SlideShare a Scribd company logo
Running Apache Spark Jobs Using Kubernetes
Running Apache Spark Jobs
Using Kubernetes
Yaron Haviv
CTO, Iguazio
Marcelo Litovsky
Solution Architect, Iguazio
85% of AI Projects Never Make it to Production
Research Environment Production Pipeline
Build from
Scratch
with a Large
Team
Manual
extraction
In-mem
analysis
Small scale
training
Manual
evaluation
Real-time
ingestion
Preparation at
scale
Train with many
params & large data
Real-time events
& data features
ETL Streaming APIs
Sync
Spark Help Us Scale ML Pipeline
4
ETL, Streaming,
Logs, Scrapers, ..
Ingest Prepare Train
With hyper-params,
multiple algorithms
Validate Deploy ++
Join, Aggregate,
Split, ..
Test, deploy, monitor
model & API serversServerless:
ML & Analytics
Functions
Features/Data:
Fast, Secure,
Versioned base features train + test datasets model report report metricsRT features
Selected model
with test data
Why Spark on Kubernetes?
▪ Unified management —Getting away from two cluster management
interfaces if your organization already is using Kubernetes elsewhere.
▪ Ability to isolate jobs —You can move models and ETL pipelines from
dev to production without the headaches of dependency
management.
▪ Resilient infrastructure —You don’t worry about sizing and building the
cluster, manipulating Docker files or networking configurations.
▪ Vibrant community constantly evolving
5
Goodbye Hadoop, Hello Cloud-Native
Eliminate complexity and inefficiency, gain cloud agility
6
YARN
HbaseHDFS
Map
Reduce
Pig,
Hive, ..
Data
Orchestration
Middleware
Your Business Logic
Consume
Innovate
Managed Storage
and Databases
Any Containerized Microservice
Spark on Kubernetes
7
Diagram and Bullet point Credit: https://spark.apache.org/docs/latest/running-on-kubernetes.html#prerequisites
• Spark creates a Spark driver running within
a Kubernetes pod.
• The driver creates executors which are also
running within Kubernetes pods and connects
to them, and executes application code.
• When the application completes, the executor
pods terminate and are cleaned up, but the
driver pod persists logs and remains in
“completed” state in the Kubernetes API until
it’s eventually garbage collected or manually
cleaned up.
How to run your spark job in Kubernetes ?
Cluster
Mode
Client
Mode
K8S
Operator
Spark Executors
Client
Spark-submit
Spark
driver
Spark ExecutorsSpark
driver
Client
Spark-submit
Spark Executors
Spark
driver
Spark
Operator
Kubernetes API
kubectl
Comparing Modes
Client Mode Cluster Mode K8S Operator
Execution
environment
Driver runs on job scheduling
environment
Driver runs in a Kubernetes pod Driver runs in a Kubernetes pod
Driver pod
communication
User needs to define
communications between
driver and executors
Kubernetes networking needs to be
properly configured for drive and
executor pods to communicate
The operator enables proper
communication between driver
and executors
Role based
access controls
User needs direct access to
Kubernetes with proper RBAC
User needs direct access to
Kubernetes with proper RBAC
The operator handles
deployments. More flexibility
configuring RBAC
Execution Driver could be located in a
separate host/container
Driver runs in the same kubernetes
cluster as executors
Driver runs in the same
kubernetes cluster as executors
Demo I
See repo: http://github.com/marcelonyc/igz_sparkk8s
• Instructions to deploy Spark Operator on Docker Desktop
• Configuration commands and files
• Examples
DevOps Challenges Remain
▪ Per J ob custom resources and configuration
▪ Specific runtime requirements and package dependencies
▪ Elastic scaling, resource limits &guarantees, ..
▪ ML Pipeline integration
▪ Coexistence/integration with other frameworks
▪ Resource and job monitoring
▪ …
Serverless: resource elasticity (to Zero),
automated deployment and operations
Serverless Today Data Prep and Training Jobs
Task lifespan Millisecs to mins Secs to hours
Scaling Load-balancer Partition, shuffle, reduce,
Hyper-params, RDD
State Stateless Stateful
Input Event Params, Datasets
6
Why Not Make Spark Serverless?
Time we extend Serverless to data-science !
ML & Analytics Functions Architecture
User Code OR
ML service
Runtime / SaaS
(e.g. Spark, Dask,
Horovod, Nuclio, ..)
Data / Feature
stores
Secrets
Artifacts &
Models
Ops
ML Pipeline
Inputs OutputsML Function
Serverless Spark ML Function Example
https://github.com/mlrun/mlrun/blob/master/examples/mlrun_sparkk8s.ipynb
Automating The Development & Tracking Workflow
Write and
test locally
specify runtime
configuration
Run/scale on
the cluster
Build
(if needed)
Document
& Publish
Run in a
Pipeline
Track experiments/runs, functions and data
image, deps
cpu/gpu/mem
data, volumes, ..
Use
published
functions
KubeFlow+Serverless: Automated ML Pipelines
What is Kubeflow ?
▪ Operators for ML frameworks
(lifecycle management, scale-out, ..)
▪ Managed notebooks
▪ ML Pipeline Automation
▪ With Serverless, we automate the
deployment, execution, scaling and
monitoring of our code
16
• 4M global customers
• 200 countries and territories - streaming global commerce
• Understanding illicit patterns of behavior in real time
based on 90 different parameters
• Proactively preventing money laundering before it occurs
Want To Move From Fraud Detection to
Prevention And Cut Time To Production
Fraud Prevention
Case Study: Payoneer
Traditional Fraud-Detection
Architecture (Hadoop)
18
SQL Server
Operational database
ETL to the DWH
every 30min
Data warehouse
Mirror table
Offline
processing
(SQL)
Feature vector Batch prediction
Using R Server
40 Minutes to identify suspicious money laundering account
40 Precious Minutes (detect fraud after the fact)
Long and complex process to production
Moving To Real-Time Fraud Prevention
19
SQL Server
Operational database
CDC
(Real-time)
Real-time
Ingestion Online + Offline
Feature Store
Model Training
(sklearn)
Model Inferencing
(Nuclio)
Block account !
Queue
Analysis
12 Seconds (prevent fraud)
12 Seconds to detect and prevent fraud !
Automated dev to production using a serverless approach
Demo II
Fully automated ML Pipeline with
Serverless Spark +Kubeflow
Feedback
Your feedback is important to us.
Don’t forget to rate and
review the sessions.
Running Apache Spark Jobs Using Kubernetes

