Some recent developments in
the traffic flow variational formulation
Guillaume Costeseque
collaborations with J-P. Lebacque and J. Laval
Inria Sophia-Antipolis M´editerran´ee
S´eminaire Mod´elisation des R´eseaux de Transports
– IFSTTAR Marne-la-Vall´ee –
May 12, 2016
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 1 / 50
Motivation
HJ & Lax-Hopf formula
Hamilton-Jacobi equations: why and what for?
Smoothness of the solution (no shocks)
Physically meaningful quantity
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 2 / 50
Motivation
HJ & Lax-Hopf formula
Hamilton-Jacobi equations: why and what for?
Smoothness of the solution (no shocks)
Physically meaningful quantity
Analytical expression of the solution
Efficient computational methods
Easy integration of GPS data
[Mazar´e et al, 2012]
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 2 / 50
Motivation
HJ & Lax-Hopf formula
Hamilton-Jacobi equations: why and what for?
Smoothness of the solution (no shocks)
Physically meaningful quantity
Analytical expression of the solution
Efficient computational methods
Easy integration of GPS data
[Mazar´e et al, 2012]
Everything broken for network applications?
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 2 / 50
Motivation
Network model
Simple case study: generalized three-detector problem (Newell (1993))
N(t, x)
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 3 / 50
Motivation
Outline
1 Notations from traffic flow modeling
2 Basic recalls on Lax-Hopf formula
3 Hamilton-Jacobi and source terms
4 Hamilton-Jacobi on networks
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 4 / 50
Notations from traffic flow modeling
Outline
1 Notations from traffic flow modeling
2 Basic recalls on Lax-Hopf formula
3 Hamilton-Jacobi and source terms
4 Hamilton-Jacobi on networks
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 5 / 50
Notations from traffic flow modeling
Convention for vehicle labeling
N
x
t
Flow
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 6 / 50
Notations from traffic flow modeling
Three representations of traffic flow
Moskowitz’ surface
Flow
x
t
N
x
See also [Makigami et al, 1971], [Laval and Leclercq, 2013]
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 7 / 50
Notations from traffic flow modeling
Overview: conservation laws (CL) / Hamilton-Jacobi (HJ)
Eulerian Lagrangian
t − x t − n
CL
Variable Density ρ Spacing r
Equation ∂tρ + ∂x Q(ρ) = 0 ∂tr + ∂x V (r) = 0
HJ
Variable Label N Position X
N(t, x) =
+∞
x
ρ(t, ξ)dξ X(t, n) =
+∞
n
r(t, η)dη
Equation ∂tN + H (∂x N) = 0 ∂tX + V (∂x X) = 0
Hamiltonian H(p) = −Q(−p) V(p) = −V (−p)
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 8 / 50
Basic recalls on Lax-Hopf formula
Outline
1 Notations from traffic flow modeling
2 Basic recalls on Lax-Hopf formula
3 Hamilton-Jacobi and source terms
4 Hamilton-Jacobi on networks
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 9 / 50
Basic recalls on Lax-Hopf formula Lax-Hopf formula
Setting
Consider Cauchy problem
ut + H(Du) = 0, in Rn × (0, +∞),
u(., 0) = u0(.), on Rn.
(1)
Two formulas according to the smoothness of
the Hamiltonian H
the initial data u0
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 10 / 50
Basic recalls on Lax-Hopf formula Lax-Hopf formula
Lax-Hopf formulæ
Assumptions: case 1
(A1) H : Rn → R is convex
(A2) u0 : Rn → R is uniformly Lipschitz
Theorem (First Lax-Hopf formula)
If (A1)-(A2) hold true, then
u(x, t) := inf
z∈Rn
sup
y∈Rn
[u0(z) + y.(x − z) − tH(y)] (2)
is the unique uniformly continuous viscosity solution of (1).
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 11 / 50
Basic recalls on Lax-Hopf formula Lax-Hopf formula
Legendre-Fenchel transform
First Lax-Hopf formula (2) can be recast as
u(x, t) := inf
z∈Rn
u0(z) − tH∗ x − z
t
thanks to Legendre-Fenchel transform
L(z) = H∗
(z) := sup
y∈Rn
(y.z − H(y)) .
