SlideShare a Scribd company logo
Solutions Architect, MongoDB
Marc Schwering
#MongoDBBasics @MongoDB @m4rcsch
Applikationsentwicklung mit MongoDB
Reporting & Aggregation
2
• Recap from last session
• Reporting / Analytics options
• Map Reduce
• Aggregation Framework introduction
– Aggregation explain
• mycms application reports
• Geospatial with Aggregation Framework
• Text Search with Aggregation Framework
Agenda
3
• Virtual Genius Bar
– Use the chat to post
questions
– EMEA Solution
Architecture / Support
team are on hand
– Make use of them
during the sessions!!!
Q & A
Recap from last time….
5
Indexing
• Indexes
• Multikey, compound,
‘dot.notation’
• Covered, sorting
• Text, GeoSpatial
• Btrees
>db.articles.ensureIndex( { author
: 1, tags : 1 } )
>db.user.find({user:"danr"}, {_id:0,
password:1})
>db.articles.ensureIndex( {
location: “2dsphere” } )
>>db.articles.ensureIndex(
{ "$**" : “text”,
name : “TextIndex”} )
options db.col.ensureIndex({ key : type})
6
Index performance / efficiency
• Examine index plans
• Identity slow queries
• n / nscanned ratio
• Which index used.
operators .explain() , db profiler
> db.articles.find(
{author:'Dan Roberts’})
.sort({date:-1}
).explain()
> db.setProfilingLevel(1,
100)
{ "was" : 0, "slowms" : 100,
"ok" : 1 }
> db.system.profile.find()
.pretty()
Reporting / Analytics options
8
• Query Language
– Leverage pre aggregated documents
• Aggregation Framework
– Calculate new values from the data that we have
– For instance : Average views, comments count
• MapReduce
– Internal Javascript based implementation
– External Hadoop, using the MongoDB connector
• A combination of the above
Access data for reporting, options
9
• Immediate results
– Simple from a query
perspective.
– Interactions collection
Pre Aggregated Reports
{
‘_id’ : ObjectId(..),
‘article_id’ : ObjectId(..),
‘section’ : ‘schema’,
‘date’ : ISODate(..),
‘daily’: { ‘views’ : 45,
‘comments’ : 150 }
‘hours’ : {
0 : { ‘views’ : 10 },
1 : { ‘views’ : 2 },
…
23 : { ‘views’ : 14,
‘comments’ : 10 }
}
}
> db.interactions.find(
{"article_id" : ObjectId(”…..")},
{_id:0, hourly:1}
)
10
• Use query result to display directly in application
– Create new REST API
– D3.js library or similar in UI
Pre Aggregated Reports
{
"hourly" : {
"0" : {
"view" : 1
},
"1" : {
"view" : 1
},
……
"22" : {
"view" : 5
},
"23" : {
"view" : 3
}
}
}
Map Reduce
12
• Map Reduce
– MongoDB – JavaScript
• Incremental Map Reduce
Map Reduce
//Map Reduce Example
> db.articles.mapReduce(
function() { emit(this.author, this.comment_count); },
function(key, values) { return Array.sum (values) },
{
query : {},
out: { merge: "comment_count" }
}
)
Output
{ "_id" : "Dan Roberts", "value" : 6 }
{ "_id" : "Jim Duffy", "value" : 1 }
{ "_id" : "Kunal Taneja", "value" : 2 }
{ "_id" : "Paul Done", "value" : 2 }
13
MongoDB – Hadoop Connector
Hadoop Integration
Primary
Secondary
Secondary
HDFS
Primary
Secondary
Secondary
Primary
Secondary
Secondary
Primary
Secondary
Secondary
HDFS HDFS HDFS
MapReduce MapReduce MapReduce MapReduce
MongoS MongoSMongoS
Application ApplicationApplication
Application
Dash Boards /
Reporting
1) Data Flow,
Input /
Output via
Application
Tier
Aggregation Framework
15
• Multi-stage pipeline
– Like a unix pipe –
• “ps -ef | grep mongod”
– Aggregate data, Transform
documents
– Implemented in the core server
Aggregation Framework
//Find out which are the most popular tags…
db.articles.aggregate([
{ $unwind : "$tags" },
{ $group : { _id : "$tags" , number : { $sum : 1 } } },
{ $sort : { number : -1 } }
])
Output