More Related Content

What's hot (20)

Kubernetes for Beginners: An Introductory Guide
Kubernetes for Beginners: An Introductory GuideKubernetes for Beginners: An Introductory Guide
Kubernetes for Beginners: An Introductory Guide
Bytemark
 
Hive, Presto, and Spark on TPC-DS benchmark
Hive, Presto, and Spark on TPC-DS benchmarkHive, Presto, and Spark on TPC-DS benchmark
Hive, Presto, and Spark on TPC-DS benchmark
Dongwon Kim
 
Part 3 - Modern Data Warehouse with Azure Synapse
Part 3 - Modern Data Warehouse with Azure SynapsePart 3 - Modern Data Warehouse with Azure Synapse
Part 3 - Modern Data Warehouse with Azure Synapse
Nilesh Gule
 
Apache Airflow
Apache AirflowApache Airflow
Apache Airflow
Knoldus Inc.
 
Kubernetes #1 intro
Kubernetes #1   introKubernetes #1   intro
Kubernetes #1 intro
Terry Cho
 
Event driven autoscaling with keda
Event driven autoscaling with kedaEvent driven autoscaling with keda
Event driven autoscaling with keda
Adam Hamsik
 
Tuning Apache Kafka Connectors for Flink.pptx
Tuning Apache Kafka Connectors for Flink.pptxTuning Apache Kafka Connectors for Flink.pptx
Tuning Apache Kafka Connectors for Flink.pptx
Flink Forward
 
Log analysis with elastic stack
Log analysis with elastic stackLog analysis with elastic stack
Log analysis with elastic stack
Bangladesh Network Operators Group
 
kafka
kafkakafka
kafka
Amikam Snir
 
Pyspark Tutorial | Introduction to Apache Spark with Python | PySpark Trainin...
Pyspark Tutorial | Introduction to Apache Spark with Python | PySpark Trainin...Pyspark Tutorial | Introduction to Apache Spark with Python | PySpark Trainin...
Pyspark Tutorial | Introduction to Apache Spark with Python | PySpark Trainin...
Edureka!
 
End to end Machine Learning using Kubeflow - Build, Train, Deploy and Manage
End to end Machine Learning using Kubeflow - Build, Train, Deploy and ManageEnd to end Machine Learning using Kubeflow - Build, Train, Deploy and Manage
End to end Machine Learning using Kubeflow - Build, Train, Deploy and Manage
Animesh Singh
 
Introduction to Kafka Streams
Introduction to Kafka StreamsIntroduction to Kafka Streams
Introduction to Kafka Streams
Guozhang Wang
 
Big Data Redis Mongodb Dynamodb Sharding
Big Data Redis Mongodb Dynamodb ShardingBig Data Redis Mongodb Dynamodb Sharding
Big Data Redis Mongodb Dynamodb Sharding
Araf Karsh Hamid
 
Apache Spark Fundamentals
Apache Spark FundamentalsApache Spark Fundamentals
Apache Spark Fundamentals
Zahra Eskandari
 
Apache Spark overview
Apache Spark overviewApache Spark overview
Apache Spark overview
DataArt
 
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Databricks
 
Terraform Basics
Terraform BasicsTerraform Basics
Terraform Basics
Mohammed Fazuluddin
 
Kubernetes Application Deployment with Helm - A beginner Guide!
Kubernetes Application Deployment with Helm - A beginner Guide!Kubernetes Application Deployment with Helm - A beginner Guide!
Kubernetes Application Deployment with Helm - A beginner Guide!
Krishna-Kumar
 
Azure kubernetes service (aks)
Azure kubernetes service (aks)Azure kubernetes service (aks)
Azure kubernetes service (aks)
Akash Agrawal
 
An overview of BigQuery
An overview of BigQuery An overview of BigQuery
An overview of BigQuery
GirdhareeSaran
 
Kubernetes for Beginners: An Introductory Guide
Kubernetes for Beginners: An Introductory GuideKubernetes for Beginners: An Introductory Guide
Kubernetes for Beginners: An Introductory Guide
Bytemark
 
Hive, Presto, and Spark on TPC-DS benchmark
Hive, Presto, and Spark on TPC-DS benchmarkHive, Presto, and Spark on TPC-DS benchmark
Hive, Presto, and Spark on TPC-DS benchmark
Dongwon Kim
 
Part 3 - Modern Data Warehouse with Azure Synapse
Part 3 - Modern Data Warehouse with Azure SynapsePart 3 - Modern Data Warehouse with Azure Synapse
Part 3 - Modern Data Warehouse with Azure Synapse
Nilesh Gule
 