Proposition (Bi-conjugate)
If H is strictly convex, 1-coercive i.e. lim
|p|→∞
H(p)
|p|
= +∞,
then H∗ is also convex and
(H∗
)∗
= H.
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 12 / 50
Basic recalls on Lax-Hopf formula Lax-Hopf formula
Legendre-Fenchel transform
First Lax-Hopf formula (2) can be recast as
u(x, t) := inf
z∈Rn
u0(z) − tH∗ x − z
t
thanks to Legendre-Fenchel transform
L(z) = H∗
(z) := sup
y∈Rn
(y.z − H(y)) .
Proposition (Bi-conjugate)
If H is strictly convex, 1-coercive i.e. lim
|p|→∞
H(p)
|p|
= +∞,
then H∗ is also convex and
(H∗
)∗
= H.
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 12 / 50
Basic recalls on Lax-Hopf formula LWR in Eulerian
LWR in Eulerian (t, x)
Cumulative vehicles count (CVC) or Moskowitz surface N(t, x)
q = ∂tN and ρ = −∂x N
If density ρ satisfies the scalar (LWR) conservation law
∂tρ + ∂x Q(ρ) = 0
Then N satisfies the first order Hamilton-Jacobi equation
∂tN − Q(−∂x N) = 0 (3)
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 13 / 50
Basic recalls on Lax-Hopf formula LWR in Eulerian
LWR in Eulerian (t, x)
Legendre-Fenchel transform with Q concave (relative capacity)
M(q) = sup
ρ
[Q(ρ) − ρq]
M(q)
u
w
Density ρ
q
q
Flow F
w u
q
Transform M
−wρmax
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 14 / 50
Basic recalls on Lax-Hopf formula LWR in Eulerian
LWR in Eulerian (t, x)
(continued)
Lax-Hopf formula
N(T, xT ) = min
u(.),(t0,x0)
T
t0
M(u(τ))dτ + N(t0, x0),
˙X = u
u ∈ U
X(t0) = x0, X(T) = xT
(t0, x0) ∈ J
(4) Time
Space
J
(T, xT )˙X(τ)
(t0, x0)
Viability theory [Claudel and Bayen, 2010]
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 15 / 50
Basic recalls on Lax-Hopf formula LWR in Eulerian
LWR in Eulerian (t, x)
(Historical note)
Dynamic programming [Daganzo, 2006] for triangular FD
(u and w free and congested speeds)
Flow, F
w
u
0 ρmax
Density, ρ
u
x
w
t
Time
Space
(t, x)
Minimum principle [Newell, 1993]
N(t, x) = min N t −
x − xu
u
, xu ,
N t −
x − xw
w
, xw + ρmax (xw − x) ,
(5)
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 16 / 50
Hamilton-Jacobi and source terms
Outline
1 Notations from traffic flow modeling
2 Basic recalls on Lax-Hopf formula
3 Hamilton-Jacobi and source terms
4 Hamilton-Jacobi on networks
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 17 / 50
Hamilton-Jacobi and source terms Problem Formulation
Long homogeneous corridor with numerous entrances and exits
Net lateral freeway “inflow” rate φ
Flow
inflow
outflow
= φ
∂tρ + ∂x H(ρ) = φ,
k = g on Γ
(6)
∂tN − H (−∂x N) = Φ,
N = G on Γ,
(7)
where
Φ(t, x) = −
x
0
φ(t, y)dy
G(t, x) =
Γ
g(t, x)dΓ, (t, x) ∈ Γ
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 18 / 50
Hamilton-Jacobi and source terms Problem Formulation
Some remarks
The flow reads q = Nt − Φ and the cumulative count curves are
N(t, x) =
t
0
q(s, x)ds
usual N-curve
+
t
0
x
0
φ(s, y)dsdy
net number of vehicles “entering”
If φ = φ(k) then
Φ(t, x) = ˜Φ(t, x, −Nx ) = −
x
0
φ(−Nx (t, y))dy, (8)
This means that (7) becomes the more general HJ equation
Nt − ˜H(t, x, −Nx ) = 0
where ˜H(t, x, k) = H(k) + ˜Φ(t, x, k).