{ "_id" : "mongodb", "number" : 6 }
{ "_id" : "nosql", "number" : 3 }
{ "_id" : "database", "number" : 1 }
{ "_id" : "aggregation", "number" : 1 }
{ "_id" : "node", "number" : 1 }
16
In our mycms application..
//Our new python example
@app.route('/cms/api/v1.0/tag_counts', methods=['GET'])
def tag_counts():
pipeline = [ { "$unwind" : "$tags" },
{ "$group" : { "_id" : "$tags" , "number" : { "$sum" : 1 } }
},
{ "$sort" : { "number" : -1 } }]
cur = db['articles'].aggregate(pipeline, cursor={})
# Check everything ok
if not cur:
abort(400)
# iterate the cursor and add docs to a dict
tags = [tag for tag in cur]
return jsonify({'tags' : json.dumps(tags, default=json_util.default)})
17
• Pipeline and Expression operators
Aggregation operators
Pipeline
$match
$sort
$limit
$skip
$project
$unwind
$group
$geoNear
$text
$search
Tip: Other operators for date, time, boolean and string manipulation
Expression
$addToSet
$first
$last
$max
$min
$avg
$push
$sum
Arithmetic
$add
$divide
$mod
$multiply
$subtract
Conditional
$cond
$ifNull
Variables
$let
$map
18
• What reports and analytics do we need in our
application?
– Popular Tags
– Popular Articles
– Popular Locations – integration with Geo Spatial
– Average views per hour or day
Application Reports
19
• Unwind each ‘tags’ array
• Group and count each one, then Sort
• Output to new collection
– Query from new collection so don’t need to compute for
every request.
Popular Tags
db.articles.aggregate([
{ $unwind : "$tags" },
{ $group : { _id : "$tags" , number : { $sum : 1 } } },
{ $sort : { number : -1 } },
{ $out : "tags"}
])
20
• Top 5 articles by average daily views
– Use the $avg operator
– Use use $match to constrain data range
• Utilise with $gt and $lt operators
Popular Articles
db.interactions.aggregate([
{
{$match : { date :
{ $gt : ISODate("2014-02-20T00:00:00.000Z")}}},
{$group : {_id: "$article_id", a : { $avg : "$daily.view"}}},
{$sort : { a : -1}},
{$limit : 5}
]);
21
• Use Explain plan to ensure the efficient use of the
index when querying.
Aggregation Framework Explain
db.interactions.aggregate([
{$group : {_id: "$article_id", a : { $avg : "$daily.view"}}},
{$sort : { a : -1}},
{$limit : 5}
],
{explain : true}
);
22
Explain output…
{
"stages" : [
{
"$cursor" : { "query" : … }, "fields" : { … },
"plan" : {
"cursor" : "BasicCursor",
"isMultiKey" : false,
"scanAndOrder" : false,
"allPlans" : [
{
"cursor" : "BasicCursor",
"isMultiKey" : false,
"scanAndOrder" : false
}
]
}
}
},
…
"ok" : 1
}
Geo Spatial & Text Search
Aggregation
24
• $text operator with aggregation framework
– All articles with MongoDB
– Group by author, sort by comments count
Text Search
db.articles.aggregate([
{ $match: { $text: { $search: "mongodb" } } },
{ $group: { _id: "$author", comments:
{ $sum: "$comment_count" } } }
{$sort : {comments: -1}},
])
25
• $geoNear operator with aggregation framework
– Again use geo operator in the $match statement.
– Group by author, and article count.
Utilise with Geo spatial
db.articles.aggregate([
{ $match: { location: { $geoNear :
{ $geometry :
{ type: "Point" ,coordinates : [-0.128, 51.507] } },
$maxDistance :5000}
}
},
{ $group: { _id: "$author", articleCount: { $sum: 1 } } }
])
Summary
27
• Aggregating Data…
– Map Reduce
– Hadoop
– Pre-Aggregated Reports
– Aggregation Framework
• Tune with Explain plan
• Compute on the fly or Compute and store
• Geospatial
• Text Search
Summary
28
– MongoDB World Recap!
– Preview into the operation Series.
Next Session – 9th July
Webinar: Applikationsentwicklung mit MongoDB: Teil 5: Reporting & Aggregation