Kubernetes #1 intro
Kubernetes #1   introKubernetes #1   intro
Kubernetes #1 intro
Terry Cho
 
Event driven autoscaling with keda
Event driven autoscaling with kedaEvent driven autoscaling with keda
Event driven autoscaling with keda
Adam Hamsik
 
Tuning Apache Kafka Connectors for Flink.pptx
Tuning Apache Kafka Connectors for Flink.pptxTuning Apache Kafka Connectors for Flink.pptx
Tuning Apache Kafka Connectors for Flink.pptx
Flink Forward
 
Pyspark Tutorial | Introduction to Apache Spark with Python | PySpark Trainin...
Pyspark Tutorial | Introduction to Apache Spark with Python | PySpark Trainin...Pyspark Tutorial | Introduction to Apache Spark with Python | PySpark Trainin...
Pyspark Tutorial | Introduction to Apache Spark with Python | PySpark Trainin...
Edureka!
 
End to end Machine Learning using Kubeflow - Build, Train, Deploy and Manage
End to end Machine Learning using Kubeflow - Build, Train, Deploy and ManageEnd to end Machine Learning using Kubeflow - Build, Train, Deploy and Manage
End to end Machine Learning using Kubeflow - Build, Train, Deploy and Manage
Animesh Singh
 
Introduction to Kafka Streams
Introduction to Kafka StreamsIntroduction to Kafka Streams
Introduction to Kafka Streams
Guozhang Wang
 
Big Data Redis Mongodb Dynamodb Sharding
Big Data Redis Mongodb Dynamodb ShardingBig Data Redis Mongodb Dynamodb Sharding
Big Data Redis Mongodb Dynamodb Sharding
Araf Karsh Hamid
 
Apache Spark Fundamentals
Apache Spark FundamentalsApache Spark Fundamentals
Apache Spark Fundamentals
Zahra Eskandari
 
Apache Spark overview
Apache Spark overviewApache Spark overview
Apache Spark overview
DataArt
 
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Databricks
 
Kubernetes Application Deployment with Helm - A beginner Guide!
Kubernetes Application Deployment with Helm - A beginner Guide!Kubernetes Application Deployment with Helm - A beginner Guide!
Kubernetes Application Deployment with Helm - A beginner Guide!
Krishna-Kumar
 
Azure kubernetes service (aks)
Azure kubernetes service (aks)Azure kubernetes service (aks)
Azure kubernetes service (aks)
Akash Agrawal
 
An overview of BigQuery
An overview of BigQuery An overview of BigQuery
An overview of BigQuery
GirdhareeSaran
 

Similar to Running Apache Spark Jobs Using Kubernetes (20)

Run Apache Spark on Kubernetes in Large Scale_ Challenges and Solutions-2.pdf
Run Apache Spark on Kubernetes in Large Scale_ Challenges and Solutions-2.pdfRun Apache Spark on Kubernetes in Large Scale_ Challenges and Solutions-2.pdf
Run Apache Spark on Kubernetes in Large Scale_ Challenges and Solutions-2.pdf
Anya Bida
 
[Spark Summit 2017 NA] Apache Spark on Kubernetes
[Spark Summit 2017 NA] Apache Spark on Kubernetes[Spark Summit 2017 NA] Apache Spark on Kubernetes
[Spark Summit 2017 NA] Apache Spark on Kubernetes
Timothy Chen
 
Scaling Apache Spark on Kubernetes at Lyft
Scaling Apache Spark on Kubernetes at LyftScaling Apache Spark on Kubernetes at Lyft
Scaling Apache Spark on Kubernetes at Lyft
Databricks
 
Apache Spark on Kubernetes Anirudh Ramanathan and Tim Chen
Apache Spark on Kubernetes Anirudh Ramanathan and Tim ChenApache Spark on Kubernetes Anirudh Ramanathan and Tim Chen
Apache Spark on Kubernetes Anirudh Ramanathan and Tim Chen
Databricks
 
Scaling spark on kubernetes at Lyft
Scaling spark on kubernetes at LyftScaling spark on kubernetes at Lyft
Scaling spark on kubernetes at Lyft
Li Gao
 
Webinar kubernetes and-spark
Webinar  kubernetes and-sparkWebinar  kubernetes and-spark
Webinar kubernetes and-spark
cnvrg.io AI OS - Hands-on ML Workshops
 
Serverless spark
Serverless sparkServerless spark
Serverless spark
MamathaBusi
 
PySpark on Kubernetes @ Python Barcelona March Meetup
PySpark on Kubernetes @ Python Barcelona March MeetupPySpark on Kubernetes @ Python Barcelona March Meetup
PySpark on Kubernetes @ Python Barcelona March Meetup
Holden Karau
 
SF Big Analytics_20190612: Scaling Apache Spark on Kubernetes at Lyft
SF Big Analytics_20190612: Scaling Apache Spark on Kubernetes at LyftSF Big Analytics_20190612: Scaling Apache Spark on Kubernetes at Lyft
SF Big Analytics_20190612: Scaling Apache Spark on Kubernetes at Lyft
Chester Chen
 
18th Athens Big Data Meetup - 2nd Talk - Run Spark and Flink Jobs on Kubernetes
18th Athens Big Data Meetup - 2nd Talk - Run Spark and Flink Jobs on Kubernetes18th Athens Big Data Meetup - 2nd Talk - Run Spark and Flink Jobs on Kubernetes
18th Athens Big Data Meetup - 2nd Talk - Run Spark and Flink Jobs on Kubernetes
Athens Big Data
 