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 19 / 50
Hamilton-Jacobi and source terms Exogenous inflow
Variational problem
Lax-Hopf formula:
N(P) = min
B∈ΓP , ξ∈VBP
f (B, ξ) (9)
f (B, ξ) := G(B) +
t
tB
R(s, ξ(s), ξ′
(s)) ds
P ≡ (t, x) “target” point
B ≡ (tB , y) on the boundary ΓP
ξ ∈ VBP set of valid paths B → P
R(·) Legendre transform of ˜H
R(t, x, v) = sup
k
˜H(t, x, k) − vk .
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 20 / 50
Hamilton-Jacobi and source terms Exogenous inflow
Assume a triangular flow-density diagram
The function f (B, ξ) to be minimized reads
f (B, ξ) = G(B) + (t − tB)Q − (x − y)K +
t
tB
Φ(s, ξ(s)) ds
=:J
(10)
where Q = capacity, K = critical density.
J = net number of vehicles leaving the area
A(ξ) below the curve x = ξ(t)
J = −
t
tB
ξ(s)
y
φ(s, x) dxds, (11)
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 21 / 50
Hamilton-Jacobi and source terms Exogenous inflow
Initial value problems with constant density
Assume
N(0, x) = G(x) = −k0x (g(x) = k0) ,
φ(t, x) = a,
(12)
min f (B ≡ (y, 0), ξ) reached for a path
(i) maximizing A(ξ) when a > 0
(ii) or minimizing A(ξ) when a < 0
f (y) = c0 + c1y + c2y2 with c2 > 0
Explicit solution:
N(t, x) =
f (y∗), t > K−k0
a > 0
min{f (xU), f (xD)}, otherwise
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 22 / 50
Hamilton-Jacobi and source terms Exogenous inflow
Extended Riemann problem (ERP)
Consider
(g(x), φ(x)) =
(kU, aU), x ≤ x0
(kD, aD), x > x0,
(13)
Assuming G(x0) = 0
G(x) =
(x0 − x)kU , x ≤ x0
(x0 − x)kD , x > x0
(14)
J-integral = weighted average of the portion of
A(ξ) upstream and downstream of x = x0 with
weighs aU and aD
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 23 / 50
Hamilton-Jacobi and source terms Exogenous inflow
Extended Riemann problem (ERP)
(continued)
Same minimization of J(ξ)
f (y) = G(y) + tQ − (x0 − y)K + J(y) with
J(y) =
min{j1(y), j2(y), j3(y)}, y > x0
min{j4(y), j5(y), j6(y)}, y ≤ x0
Possible minima for the components of f (y)
y = yi ∈ ΓP
, i = 1, . . . 6
Semi-explicit solution (9 candidates):
N(t, x0) = min
y∈Y
f (y)
Y = {xU, x0, xD, y∗
1 , . . . y∗
6 }
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 24 / 50
Hamilton-Jacobi and source terms Numerical solution methods
Godunov’s method
Basis of the well known Cell Transmission (CT) model
Time and space increments ∆t and ∆x = u∆t
Numerical approximation of the density
kj
i = k(j∆t, i∆x) (15)
Discrete approximation of the conservation law (6):
kj+1
i − kj
i
∆t
+
qj
i+1 − qj
i
∆x
= φ(kj
i ) (16)
with (CT rule)
qj
i = min{Q, ukj
i , (κ − kj
i+1)w} (17)
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 25 / 50
Hamilton-Jacobi and source terms Numerical solution methods
Example
Consider an empty freeway at t = 0 with
g(x) = 0, (18a)
φ(k) = ax − buk, a, b > 0. (18b)
Exact solution (method of characteristics):
k(t, x) =
a
b2u
bx − 1 + (1 − b(x − tu))e−btu
(19)
provided k(t, x) ≤ K (Laval, Leclercq (2010))
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 26 / 50
Hamilton-Jacobi and source terms Numerical solution methods
Example
(continued)
Comparison of numerical solutions (∆t = 40 s) and the exact solution
Main difference = the flow estimates
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 27 / 50
Hamilton-Jacobi and source terms Numerical solution methods
Example
(continued)
Density RMSE (numerical VS exact solution) for varying ∆t:
Both converge as ∆t → 0
Accuracy of ERP > CT rule
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 28 / 50
Hamilton-Jacobi and source terms Numerical solution methods
Example
(continued)
Optimal candidate that minimizes f (y) at each time step
Difference when k → K
Most accurate optimal
candidate y∗
1
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 29 / 50
Hamilton-Jacobi and source terms Numerical solution methods
Variational networks
Dt
u
-w
vi
di
ti
timeti
i
Si = area
Dx
space
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 30 / 50
Hamilton-Jacobi and source terms Numerical solution methods
Variational networks
Dt
u
-w
vi
di
ti
timeti
i
Si = area
Dx
space
Only three wave speeds with costs
L(vi ) =
⎧
⎪⎨
⎪⎩
wκ, vi = −w
Q, vi = 0
0, vi = u
(20)
The cost on each link:
ci = L(vi )τi + Ji .