More Related Content

PPTX
1403 app dev series - session 5 - analytics
PPTX
MongoDB Aggregation
PDF
NoSQL meets Microservices - Michael Hackstein
PDF
MongoDB Aggregation Framework
PPTX
Query for json databases
PPTX
MongoDB - Aggregation Pipeline
PDF
Michael Hackstein - NoSQL meets Microservices - NoSQL matters Dublin 2015
PDF
Hadoop - MongoDB Webinar June 2014
1403 app dev series - session 5 - analytics
MongoDB Aggregation
NoSQL meets Microservices - Michael Hackstein
MongoDB Aggregation Framework
Query for json databases
MongoDB - Aggregation Pipeline
Michael Hackstein - NoSQL meets Microservices - NoSQL matters Dublin 2015
Hadoop - MongoDB Webinar June 2014

What's hot (19)

PDF
MongoDB With Style
PDF
MongoDB .local Paris 2020: La puissance du Pipeline d'Agrégation de MongoDB
PPTX
Aggregation in MongoDB
PDF
Aggregation Framework MongoDB Days Munich
PPTX
Webinarserie: Einführung in MongoDB: “Back to Basics” - Teil 3 - Interaktion ...
PPTX
2014 bigdatacamp asya_kamsky
ODP
Aggregation Framework in MongoDB Overview Part-1
PDF
Mongodb Aggregation Pipeline
PDF
Mongoskin - Guilin
ODP
ELK Stack - Turn boring logfiles into sexy dashboard
PPTX
Aggregation Framework
PPTX
Webinar: Exploring the Aggregation Framework
KEY
MongoDB Aggregation Framework
KEY
CouchDB on Android
PPTX
The Aggregation Framework
PDF
MongoDB Performance Tuning
PPTX
The Aggregation Framework
PPTX
Agg framework selectgroup feb2015 v2
MongoDB With Style
MongoDB .local Paris 2020: La puissance du Pipeline d'Agrégation de MongoDB
Aggregation in MongoDB
Aggregation Framework MongoDB Days Munich
Webinarserie: Einführung in MongoDB: “Back to Basics” - Teil 3 - Interaktion ...
2014 bigdatacamp asya_kamsky
Aggregation Framework in MongoDB Overview Part-1
Mongodb Aggregation Pipeline
Mongoskin - Guilin
ELK Stack - Turn boring logfiles into sexy dashboard
Aggregation Framework
Webinar: Exploring the Aggregation Framework
MongoDB Aggregation Framework
CouchDB on Android
The Aggregation Framework
MongoDB Performance Tuning
The Aggregation Framework
Agg framework selectgroup feb2015 v2
Ad

Viewers also liked (19)