Introducing Kubeflow (w. Special Guests Tensorflow and Apache Spark)
Introducing Kubeflow (w. Special Guests Tensorflow and Apache Spark)Introducing Kubeflow (w. Special Guests Tensorflow and Apache Spark)
Introducing Kubeflow (w. Special Guests Tensorflow and Apache Spark)
DataWorks Summit
 
Spark on Kubernetes - Advanced Spark and Tensorflow Meetup - Jan 19 2017 - An...
Spark on Kubernetes - Advanced Spark and Tensorflow Meetup - Jan 19 2017 - An...Spark on Kubernetes - Advanced Spark and Tensorflow Meetup - Jan 19 2017 - An...
Spark on Kubernetes - Advanced Spark and Tensorflow Meetup - Jan 19 2017 - An...
Chris Fregly
 
Machine learning on kubernetes
Machine learning on kubernetesMachine learning on kubernetes
Machine learning on kubernetes
Anirudh Ramanathan
 
Big data and Kubernetes
Big data and KubernetesBig data and Kubernetes
Big data and Kubernetes
Anirudh Ramanathan
 
Serverless machine learning operations
Serverless machine learning operationsServerless machine learning operations
Serverless machine learning operations
Stepan Pushkarev
 
Big data with Python on kubernetes (pyspark on k8s) - Big Data Spain 2018
Big data with Python on kubernetes (pyspark on k8s) - Big Data Spain 2018Big data with Python on kubernetes (pyspark on k8s) - Big Data Spain 2018
Big data with Python on kubernetes (pyspark on k8s) - Big Data Spain 2018
Holden Karau
 
Containerized architectures for deep learning
Containerized architectures for deep learningContainerized architectures for deep learning
Containerized architectures for deep learning
Antje Barth
 
Migrating Airflow-based Apache Spark Jobs to Kubernetes – the Native Way
Migrating Airflow-based Apache Spark Jobs to Kubernetes – the Native WayMigrating Airflow-based Apache Spark Jobs to Kubernetes – the Native Way
Migrating Airflow-based Apache Spark Jobs to Kubernetes – the Native Way
Databricks
 
Productionizing Machine Learning with a Microservices Architecture
Productionizing Machine Learning with a Microservices ArchitectureProductionizing Machine Learning with a Microservices Architecture
Productionizing Machine Learning with a Microservices Architecture
Databricks
 
Intro - End to end ML with Kubeflow @ SignalConf 2018
Intro - End to end ML with Kubeflow @ SignalConf 2018Intro - End to end ML with Kubeflow @ SignalConf 2018
Intro - End to end ML with Kubeflow @ SignalConf 2018
Holden Karau
 
Run Apache Spark on Kubernetes in Large Scale_ Challenges and Solutions-2.pdf
Run Apache Spark on Kubernetes in Large Scale_ Challenges and Solutions-2.pdfRun Apache Spark on Kubernetes in Large Scale_ Challenges and Solutions-2.pdf
Run Apache Spark on Kubernetes in Large Scale_ Challenges and Solutions-2.pdf
Anya Bida
 
[Spark Summit 2017 NA] Apache Spark on Kubernetes
[Spark Summit 2017 NA] Apache Spark on Kubernetes[Spark Summit 2017 NA] Apache Spark on Kubernetes
[Spark Summit 2017 NA] Apache Spark on Kubernetes
Timothy Chen
 
Scaling Apache Spark on Kubernetes at Lyft
Scaling Apache Spark on Kubernetes at LyftScaling Apache Spark on Kubernetes at Lyft
Scaling Apache Spark on Kubernetes at Lyft
Databricks
 
Apache Spark on Kubernetes Anirudh Ramanathan and Tim Chen
Apache Spark on Kubernetes Anirudh Ramanathan and Tim ChenApache Spark on Kubernetes Anirudh Ramanathan and Tim Chen
Apache Spark on Kubernetes Anirudh Ramanathan and Tim Chen
Databricks
 
Scaling spark on kubernetes at Lyft
Scaling spark on kubernetes at LyftScaling spark on kubernetes at Lyft
Scaling spark on kubernetes at Lyft
Li Gao
 
Serverless spark
Serverless sparkServerless spark
Serverless spark
MamathaBusi
 
PySpark on Kubernetes @ Python Barcelona March Meetup
PySpark on Kubernetes @ Python Barcelona March MeetupPySpark on Kubernetes @ Python Barcelona March Meetup
PySpark on Kubernetes @ Python Barcelona March Meetup
Holden Karau
 
SF Big Analytics_20190612: Scaling Apache Spark on Kubernetes at Lyft
SF Big Analytics_20190612: Scaling Apache Spark on Kubernetes at LyftSF Big Analytics_20190612: Scaling Apache Spark on Kubernetes at Lyft
SF Big Analytics_20190612: Scaling Apache Spark on Kubernetes at Lyft
Chester Chen
 
18th Athens Big Data Meetup - 2nd Talk - Run Spark and Flink Jobs on Kubernetes
18th Athens Big Data Meetup - 2nd Talk - Run Spark and Flink Jobs on Kubernetes18th Athens Big Data Meetup - 2nd Talk - Run Spark and Flink Jobs on Kubernetes
18th Athens Big Data Meetup - 2nd Talk - Run Spark and Flink Jobs on Kubernetes
Athens Big Data
 
