Quadratics:

Completing the
   square
   LO 11.2 4
Completing the square.
Factorise the following:-
1. x2 – 3x + 9     = ( x – 3)(x – 3)

2. x2 + 8x + 16    = ( x + 4)(x + 4)

3. 2x2 – 8x + 8    = 2(x2 – 4x + 4)
                   = 2(x – 2)(x – 2)


       □ □
4. x2 - 10x + 25   = ( x − 5 )( x      − 5)
Completing the square
Eg1
  x2 - 8 x - 7                  Space out
= x2 – 8x           -7
               8
                                b
                                 /2 : add and
= x2 - 8 x + ( 2)2 - 7 – ( 16
                            )   subtract same
= x2 - 8 x + ( 4 )2 - 7 – 16    number


=(x–4)2              - 23
Completing the square
Eg1                              NB coefficient of x
 3x2 – 12x + 9                   MUST be 1

= 3[ x2 – 4x + 3]                Common factor

= 3[x2 – 4x          +3       ] Space out
                 4              b
                                  /2 : add and subtract
= 3[x – 4 x + ( 2 ) + 3 – ( 4)]
     2             2

                                       same number.
= 3[x – 4 x + ( 2 ) + 3 – 4]
     2               2


= 3[ ( x – 2 ) 2        – 1]
                                 Multiply both terms
=3(x–2)2 – 3                     by 3
Completing the square.
•    Do the following:-

1. x2 + 6x + 1

2.   x2 – 5x + 3

3.   2x2 + 8x – 4

4.   3x2 – 9x + 2
Completing the square
• Solutions
1. x2 + 6x + 1
  = x2 + 6x +(6/2)2 + 1 – 9
  = (x + 3)2     - 8

2. x2 – 5x + 3
  = x2 – 5x +( 5/2)2 + 3 – 25/4
  = (x – 5/2 )2      + 3 – 61/4

  = (x – 21/2)2 - 3 1/4
Completing the square.
•  Solutions cont.
3. 2x2 + 8x – 4
 = 2[ x2 + 4x          –2      ]
 = 2[ x2 + 4x +( 4/2)2 – 2 – 4]
 = 2[ ( x + 2)2          – 6]
 = 2( x + 2 )2 - 12
Completing the square
Solutions cont
4. 3 x 2 – 9x – 2
  = 3[ x2 – 3x               – 2/ 3          ]
  = 3[ x2 – 3x + (3/2)2 – 2/3 – 9/4 ]
  = 3[ ( x – 3/2) 2         – 8/12 – 27/12 ]
  = 3[ ( x – 3/2 )2           – 35/12 ]
  = 3( x – 3/2 ) 2 – 35/4 .
Solving for x:
  x2 – 3x – 7           =0
  x 2 – 3x              =7
 x2 - 3x + (3/2)2 = 7 + (9/4)
( x - 3/2 )2            = 28/4 + 9/4
( x – 3/2 )2             = 37/4
                          37
 x – 3/2               =± 4
                           3   37        3 ± 37
 x                     =     ±         =
                           2    4           2
Solving for x
1 2x2 + 8x – 4 = 0
  x2 + 4x – 2      =0
  x2 + 4x          =2
    x2 + 4x + ( 4/2)2   =2+4
   ( x + 2)2            = 6
     x+2                =± 6
     x                  = -2 ± 6
ax2 + bx + c                     =0
                    c        c                   c
x2 + (b/a) x +            − 0
                          = a            −
                    a                            a
                  b 2             b2 
x + ( /a)x +
 2   b
                               =  2-
                                    4a             /a
                                                     c
                  2a                 
                                         b − 4ac
                                             2


                                           4a 2
( x + b/2a ) 2                   =       ± b 2 − 4ac
                                            2a
x + b/2a         b            =
                      b 2 − 4ac           − b ± b − 4ac   2
               −    ±
                 2a      2a                     2a
x        =                           =

Solving quadratic equations by completing a square

  • 1.
  • 2.
    Completing the square. Factorisethe following:- 1. x2 – 3x + 9 = ( x – 3)(x – 3) 2. x2 + 8x + 16 = ( x + 4)(x + 4) 3. 2x2 – 8x + 8 = 2(x2 – 4x + 4) = 2(x – 2)(x – 2) □ □ 4. x2 - 10x + 25 = ( x − 5 )( x − 5)
  • 3.
    Completing the square Eg1 x2 - 8 x - 7 Space out = x2 – 8x -7 8 b /2 : add and = x2 - 8 x + ( 2)2 - 7 – ( 16 ) subtract same = x2 - 8 x + ( 4 )2 - 7 – 16 number =(x–4)2 - 23
  • 4.
    Completing the square Eg1 NB coefficient of x 3x2 – 12x + 9 MUST be 1 = 3[ x2 – 4x + 3] Common factor = 3[x2 – 4x +3 ] Space out 4 b /2 : add and subtract = 3[x – 4 x + ( 2 ) + 3 – ( 4)] 2 2 same number. = 3[x – 4 x + ( 2 ) + 3 – 4] 2 2 = 3[ ( x – 2 ) 2 – 1] Multiply both terms =3(x–2)2 – 3 by 3
  • 5.
    Completing the square. • Do the following:- 1. x2 + 6x + 1 2. x2 – 5x + 3 3. 2x2 + 8x – 4 4. 3x2 – 9x + 2
  • 6.
    Completing the square •Solutions 1. x2 + 6x + 1 = x2 + 6x +(6/2)2 + 1 – 9 = (x + 3)2 - 8 2. x2 – 5x + 3 = x2 – 5x +( 5/2)2 + 3 – 25/4 = (x – 5/2 )2 + 3 – 61/4 = (x – 21/2)2 - 3 1/4
  • 7.
    Completing the square. • Solutions cont. 3. 2x2 + 8x – 4 = 2[ x2 + 4x –2 ] = 2[ x2 + 4x +( 4/2)2 – 2 – 4] = 2[ ( x + 2)2 – 6] = 2( x + 2 )2 - 12
  • 8.
    Completing the square Solutionscont 4. 3 x 2 – 9x – 2 = 3[ x2 – 3x – 2/ 3 ] = 3[ x2 – 3x + (3/2)2 – 2/3 – 9/4 ] = 3[ ( x – 3/2) 2 – 8/12 – 27/12 ] = 3[ ( x – 3/2 )2 – 35/12 ] = 3( x – 3/2 ) 2 – 35/4 .
  • 9.
    Solving for x: x2 – 3x – 7 =0 x 2 – 3x =7 x2 - 3x + (3/2)2 = 7 + (9/4) ( x - 3/2 )2 = 28/4 + 9/4 ( x – 3/2 )2 = 37/4 37 x – 3/2 =± 4 3 37 3 ± 37 x = ± = 2 4 2
  • 10.
    Solving for x 12x2 + 8x – 4 = 0 x2 + 4x – 2 =0 x2 + 4x =2 x2 + 4x + ( 4/2)2 =2+4 ( x + 2)2 = 6 x+2 =± 6 x = -2 ± 6
  • 11.
    ax2 + bx+ c =0 c c c x2 + (b/a) x + − 0 = a − a a  b 2  b2  x + ( /a)x + 2 b   =  2-  4a  /a c  2a    b − 4ac 2 4a 2 ( x + b/2a ) 2 = ± b 2 − 4ac 2a x + b/2a b = b 2 − 4ac − b ± b − 4ac 2 − ± 2a 2a 2a x = =