PDF
Pre-Aggregated Analytics And Social Feeds Using MongoDB
PPTX
Analytic innovation transforming instagram data into predicitive analytics wi...
PDF
MongoDB - How to model and extract your data
PPTX
Realtime Analytics with MongoDB Counters (mongonyc 2012)
PDF
Analytic Data Report with MongoDB
PDF
Mongo db aggregation guide
PDF
Social Data and Log Analysis Using MongoDB
PPT
MongoDB Tick Data Presentation
PDF
Analytics with MongoDB Aggregation Framework and Hadoop Connector
PDF
Building the Modern Data Hub: Beyond the Traditional Enterprise Data Warehouse
PDF
MongoDB Europe 2016 - Advanced MongoDB Aggregation Pipelines
PDF
MongoDB Europe 2016 - Using MongoDB to Build a Fast and Scalable Content Repo...
PDF
Data Processing and Aggregation with MongoDB
PDF
MongoDB Europe 2016 - Graph Operations with MongoDB
PPTX
MongoDB for Spatio-Behavioral Data Analysis and Visualization
PDF
MongoDB Europe 2016 - Choosing Between 100 Billion Travel Options – Instant S...
PPTX
MongoDB for Time Series Data: Schema Design
PPTX
MongoDB for Time Series Data Part 3: Sharding
PPTX
MongoDB Analytics: Learn Aggregation by Example - Exploratory Analytics and V...
Pre-Aggregated Analytics And Social Feeds Using MongoDB
Analytic innovation transforming instagram data into predicitive analytics wi...
MongoDB - How to model and extract your data
Realtime Analytics with MongoDB Counters (mongonyc 2012)
Analytic Data Report with MongoDB
Mongo db aggregation guide
Social Data and Log Analysis Using MongoDB
MongoDB Tick Data Presentation
Analytics with MongoDB Aggregation Framework and Hadoop Connector
Building the Modern Data Hub: Beyond the Traditional Enterprise Data Warehouse
MongoDB Europe 2016 - Advanced MongoDB Aggregation Pipelines
MongoDB Europe 2016 - Using MongoDB to Build a Fast and Scalable Content Repo...
Data Processing and Aggregation with MongoDB
MongoDB Europe 2016 - Graph Operations with MongoDB
MongoDB for Spatio-Behavioral Data Analysis and Visualization
MongoDB Europe 2016 - Choosing Between 100 Billion Travel Options – Instant S...
MongoDB for Time Series Data: Schema Design
MongoDB for Time Series Data Part 3: Sharding
MongoDB Analytics: Learn Aggregation by Example - Exploratory Analytics and V...
Ad

Similar to Webinar: Applikationsentwicklung mit MongoDB : Teil 5: Reporting & Aggregation (20)

PDF
Webinar: Managing Real Time Risk Analytics with MongoDB
PPTX
Marc s01 e02-crud-database
PDF
MongoDB FabLab León
PDF
MongoDB.local DC 2018: Tutorial - Data Analytics with MongoDB
PDF
Using MongoDB and Python
PDF
2016 feb-23 pyugre-py_mongo
PPTX
How to leverage MongoDB for Big Data Analysis and Operations with MongoDB's A...
PDF
MongoDB.pdf
PPTX
SH 2 - SES 3 - MongoDB Aggregation Framework.pptx
PPTX
Webinar: Building Your First Application with MongoDB
PDF
MongoDB Meetup
PPTX
S01 e00 einfuehrung-in_mongodb
PPTX
Joins and Other Aggregation Enhancements Coming in MongoDB 3.2
PPT
Schema Design by Chad Tindel, Solution Architect, 10gen
PDF
MongoDB Atlas Workshop - Singapore
PDF
Mongo db eveningschemadesign
PDF
MongoDB and the MEAN Stack
PDF
MongoDB Introduction talk at Dr Dobbs Conference, MongoDB Evenings at Bangalo...
PPTX
Past, Present and Future of Data Processing in Apache Hadoop
PDF
Confluent & MongoDB APAC Lunch & Learn
Webinar: Managing Real Time Risk Analytics with MongoDB
Marc s01 e02-crud-database
MongoDB FabLab León
MongoDB.local DC 2018: Tutorial - Data Analytics with MongoDB
Using MongoDB and Python
2016 feb-23 pyugre-py_mongo
How to leverage MongoDB for Big Data Analysis and Operations with MongoDB's A...
MongoDB.pdf
SH 2 - SES 3 - MongoDB Aggregation Framework.pptx
Webinar: Building Your First Application with MongoDB
MongoDB Meetup
S01 e00 einfuehrung-in_mongodb
Joins and Other Aggregation Enhancements Coming in MongoDB 3.2
Schema Design by Chad Tindel, Solution Architect, 10gen
MongoDB Atlas Workshop - Singapore
Mongo db eveningschemadesign
MongoDB and the MEAN Stack
MongoDB Introduction talk at Dr Dobbs Conference, MongoDB Evenings at Bangalo...
Past, Present and Future of Data Processing in Apache Hadoop
Confluent & MongoDB APAC Lunch & Learn