Introducing Kubeflow (w. Special Guests Tensorflow and Apache Spark)
Introducing Kubeflow (w. Special Guests Tensorflow and Apache Spark)Introducing Kubeflow (w. Special Guests Tensorflow and Apache Spark)
Introducing Kubeflow (w. Special Guests Tensorflow and Apache Spark)
DataWorks Summit
 
Spark on Kubernetes - Advanced Spark and Tensorflow Meetup - Jan 19 2017 - An...
Spark on Kubernetes - Advanced Spark and Tensorflow Meetup - Jan 19 2017 - An...Spark on Kubernetes - Advanced Spark and Tensorflow Meetup - Jan 19 2017 - An...
Spark on Kubernetes - Advanced Spark and Tensorflow Meetup - Jan 19 2017 - An...
Chris Fregly
 
Machine learning on kubernetes
Machine learning on kubernetesMachine learning on kubernetes
Machine learning on kubernetes
Anirudh Ramanathan
 
Serverless machine learning operations
Serverless machine learning operationsServerless machine learning operations
Serverless machine learning operations
Stepan Pushkarev
 
Big data with Python on kubernetes (pyspark on k8s) - Big Data Spain 2018
Big data with Python on kubernetes (pyspark on k8s) - Big Data Spain 2018Big data with Python on kubernetes (pyspark on k8s) - Big Data Spain 2018
Big data with Python on kubernetes (pyspark on k8s) - Big Data Spain 2018
Holden Karau
 
Containerized architectures for deep learning
Containerized architectures for deep learningContainerized architectures for deep learning
Containerized architectures for deep learning
Antje Barth
 
Migrating Airflow-based Apache Spark Jobs to Kubernetes – the Native Way
Migrating Airflow-based Apache Spark Jobs to Kubernetes – the Native WayMigrating Airflow-based Apache Spark Jobs to Kubernetes – the Native Way
Migrating Airflow-based Apache Spark Jobs to Kubernetes – the Native Way
Databricks
 
Productionizing Machine Learning with a Microservices Architecture
Productionizing Machine Learning with a Microservices ArchitectureProductionizing Machine Learning with a Microservices Architecture
Productionizing Machine Learning with a Microservices Architecture
Databricks
 
Intro - End to end ML with Kubeflow @ SignalConf 2018
Intro - End to end ML with Kubeflow @ SignalConf 2018Intro - End to end ML with Kubeflow @ SignalConf 2018
Intro - End to end ML with Kubeflow @ SignalConf 2018
Holden Karau
 
Ad

More from Databricks (20)

DW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptx
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2
Databricks
 
Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2
Databricks
 
Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4
Databricks
 
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
Databricks
 
Democratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized Platform
Databricks
 
Learn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data Science
Databricks
 
Why APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML MonitoringWhy APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML Monitoring
Databricks
 
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixThe Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
Databricks
 
Stage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI IntegrationStage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI Integration
Databricks
 
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorchSimplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Databricks
 
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark PipelinesScaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Databricks
 
Sawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature AggregationsSawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature Aggregations
Databricks
 
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkRedis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Databricks
 
Re-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and SparkRe-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and Spark
Databricks
 
Raven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction QueriesRaven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction Queries
Databricks
 
Processing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache SparkProcessing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache Spark
Databricks
 
Massive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta LakeMassive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta Lake
Databricks
 
Machine Learning CI/CD for Email Attack Detection
Machine Learning CI/CD for Email Attack DetectionMachine Learning CI/CD for Email Attack Detection
Machine Learning CI/CD for Email Attack Detection
Databricks
 
DW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptx
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2
Databricks
 
Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2
Databricks
 
Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4
Databricks
 
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
Databricks
 
Democratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized Platform
Databricks
 
Learn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data Science
Databricks
 
Why APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML MonitoringWhy APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML Monitoring
Databricks
 
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixThe Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
Databricks
 
Stage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI IntegrationStage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI Integration
Databricks
 
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorchSimplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Databricks
 
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark PipelinesScaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Databricks
 
Sawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature AggregationsSawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature Aggregations
Databricks
 
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkRedis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Databricks
 
Re-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and SparkRe-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and Spark
Databricks
 
Raven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction QueriesRaven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction Queries
Databricks
 
Processing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache SparkProcessing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache Spark
Databricks
 
Massive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta LakeMassive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta Lake
Databricks
 
Machine Learning CI/CD for Email Attack Detection
Machine Learning CI/CD for Email Attack DetectionMachine Learning CI/CD for Email Attack Detection
Machine Learning CI/CD for Email Attack Detection
Databricks
 
Ad

Recently uploaded (20)

HPC High Performance Course Presentation.pptx
HPC High Performance Course Presentation.pptxHPC High Performance Course Presentation.pptx
HPC High Performance Course Presentation.pptx
naziaahmadnm
 
Chronic constipation presentaion final.ppt
Chronic constipation presentaion final.pptChronic constipation presentaion final.ppt
Chronic constipation presentaion final.ppt
DrShashank7
 
9.-Composite-Dr.-B.-Nalini.pptxfdrtyuioklj
9.-Composite-Dr.-B.-Nalini.pptxfdrtyuioklj9.-Composite-Dr.-B.-Nalini.pptxfdrtyuioklj
9.-Composite-Dr.-B.-Nalini.pptxfdrtyuioklj
aishwaryavdcw
 
