Linear Quadratic Regulator (LQR) is the most effective idea of pole placement technique. LQR set of rules defines the optimal pole location based on two cost function. To discover the optimal gains, one must outline the optimal performance index first off after which resolve algebraic Riccati equation. LQR does now not have any specific solution to outline the cost function to gain the most suitable gains and the cost function must be defined in iterative manner. LQR is a control scheme that gives the high-quality viable overall performance with respect to a few given degree of performance. The LQR design hassle is to design a state feedback controller K such that the objective function J is minimized. In this technique a feedback gain matrix is designed which minimizes the objective function a good way to gain some compromise among the usage of control effort, the magnitude, and the speed of response on the way to assure a stable system. For a continuous-time linear system defined by means of  3x Ax Bu  With a cost functional defined as    4T T J x Qx u Ru dt  Where Q and R are the weight matrices, Q is required to be positive definite or positive semi-definite symmetry matrix. R is required to be positive definite symmetry matrix. One practical method is to Q and R to be diagonal matrix. The value of the factors in Q and R is associated with its contribution to the cost function J. The comments control law that minimizes the value of the cost is:  5u Kx  K is given by  1 6T K R B P  And P can be located through solving the continuous time algebraic Riccati equation:  1 0 7T T A P PA PBR B P Q     The value of weighted matrix Q(state penalty) and R (control penalty) relies upon on designer. Designer pick the ideal cost of Q and R to locate an appropriate advantage matrix K the use of MATLAB. The State variable feedback configuration is shown below in Figure 7. Figure 7: State variable feedback configuration
  • 6. e-ISSN: 2582-5208 International Research Journal of Modernization in Engineering Technology and Science Volume:02/Issue:03/March-2020 www.irjmets.com www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science [202] By taking 5 0 0 0 0 5 0 0 0 0 5 0 0 0 0 5 Q             And 1 0 0 1 R        The value of obtained feedback gain matrix K of LQR is given by 4.1189 0.1434 3.4141 0.2485 1.4657 0.0557 1.4983 0.0999 K         V. RESULT AND DISCUSSION A. Comparison of the active suspension system with µ−synthesis and LQR controllers The simulation outcomes for bump input roadprofile for suspension deflection, body acceleration and body travel is shown in Figure 8, Figure 9 and Figure 10 respectively. Figure 8: Suspension deflection for bump road disturbance Figure 9: Body acceleration for bump road disturbance
  • 7. e-ISSN: 2582-5208 International Research Journal of Modernization in Engineering Technology and Science Volume:02/Issue:03/March-2020 www.irjmets.com www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science [203] Figure 10: Body travel for Bump road disturbance The simulation outcomes for random input roadprofile for suspension deflection, body acceleration and body travel is shown in Figure 11, Figure 12 and Figure 13 respectively. Figure 11: Suspension deflection for random road disturbance Figure 12: Body acceleration for random road disturbance
  • 8. e-ISSN: 2582-5208 International Research Journal of Modernization in Engineering Technology and Science Volume:02/Issue:03/March-2020 www.irjmets.com www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science [204] Figure 13: Body travel for random road disturbance The simulation outcomes for sine pavement input roadprofile for suspension deflection, body acceleration and body travel is shown in Figure 14, Figure 15 and Figure 16 respectively. Figure 14: Suspension deflection for sine pavement road disturbance Figure 15: Body acceleration for sine pavement road disturbance
  • 9. e-ISSN: 2582-5208 International Research Journal of Modernization in Engineering Technology and Science Volume:02/Issue:03/March-2020 www.irjmets.com www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science [205] Figure 16: Body travel for sine pavement road disturbance The simulation outcomes for white noise input roadprofile for suspension deflection, body acceleration and body travel is shown in Figure 17, Figure 18and Figure 19 respectively. Figure 17: Suspension deflection for white noise road disturbance Figure 18: Body acceleration for white noise road disturbance