More from MongoDB (20)

PDF
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
PDF
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
PDF
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
PDF
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
PDF
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
PDF
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
PDF
MongoDB SoCal 2020: MongoDB Atlas Jump Start
PDF
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
PDF
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
PDF
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
PDF
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
PDF
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
PDF
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
PDF
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
PDF
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
PDF
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
PDF
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
PDF
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
PDF
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
PDF
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...

Recently uploaded (20)

PDF
How Onsite IT Support Drives Business Efficiency, Security, and Growth.pdf
PPTX
breach-and-attack-simulation-cybersecurity-india-chennai-defenderrabbit-2025....
PDF
Why Endpoint Security Is Critical in a Remote Work Era?
PPTX
Comunidade Salesforce São Paulo - Desmistificando o Omnistudio (Vlocity)
PDF
SparkLabs Primer on Artificial Intelligence 2025
PDF
Using Anchore and DefectDojo to Stand Up Your DevSecOps Function
PDF
Software Development Methodologies in 2025
PDF
Orbitly Pitch Deck|A Mission-Driven Platform for Side Project Collaboration (...
PDF
Test Bank, Solutions for Java How to Program, An Objects-Natural Approach, 12...
PDF
Chapter 2 Digital Image Fundamentals.pdf
PPTX
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
PDF
NewMind AI Monthly Chronicles - July 2025
PDF
BLW VOCATIONAL TRAINING SUMMER INTERNSHIP REPORT
PDF
NewMind AI Weekly Chronicles - July'25 - Week IV
PDF
CIFDAQ's Token Spotlight: SKY - A Forgotten Giant's Comeback?
PPTX
Understanding_Digital_Forensics_Presentation.pptx
PDF
Building High-Performance Oracle Teams: Strategic Staffing for Database Manag...
PDF
Transforming Manufacturing operations through Intelligent Integrations
PPTX
ChatGPT's Deck on The Enduring Legacy of Fax Machines
PDF
GamePlan Trading System Review: Professional Trader's Honest Take
How Onsite IT Support Drives Business Efficiency, Security, and Growth.pdf
breach-and-attack-simulation-cybersecurity-india-chennai-defenderrabbit-2025....
Why Endpoint Security Is Critical in a Remote Work Era?
Comunidade Salesforce São Paulo - Desmistificando o Omnistudio (Vlocity)
SparkLabs Primer on Artificial Intelligence 2025
Using Anchore and DefectDojo to Stand Up Your DevSecOps Function
Software Development Methodologies in 2025
Orbitly Pitch Deck|A Mission-Driven Platform for Side Project Collaboration (...
Test Bank, Solutions for Java How to Program, An Objects-Natural Approach, 12...
Chapter 2 Digital Image Fundamentals.pdf
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
NewMind AI Monthly Chronicles - July 2025
BLW VOCATIONAL TRAINING SUMMER INTERNSHIP REPORT
NewMind AI Weekly Chronicles - July'25 - Week IV
CIFDAQ's Token Spotlight: SKY - A Forgotten Giant's Comeback?
Understanding_Digital_Forensics_Presentation.pptx
Building High-Performance Oracle Teams: Strategic Staffing for Database Manag...
Transforming Manufacturing operations through Intelligent Integrations
ChatGPT's Deck on The Enduring Legacy of Fax Machines
GamePlan Trading System Review: Professional Trader's Honest Take