Али махмуд to The teacm of ghsbh to fortune .pptx
Али махмуд to The teacm of ghsbh to fortune .pptxАли махмуд to The teacm of ghsbh to fortune .pptx
Али махмуд to The teacm of ghsbh to fortune .pptx
palr19411
 
Human body make Structure analysis the part of the human
Human body make Structure analysis the part of the humanHuman body make Structure analysis the part of the human
Human body make Structure analysis the part of the human
ankit392215
 
EPC UNIT-V forengineeringstudentsin.pptx
EPC UNIT-V forengineeringstudentsin.pptxEPC UNIT-V forengineeringstudentsin.pptx
EPC UNIT-V forengineeringstudentsin.pptx
ExtremerZ
 
一比一原版(USC毕业证)南加利福尼亚大学毕业证如何办理
一比一原版(USC毕业证)南加利福尼亚大学毕业证如何办理一比一原版(USC毕业证)南加利福尼亚大学毕业证如何办理
一比一原版(USC毕业证)南加利福尼亚大学毕业证如何办理
Taqyea
 
531a07261283c4efb4cbae5fb8. Tele2 Sverige AB v post-och telestyrelsen, C-203:...
531a07261283c4efb4cbae5fb8. Tele2 Sverige AB v post-och telestyrelsen, C-203:...531a07261283c4efb4cbae5fb8. Tele2 Sverige AB v post-och telestyrelsen, C-203:...
531a07261283c4efb4cbae5fb8. Tele2 Sverige AB v post-och telestyrelsen, C-203:...
spratistha569
 
Artificial-Intelligence-in-Autonomous-Vehicles (1)-1.pptx
Artificial-Intelligence-in-Autonomous-Vehicles (1)-1.pptxArtificial-Intelligence-in-Autonomous-Vehicles (1)-1.pptx
Artificial-Intelligence-in-Autonomous-Vehicles (1)-1.pptx
AbhijitPal87
 
Cyber Security Presentation(Neon)xu.pptx
Cyber Security Presentation(Neon)xu.pptxCyber Security Presentation(Neon)xu.pptx
Cyber Security Presentation(Neon)xu.pptx
vilakshbhargava
 
IST606_SecurityManagement-slides_ 4 pdf
IST606_SecurityManagement-slides_ 4  pdfIST606_SecurityManagement-slides_ 4  pdf
IST606_SecurityManagement-slides_ 4 pdf
nwanjamakane
 
GROUP 7 CASE STUDY Real Life Incident.pptx
GROUP 7 CASE STUDY Real Life Incident.pptxGROUP 7 CASE STUDY Real Life Incident.pptx
GROUP 7 CASE STUDY Real Life Incident.pptx
mardoglenn21
 
Internal Architecture of Database Management Systems
Internal Architecture of Database Management SystemsInternal Architecture of Database Management Systems
Internal Architecture of Database Management Systems
M Munim
 
Tableau Finland User Group June 2025.pdf
Tableau Finland User Group June 2025.pdfTableau Finland User Group June 2025.pdf
Tableau Finland User Group June 2025.pdf
elinavihriala
 
Multi-Agent-Solution-Architecture-for-Unified-Loan-Platform.pptx
Multi-Agent-Solution-Architecture-for-Unified-Loan-Platform.pptxMulti-Agent-Solution-Architecture-for-Unified-Loan-Platform.pptx
Multi-Agent-Solution-Architecture-for-Unified-Loan-Platform.pptx
VikashVats1
 
refractiveindexexperimentdetailed-250528162156-4516aa1c.pptx
refractiveindexexperimentdetailed-250528162156-4516aa1c.pptxrefractiveindexexperimentdetailed-250528162156-4516aa1c.pptx
refractiveindexexperimentdetailed-250528162156-4516aa1c.pptx
KannanDamodaram
 
BADS-MBA-Unit 1 that what data science and Interpretation
BADS-MBA-Unit 1 that what data science and InterpretationBADS-MBA-Unit 1 that what data science and Interpretation
BADS-MBA-Unit 1 that what data science and Interpretation
srishtisingh1813
 
llm lecture 3 stanford blah blah blah blah
llm lecture 3 stanford blah blah blah blahllm lecture 3 stanford blah blah blah blah
llm lecture 3 stanford blah blah blah blah
saud140081
 
LECT CONCURRENCY………………..pdf document or power point
LECT CONCURRENCY………………..pdf document or power pointLECT CONCURRENCY………………..pdf document or power point
LECT CONCURRENCY………………..pdf document or power point
nwanjamakane
 
egc.pdf tài liệu tiếng Anh cho học sinh THPT
egc.pdf tài liệu tiếng Anh cho học sinh THPTegc.pdf tài liệu tiếng Anh cho học sinh THPT
egc.pdf tài liệu tiếng Anh cho học sinh THPT
huyenmy200809
 
HPC High Performance Course Presentation.pptx
HPC High Performance Course Presentation.pptxHPC High Performance Course Presentation.pptx
HPC High Performance Course Presentation.pptx
naziaahmadnm
 
Chronic constipation presentaion final.ppt
Chronic constipation presentaion final.pptChronic constipation presentaion final.ppt
Chronic constipation presentaion final.ppt
DrShashank7
 
9.-Composite-Dr.-B.-Nalini.pptxfdrtyuioklj
9.-Composite-Dr.-B.-Nalini.pptxfdrtyuioklj9.-Composite-Dr.-B.-Nalini.pptxfdrtyuioklj
9.-Composite-Dr.-B.-Nalini.pptxfdrtyuioklj
aishwaryavdcw
 