  • 10. e-ISSN: 2582-5208 International Research Journal of Modernization in Engineering Technology and Science Volume:02/Issue:03/March-2020 www.irjmets.com www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science [206] Figure 19: Body travel for white noise road disturbance In the suspension deflection for the 4 roadinput profiles, Figure 8, Figure 14 and Figure 17 suggests that the active suspension system with µ−synthesis controller has the excellent overall performance and Figure 11 suggests the active suspension system with LQR controller has the best performance. In the body acceleration all of the simulation shows that the active suspension system with LQR controller has the best overall performance. In the body travel all the four simulation indicates that the active suspension system with µ−synthesis controller has the best performance. From all of the simulation results, we conclude that the active suspension system with µ−synthesis controller has the best overall performance over the active suspension system with LQR controller. VI. CONCLUSION In this paper, optimal control and robust control have been successfully designed (µ−synthesis and LQR controllers) using Matlab/Script program using time domain analysis using a control targets suspension deflection, body acceleration and body travel for a bump, random, sine pavement and white noise road profiles. Finally, the simulation results prove the effectiveness of the active suspension system with µ−synthesis controller for improving the passenger ride comfort and road handling criteria for the suspension system. VII. ACKNOWLEDGMENT First and foremost, I would like to express my deepest thanks and gratitude to Dr. Parashante and Mr. Tesfabirhan for their invaluable advices, encouragement, continuous guidance and caring support during my journal preparation. Last but not least, I am always indebted to my brother, Taha Jibril, my sister, Nejat Jibril and my family members for their endless support and love throughout these years. They gave me additional motivation and determination during my journal preparation. VIII. REFERENCES [1]. Sairoel Amertet “Design of Optimal Linear Quadratic Regulator (LQR) Control for Full Car Active Suspension System Using Reduced Order “National Academic Digital Respiratory of Ethiopia, October 15, 2019. [2]. Julian Asenov Genov et.al “A Linear Quadratic Regulator synthesis for a semi-active Vehicle Suspension Part-2 Multi-Objective Synthesis” AIP Conference Proceedings 2172, 110007, 2019. [3]. Haijing Yan et.al “The Optimal Control of Semi-active Suspension based on Improved Particle Swarm Optimization” Mathimatical Models in Engineering, Vol. 4 Issue 3, p.157-163, 2018. [4]. I.A Daniyan et.al “Design and Simulation of a Controller for an Active Suspension System of a Rail Car” Journal of Cogent Engineering, 2018.
  • 11. e-ISSN: 2582-5208 International Research Journal of Modernization in Engineering Technology and Science Volume:02/Issue:03/March-2020 www.irjmets.com www.irjmets.com @International Research Journal of Modernization in Engineering, Technology and Science [207] [5]. Satyanarayana et.al “Parameters Optimisation of Vehicle Suspension System for Better Ride Comfort” International Journal of Vehicle Performance, Vol.4 No.2, 2018. [6]. Jeng-Lang Wu “A Simultaneous Mixed LQR/H  Control Approach to the Design of Reliable Active Suspension System” Asian Journal of Control, March, 2017. [7]. Van Tan Vu “Using the LQR Control Method on the Active Suspension System of Automobiles” National Conference on Mechanics, 2017. [8]. Huan XIE, Hong-yan WANG and Qiang RUI “Research on Optimal Control Method of Active Suspension Based on AMEsim Modeling” 2017 2nd International Conference on Mechanical Control and Automation (ICMCA 2017) ISBN: 978-1-60595-460-8, 2017. [9]. Fumiaki Yamada and Kohei Suzuki “Robust Control of Active Suspension to Improve Ride Comfort with Structural Constraints” IEEE Advanced Motion Control, Auckland New Zealand, April 22-24, 2016. [10]. Mohammed JawadAubad and HatemRahemWasmi “A New Proposed Variable Stiffness of the Vehicle Suspension System Passive Case: I” Innovative Systems Design and Engineering www.iiste.org ISSN 2222-1727 (Paper) ISSN 2222-2871 (Online) Vol.7, No.5, 2016. [11]. K. Dhananjay Rao and K. Pavani “Modelling and Vibration Control of Suspension System for Automobiles using LQR and PID Controllers” IJLTEMAS ISSN 2278 - 2540, Volume IV, Issue VIII, August 2015. [12]. B. Sepehri and A.Hemati “Active Suspension vibration control using Linear H-Infinity and optimal control” International Journal of Automotive Engineering Vol. 4, Number 3, Sept 2014. [13]. Md. Kaleemullah and Waleed F. Faris ”Active Suspension Control of Vehicle with Uncertainties using Robust Controllers” Int. J. Vehicle Systems Modelling and Testing, Vol. 9, Nos. 3/4, 2014.