Webinar: Applikationsentwicklung mit MongoDB : Teil 5: Reporting & Aggregation

  • 1. Solutions Architect, MongoDB Marc Schwering #MongoDBBasics @MongoDB @m4rcsch Applikationsentwicklung mit MongoDB Reporting & Aggregation
  • 2. 2 • Recap from last session • Reporting / Analytics options • Map Reduce • Aggregation Framework introduction – Aggregation explain • mycms application reports • Geospatial with Aggregation Framework • Text Search with Aggregation Framework Agenda
  • 3. 3 • Virtual Genius Bar – Use the chat to post questions – EMEA Solution Architecture / Support team are on hand – Make use of them during the sessions!!! Q & A
  • 4. Recap from last time….
  • 5. 5 Indexing • Indexes • Multikey, compound, ‘dot.notation’ • Covered, sorting • Text, GeoSpatial • Btrees >db.articles.ensureIndex( { author : 1, tags : 1 } ) >db.user.find({user:"danr"}, {_id:0, password:1}) >db.articles.ensureIndex( { location: “2dsphere” } ) >>db.articles.ensureIndex( { "$**" : “text”, name : “TextIndex”} ) options db.col.ensureIndex({ key : type})
  • 6. 6 Index performance / efficiency • Examine index plans • Identity slow queries • n / nscanned ratio • Which index used. operators .explain() , db profiler > db.articles.find( {author:'Dan Roberts’}) .sort({date:-1} ).explain() > db.setProfilingLevel(1, 100) { "was" : 0, "slowms" : 100, "ok" : 1 } > db.system.profile.find() .pretty()
  • 8. 8 • Query Language – Leverage pre aggregated documents • Aggregation Framework – Calculate new values from the data that we have – For instance : Average views, comments count • MapReduce – Internal Javascript based implementation – External Hadoop, using the MongoDB connector • A combination of the above Access data for reporting, options
  • 9. 9 • Immediate results – Simple from a query perspective. – Interactions collection Pre Aggregated Reports { ‘_id’ : ObjectId(..), ‘article_id’ : ObjectId(..), ‘section’ : ‘schema’, ‘date’ : ISODate(..), ‘daily’: { ‘views’ : 45, ‘comments’ : 150 } ‘hours’ : { 0 : { ‘views’ : 10 }, 1 : { ‘views’ : 2 }, … 23 : { ‘views’ : 14, ‘comments’ : 10 } } } > db.interactions.find( {"article_id" : ObjectId(”…..")}, {_id:0, hourly:1} )
  • 10. 10 • Use query result to display directly in application – Create new REST API – D3.js library or similar in UI Pre Aggregated Reports { "hourly" : { "0" : { "view" : 1 }, "1" : { "view" : 1 }, …… "22" : { "view" : 5 }, "23" : { "view" : 3 } } }
  • 12. 12 • Map Reduce – MongoDB – JavaScript • Incremental Map Reduce Map Reduce //Map Reduce Example > db.articles.mapReduce( function() { emit(this.author, this.comment_count); }, function(key, values) { return Array.sum (values) }, { query : {}, out: { merge: "comment_count" } } ) Output { "_id" : "Dan Roberts", "value" : 6 } { "_id" : "Jim Duffy", "value" : 1 } { "_id" : "Kunal Taneja", "value" : 2 } { "_id" : "Paul Done", "value" : 2 }
  • 13. 13 MongoDB – Hadoop Connector Hadoop Integration Primary Secondary Secondary HDFS Primary Secondary Secondary Primary Secondary Secondary Primary Secondary Secondary HDFS HDFS HDFS MapReduce MapReduce MapReduce MapReduce MongoS MongoSMongoS Application ApplicationApplication Application Dash Boards / Reporting 1) Data Flow, Input / Output via Application Tier
  • 15. 15 • Multi-stage pipeline – Like a unix pipe – • “ps -ef | grep mongod” – Aggregate data, Transform documents – Implemented in the core server Aggregation Framework //Find out which are the most popular tags… db.articles.aggregate([ { $unwind : "$tags" }, { $group : { _id : "$tags" , number : { $sum : 1 } } }, { $sort : { number : -1 } } ]) Output { "_id" : "mongodb", "number" : 6 } { "_id" : "nosql", "number" : 3 } { "_id" : "database", "number" : 1 } { "_id" : "aggregation", "number" : 1 } { "_id" : "node", "number" : 1 }