Ji = contribution of the J-integral in
the cost of each link i
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 30 / 50
Hamilton-Jacobi and source terms Numerical solution methods
Variational networks
Dt
u
-w
vi
di
ti
timeti
i
Si = area
Dx
space
Advantage: free of numerical errors
(when inflows are exogenous)
Drawback:
cumbersome to implement unless u
w is
an integer
merge models expressed in terms of
flows or densities rather than N values:
additional computational layer needed
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 31 / 50
Hamilton-Jacobi on networks
Outline
1 Notations from traffic flow modeling
2 Basic recalls on Lax-Hopf formula
3 Hamilton-Jacobi and source terms
4 Hamilton-Jacobi on networks
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 32 / 50
Hamilton-Jacobi on networks
A special network = junction
HJN
HJ1
HJ2
HJ3
HJ4
HJ5
Network
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 33 / 50
Hamilton-Jacobi on networks
A special network = junction
HJN
HJ1
HJ2
HJ3
HJ4
HJ5
Network
HJ4
HJ2
HJ1
HJ3
Junction J
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 33 / 50
Hamilton-Jacobi on networks
Space dependent Hamiltonian
Consider HJ equation posed on a junction J
ut + H(x, ux ) = 0, on J × (0, +∞),
u(t = 0, x) = g(x), on J
(21)
Extension of Lax-Hopf formula(s)?
No simple linear solutions for (21)
No definition of convexity for discontinuous functions
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 34 / 50
Hamilton-Jacobi on networks Literature with application to traffic
Junction models
Classical approaches for CL:
Macroscopic modeling on (homogeneous) sections
Coupling conditions at (pointwise) junction
For instance, consider
⎧
⎪⎨
⎪⎩
ρt + (Q(ρ))x = 0, scalar conservation law,
ρ(., t = 0) = ρ0(.), initial conditions,
ψ(ρ(x = 0−, t), ρ(x = 0+, t)) = 0, coupling condition.
(22)
See Garavello, Piccoli [4], Lebacque, Khoshyaran [6] and Bressan et al. [1]
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 35 / 50
Hamilton-Jacobi on networks Literature with application to traffic
Examples of junction models
Model with internal state (= buffer(s))
Bressan & Nguyen (NHM 2015) [2]
ρ → Q(ρ) strictly concave
advection of γij (t, x) turning ratios from (i) to (j)
(GSOM model with passive attribute)
internal dynamics of the buffers (ODEs): queue lengths
Extended Link Transmission Model
Jin (TR-B 2015) [5]
Link Transmission Model (LTM) Yperman (2005, 2007)
Triangular diagram
Q(ρ) = min {uρ, w(ρmax − ρ)} for any ρ ∈ [0, ρmax]
Commodity = turning ratios γij(t)
Definition of boundary supply and demand functions
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 36 / 50
Hamilton-Jacobi on networks Settings
First remarks
If N solves
Nt + H (Nx ) = 0
then ¯N = N + c for any c ∈ R is also a solution
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 37 / 50
Hamilton-Jacobi on networks Settings
First remarks
If N solves
Nt + H (Nx ) = 0
then ¯N = N + c for any c ∈ R is also a solution
Ni
(t, x)
N0
(t)
Nj
(t, x)
(j)
(i)
No a priori relationship between initial
conditions
Nk (t, x) consistent along the same
branch Jk and
∂tN0
(t) =
i
∂tNi
t, x = 0−
=
j
∂tNj
t, x = 0+
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 37 / 50
Hamilton-Jacobi on networks Settings
Key idea
Assume that H is piecewise linear (triangular FD)
Nt + H (Nx ) = 0
with
H(p) = max{H+
(p)
supply
, H−
(p)
demand
}
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 38 / 50
Hamilton-Jacobi on networks Settings
Key idea
Assume that H is piecewise linear (triangular FD)
Nt + H (Nx ) = 0
with
H(p) = max{H+
(p)
supply
, H−
(p)
demand
}
Partial solutions N+ and N− that solve resp.