Али махмуд to The teacm of ghsbh to fortune .pptx
Али махмуд to The teacm of ghsbh to fortune .pptxАли махмуд to The teacm of ghsbh to fortune .pptx
Али махмуд to The teacm of ghsbh to fortune .pptx
palr19411
 
Human body make Structure analysis the part of the human
Human body make Structure analysis the part of the humanHuman body make Structure analysis the part of the human
Human body make Structure analysis the part of the human
ankit392215
 
EPC UNIT-V forengineeringstudentsin.pptx
EPC UNIT-V forengineeringstudentsin.pptxEPC UNIT-V forengineeringstudentsin.pptx
EPC UNIT-V forengineeringstudentsin.pptx
ExtremerZ
 
一比一原版(USC毕业证)南加利福尼亚大学毕业证如何办理
一比一原版(USC毕业证)南加利福尼亚大学毕业证如何办理一比一原版(USC毕业证)南加利福尼亚大学毕业证如何办理
一比一原版(USC毕业证)南加利福尼亚大学毕业证如何办理
Taqyea
 
531a07261283c4efb4cbae5fb8. Tele2 Sverige AB v post-och telestyrelsen, C-203:...
531a07261283c4efb4cbae5fb8. Tele2 Sverige AB v post-och telestyrelsen, C-203:...531a07261283c4efb4cbae5fb8. Tele2 Sverige AB v post-och telestyrelsen, C-203:...
531a07261283c4efb4cbae5fb8. Tele2 Sverige AB v post-och telestyrelsen, C-203:...
spratistha569
 
Artificial-Intelligence-in-Autonomous-Vehicles (1)-1.pptx
Artificial-Intelligence-in-Autonomous-Vehicles (1)-1.pptxArtificial-Intelligence-in-Autonomous-Vehicles (1)-1.pptx
Artificial-Intelligence-in-Autonomous-Vehicles (1)-1.pptx
AbhijitPal87
 
Cyber Security Presentation(Neon)xu.pptx
Cyber Security Presentation(Neon)xu.pptxCyber Security Presentation(Neon)xu.pptx
Cyber Security Presentation(Neon)xu.pptx
vilakshbhargava
 
IST606_SecurityManagement-slides_ 4 pdf
IST606_SecurityManagement-slides_ 4  pdfIST606_SecurityManagement-slides_ 4  pdf
IST606_SecurityManagement-slides_ 4 pdf
nwanjamakane
 
GROUP 7 CASE STUDY Real Life Incident.pptx
GROUP 7 CASE STUDY Real Life Incident.pptxGROUP 7 CASE STUDY Real Life Incident.pptx
GROUP 7 CASE STUDY Real Life Incident.pptx
mardoglenn21
 
Internal Architecture of Database Management Systems
Internal Architecture of Database Management SystemsInternal Architecture of Database Management Systems
Internal Architecture of Database Management Systems
M Munim
 
Tableau Finland User Group June 2025.pdf
Tableau Finland User Group June 2025.pdfTableau Finland User Group June 2025.pdf
Tableau Finland User Group June 2025.pdf
elinavihriala
 
Multi-Agent-Solution-Architecture-for-Unified-Loan-Platform.pptx
Multi-Agent-Solution-Architecture-for-Unified-Loan-Platform.pptxMulti-Agent-Solution-Architecture-for-Unified-Loan-Platform.pptx
Multi-Agent-Solution-Architecture-for-Unified-Loan-Platform.pptx
VikashVats1
 
refractiveindexexperimentdetailed-250528162156-4516aa1c.pptx
refractiveindexexperimentdetailed-250528162156-4516aa1c.pptxrefractiveindexexperimentdetailed-250528162156-4516aa1c.pptx
refractiveindexexperimentdetailed-250528162156-4516aa1c.pptx
KannanDamodaram
 
BADS-MBA-Unit 1 that what data science and Interpretation
BADS-MBA-Unit 1 that what data science and InterpretationBADS-MBA-Unit 1 that what data science and Interpretation
BADS-MBA-Unit 1 that what data science and Interpretation
srishtisingh1813
 
llm lecture 3 stanford blah blah blah blah
llm lecture 3 stanford blah blah blah blahllm lecture 3 stanford blah blah blah blah
llm lecture 3 stanford blah blah blah blah
saud140081
 
LECT CONCURRENCY………………..pdf document or power point
LECT CONCURRENCY………………..pdf document or power pointLECT CONCURRENCY………………..pdf document or power point
LECT CONCURRENCY………………..pdf document or power point
nwanjamakane
 
egc.pdf tài liệu tiếng Anh cho học sinh THPT
egc.pdf tài liệu tiếng Anh cho học sinh THPTegc.pdf tài liệu tiếng Anh cho học sinh THPT
egc.pdf tài liệu tiếng Anh cho học sinh THPT
huyenmy200809
 