  • 16. 16 In our mycms application.. //Our new python example @app.route('/cms/api/v1.0/tag_counts', methods=['GET']) def tag_counts(): pipeline = [ { "$unwind" : "$tags" }, { "$group" : { "_id" : "$tags" , "number" : { "$sum" : 1 } } }, { "$sort" : { "number" : -1 } }] cur = db['articles'].aggregate(pipeline, cursor={}) # Check everything ok if not cur: abort(400) # iterate the cursor and add docs to a dict tags = [tag for tag in cur] return jsonify({'tags' : json.dumps(tags, default=json_util.default)})
  • 17. 17 • Pipeline and Expression operators Aggregation operators Pipeline $match $sort $limit $skip $project $unwind $group $geoNear $text $search Tip: Other operators for date, time, boolean and string manipulation Expression $addToSet $first $last $max $min $avg $push $sum Arithmetic $add $divide $mod $multiply $subtract Conditional $cond $ifNull Variables $let $map
  • 18. 18 • What reports and analytics do we need in our application? – Popular Tags – Popular Articles – Popular Locations – integration with Geo Spatial – Average views per hour or day Application Reports
  • 19. 19 • Unwind each ‘tags’ array • Group and count each one, then Sort • Output to new collection – Query from new collection so don’t need to compute for every request. Popular Tags db.articles.aggregate([ { $unwind : "$tags" }, { $group : { _id : "$tags" , number : { $sum : 1 } } }, { $sort : { number : -1 } }, { $out : "tags"} ])
  • 20. 20 • Top 5 articles by average daily views – Use the $avg operator – Use use $match to constrain data range • Utilise with $gt and $lt operators Popular Articles db.interactions.aggregate([ { {$match : { date : { $gt : ISODate("2014-02-20T00:00:00.000Z")}}}, {$group : {_id: "$article_id", a : { $avg : "$daily.view"}}}, {$sort : { a : -1}}, {$limit : 5} ]);
  • 21. 21 • Use Explain plan to ensure the efficient use of the index when querying. Aggregation Framework Explain db.interactions.aggregate([ {$group : {_id: "$article_id", a : { $avg : "$daily.view"}}}, {$sort : { a : -1}}, {$limit : 5} ], {explain : true} );
  • 22. 22 Explain output… { "stages" : [ { "$cursor" : { "query" : … }, "fields" : { … }, "plan" : { "cursor" : "BasicCursor", "isMultiKey" : false, "scanAndOrder" : false, "allPlans" : [ { "cursor" : "BasicCursor", "isMultiKey" : false, "scanAndOrder" : false } ] } } }, … "ok" : 1 }
  • 23. Geo Spatial & Text Search Aggregation
  • 24. 24 • $text operator with aggregation framework – All articles with MongoDB – Group by author, sort by comments count Text Search db.articles.aggregate([ { $match: { $text: { $search: "mongodb" } } }, { $group: { _id: "$author", comments: { $sum: "$comment_count" } } } {$sort : {comments: -1}}, ])
  • 25. 25 • $geoNear operator with aggregation framework – Again use geo operator in the $match statement. – Group by author, and article count. Utilise with Geo spatial db.articles.aggregate([ { $match: { location: { $geoNear : { $geometry : { type: "Point" ,coordinates : [-0.128, 51.507] } }, $maxDistance :5000} } }, { $group: { _id: "$author", articleCount: { $sum: 1 } } } ])
  • 27. 27 • Aggregating Data… – Map Reduce – Hadoop – Pre-Aggregated Reports – Aggregation Framework • Tune with Explain plan • Compute on the fly or Compute and store • Geospatial • Text Search Summary
  • 28. 28 – MongoDB World Recap! – Preview into the operation Series. Next Session – 9th July

Editor's Notes

  • #10: db.interactions.find({"article_id" : ObjectId("532198379fb5ba99a6bd4063")}) db.interactions.find({"article_id" : ObjectId("532198379fb5ba99a6bd4063")},{_id:0,hourly:1})