⎧
⎪⎨
⎪⎩
N+
t + H+ (N+
x ) = 0,
N−
t + H− (N−
x ) = 0
such that N = min N−
, N+
Upstream demand advected by waves moving forward
Downstream supply transported by waves moving backward
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 38 / 50
Hamilton-Jacobi on networks Mathematical expression
Junction model
Optimization junction model (Lebacque’s talk)
Lebacque, Khoshyaran (2005) [6]
max
⎡
⎣
i
φi (qi ) +
j
ψj (rj )
⎤
⎦
s.t.
0 ≤ qi ∀i
qi ≤ δi ∀i
0 ≤ rj ∀j
rj ≤ σj ∀j
0 = rj − i γij qi ∀j
(23)
where φi , ψj are concave, non-decreasing
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 39 / 50
Hamilton-Jacobi on networks Mathematical expression
Example of optimization junction models
Herty and Klar (2003)
Holden and Risebro (1995)
Coclite, Garavello, Piccoli (2005)
Daganzo’s merge model (1995) [3]
⎧
⎪⎨
⎪⎩
φi (qi ) = Nmax qi −
q2
i
2pi qi,max
ψ = 0
where pi is the priority of flow coming from road i and Nmax = φ′
i (0)
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 40 / 50
Hamilton-Jacobi on networks Mathematical expression
Solution of the optimization model
Lebacque, Khoshyaran (2005)
Karush-Kuhn-Tucker optimality conditions:
For any incoming road i
φ′
i (qi )+
k
skγik −λi = 0, λi ≥ 0, qi ≤ δi and λi (qi −δi ) = 0,
and for any outgoing road j
ψ′
j (rj ) − sj − λj = 0, λj ≥ 0, ri ≤ σj and λj (rj − σj ) = 0,
where (sj , λj ) = Karush-Kuhn-Tucker coefficients (or Lagrange multipliers)
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 41 / 50
Hamilton-Jacobi on networks Mathematical expression
Solution of the optimization model
Lebacque, Khoshyaran (2005)
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
qi = Γ[0,δi ] (φ′
i )−1
−
k
γiksk , for any i,
rj = Γ[0,σj ] (ψ′
j )−1
(sj ) , for any j,
(24)
ΓK is the projection operator on the set K
i qi
i γijδi
σj rj
sj
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 42 / 50
Hamilton-Jacobi on networks Mathematical expression
Model equations
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Ni
t + Hi (Ni
x ) = 0, for any x ̸= 0,
∂tNi (t, x−) = qi (t),
∂tNj (t, x+) = rj (t),
at x = 0,
Ni (t = 0, x) = Ni
0(x),
∂tNi (t, x = ξi ) = ∆i (t),
∂tNj (t, x = χj ) = Σj(t)
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 43 / 50
Hamilton-Jacobi on networks Mathematical expression
Algorithm
Inf-morphism property: compute partial solutions for
initial conditions
upstream boundary conditions
downstream boundary conditions
internal boundary conditions
1 Propagate demands forward
through a junction, assume that the downstream supplies are maximal
2 Propagate supplies backward
through a junction, assume that the upstream demands are maximal
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 44 / 50
Hamilton-Jacobi on networks Application to a simple junction
Spatial discontinuity
Time
Space
Density
Flow
Downstream condition
(u)
(d)
Upstream condition
Initial condition
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 45 / 50
Hamilton-Jacobi on networks Application to a simple junction
Numerical results
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 46 / 50
Hamilton-Jacobi on networks Application to a simple junction
Numerical results
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 46 / 50
Hamilton-Jacobi on networks Application to a simple junction
Numerical results
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 46 / 50
Conclusion and perspectives
Final remarks
In a nutshell:
No explicit solution right now
Only specific cases
Importance of the supply/demand functions
General optimization problem at the junction
Perspectives:
Lane changing behaviors
Estimation on networks
Stationary states
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 47 / 50
References
Some references I
A. Bressan, S. Canic, M. Garavello, M. Herty, and B. Piccoli, Flows
on networks: recent results and perspectives, EMS Surveys in Mathematical
Sciences, (2014).