Running Apache Spark Jobs Using Kubernetes

  • 2. Running Apache Spark Jobs Using Kubernetes Yaron Haviv CTO, Iguazio Marcelo Litovsky Solution Architect, Iguazio
  • 3. 85% of AI Projects Never Make it to Production Research Environment Production Pipeline Build from Scratch with a Large Team Manual extraction In-mem analysis Small scale training Manual evaluation Real-time ingestion Preparation at scale Train with many params & large data Real-time events & data features ETL Streaming APIs Sync
  • 4. Spark Help Us Scale ML Pipeline 4 ETL, Streaming, Logs, Scrapers, .. Ingest Prepare Train With hyper-params, multiple algorithms Validate Deploy ++ Join, Aggregate, Split, .. Test, deploy, monitor model & API serversServerless: ML & Analytics Functions Features/Data: Fast, Secure, Versioned base features train + test datasets model report report metricsRT features Selected model with test data
  • 5. Why Spark on Kubernetes? ▪ Unified management —Getting away from two cluster management interfaces if your organization already is using Kubernetes elsewhere. ▪ Ability to isolate jobs —You can move models and ETL pipelines from dev to production without the headaches of dependency management. ▪ Resilient infrastructure —You don’t worry about sizing and building the cluster, manipulating Docker files or networking configurations. ▪ Vibrant community constantly evolving 5
  • 6. Goodbye Hadoop, Hello Cloud-Native Eliminate complexity and inefficiency, gain cloud agility 6 YARN HbaseHDFS Map Reduce Pig, Hive, .. Data Orchestration Middleware Your Business Logic Consume Innovate Managed Storage and Databases Any Containerized Microservice
  • 7. Spark on Kubernetes 7 Diagram and Bullet point Credit: https://spark.apache.org/docs/latest/running-on-kubernetes.html#prerequisites • Spark creates a Spark driver running within a Kubernetes pod. • The driver creates executors which are also running within Kubernetes pods and connects to them, and executes application code. • When the application completes, the executor pods terminate and are cleaned up, but the driver pod persists logs and remains in “completed” state in the Kubernetes API until it’s eventually garbage collected or manually cleaned up.
  • 8. How to run your spark job in Kubernetes ? Cluster Mode Client Mode K8S Operator Spark Executors Client Spark-submit Spark driver Spark ExecutorsSpark driver Client Spark-submit Spark Executors Spark driver Spark Operator Kubernetes API kubectl
  • 9. Comparing Modes Client Mode Cluster Mode K8S Operator Execution environment Driver runs on job scheduling environment Driver runs in a Kubernetes pod Driver runs in a Kubernetes pod Driver pod communication User needs to define communications between driver and executors Kubernetes networking needs to be properly configured for drive and executor pods to communicate The operator enables proper communication between driver and executors Role based access controls User needs direct access to Kubernetes with proper RBAC User needs direct access to Kubernetes with proper RBAC The operator handles deployments. More flexibility configuring RBAC Execution Driver could be located in a separate host/container Driver runs in the same kubernetes cluster as executors Driver runs in the same kubernetes cluster as executors
  • 10. Demo I See repo: http://github.com/marcelonyc/igz_sparkk8s • Instructions to deploy Spark Operator on Docker Desktop • Configuration commands and files • Examples
  • 11. DevOps Challenges Remain ▪ Per J ob custom resources and configuration ▪ Specific runtime requirements and package dependencies ▪ Elastic scaling, resource limits &guarantees, .. ▪ ML Pipeline integration ▪ Coexistence/integration with other frameworks ▪ Resource and job monitoring ▪ …
  • 12. Serverless: resource elasticity (to Zero), automated deployment and operations Serverless Today Data Prep and Training Jobs Task lifespan Millisecs to mins Secs to hours Scaling Load-balancer Partition, shuffle, reduce, Hyper-params, RDD State Stateless Stateful Input Event Params, Datasets 6 Why Not Make Spark Serverless? Time we extend Serverless to data-science !
  • 13. ML & Analytics Functions Architecture User Code OR ML service Runtime / SaaS (e.g. Spark, Dask, Horovod, Nuclio, ..) Data / Feature stores Secrets Artifacts & Models Ops ML Pipeline Inputs OutputsML Function
  • 14. Serverless Spark ML Function Example https://github.com/mlrun/mlrun/blob/master/examples/mlrun_sparkk8s.ipynb
  • 15. Automating The Development & Tracking Workflow Write and test locally specify runtime configuration Run/scale on the cluster Build (if needed) Document & Publish Run in a Pipeline Track experiments/runs, functions and data image, deps cpu/gpu/mem data, volumes, .. Use published functions
  • 16. KubeFlow+Serverless: Automated ML Pipelines What is Kubeflow ? ▪ Operators for ML frameworks (lifecycle management, scale-out, ..) ▪ Managed notebooks ▪ ML Pipeline Automation ▪ With Serverless, we automate the deployment, execution, scaling and monitoring of our code 16
  • 17. • 4M global customers • 200 countries and territories - streaming global commerce • Understanding illicit patterns of behavior in real time based on 90 different parameters • Proactively preventing money laundering before it occurs Want To Move From Fraud Detection to Prevention And Cut Time To Production Fraud Prevention Case Study: Payoneer
  • 18. Traditional Fraud-Detection Architecture (Hadoop) 18 SQL Server Operational database ETL to the DWH every 30min Data warehouse Mirror table Offline processing (SQL) Feature vector Batch prediction Using R Server 40 Minutes to identify suspicious money laundering account 40 Precious Minutes (detect fraud after the fact) Long and complex process to production
  • 19. Moving To Real-Time Fraud Prevention 19 SQL Server Operational database CDC (Real-time) Real-time Ingestion Online + Offline Feature Store Model Training (sklearn) Model Inferencing (Nuclio) Block account ! Queue Analysis 12 Seconds (prevent fraud) 12 Seconds to detect and prevent fraud ! Automated dev to production using a serverless approach
  • 20. Demo II Fully automated ML Pipeline with Serverless Spark +Kubeflow
  • 21. Feedback Your feedback is important to us. Don’t forget to rate and review the sessions.