A. Bressan and K. T. Nguyen, Conservation law models for traffic flow on a
network of roads, to appear, (2014).
C. F. Daganzo, The cell transmission model, part ii: network traffic,
Transportation Research Part B: Methodological, 29 (1995), pp. 79–93.
M. Garavello and B. Piccoli, Traffic flow on networks, American institute of
mathematical sciences Springfield, MO, USA, 2006.
W.-L. Jin, Continuous formulations and analytical properties of the link
transmission model, Transportation Research Part B: Methodological, 74 (2015),
pp. 88–103.
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 48 / 50
References
Some references II
J.-P. Lebacque and M. M. Khoshyaran, First-order macroscopic traffic flow
models: Intersection modeling, network modeling, in Transportation and Traffic
Theory. Flow, Dynamics and Human Interaction. 16th International Symposium on
Transportation and Traffic Theory, 2005.
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 49 / 50
References
Thanks for your attention
guillaume.costeseque@inria.fr
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 50 / 50

More Related Content

PDF
ABC-Xian
PDF
QMC: Transition Workshop - Probabilistic Integrators for Deterministic Differ...
PDF
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
PDF
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
PDF
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
PDF
ABC: How Bayesian can it be?
PDF
Bayesian hybrid variable selection under generalized linear models
PDF
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
ABC-Xian
QMC: Transition Workshop - Probabilistic Integrators for Deterministic Differ...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
ABC: How Bayesian can it be?
Bayesian hybrid variable selection under generalized linear models
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...

What's hot (20)

PDF
The moving bottleneck problem: a Hamilton-Jacobi approach
PDF
Approximate Bayesian Computation with Quasi-Likelihoods
PDF
Appendix to MLPI Lecture 2 - Monte Carlo Methods (Basics)
PDF
Nested sampling
PDF
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
PDF
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
PDF
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
PDF
Coordinate sampler: A non-reversible Gibbs-like sampler
PDF
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
PDF
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
PDF
Quantitative norm convergence of some ergodic averages
PDF
Coordinate sampler : A non-reversible Gibbs-like sampler
PDF
Gibbs flow transport for Bayesian inference
PDF
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
PDF
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
PDF
QMC: Operator Splitting Workshop, Compactness Estimates for Nonlinear PDEs - ...
PDF
Non-sampling functional approximation of linear and non-linear Bayesian Update
PDF
2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...
PDF
Classification with mixtures of curved Mahalanobis metrics
PDF
Inference in generative models using the Wasserstein distance [[INI]
The moving bottleneck problem: a Hamilton-Jacobi approach
Approximate Bayesian Computation with Quasi-Likelihoods
Appendix to MLPI Lecture 2 - Monte Carlo Methods (Basics)
Nested sampling
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
Coordinate sampler: A non-reversible Gibbs-like sampler
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
Quantitative norm convergence of some ergodic averages
Coordinate sampler : A non-reversible Gibbs-like sampler
Gibbs flow transport for Bayesian inference
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC: Operator Splitting Workshop, Compactness Estimates for Nonlinear PDEs - ...
Non-sampling functional approximation of linear and non-linear Bayesian Update
2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...
Classification with mixtures of curved Mahalanobis metrics
Inference in generative models using the Wasserstein distance [[INI]
Ad

Similar to Some recent developments in the traffic flow variational formulation (20)

PDF
Representation formula for traffic flow estimation on a network
PDF
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
PDF
Numerical approach for Hamilton-Jacobi equations on a network: application to...
PDF
Hamilton-Jacobi approach for second order traffic flow models
PDF
Numerical approach for Hamilton-Jacobi equations on a network: application to...
PDF
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formula
PDF
Closed-form Solutions of Generalized Greenshield Relations for the Social and...
PDF
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...
PPTX
Mathematical Understanding in Traffic Flow Modelling
PDF
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...
PDF
Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...
PDF
Numerical methods for variational principles in traffic
PDF
Traffic flow modeling on road networks using Hamilton-Jacobi equations
PDF
Road junction modeling using a scheme based on Hamilton-Jacobi equations
PDF
thesis
PDF
A Dual Scheme For Traffic Assignment Problems
PDF
Micro to macro passage in traffic models including multi-anticipation effect
PDF
Hcdte Lecture Notes Part I Nonlinear Hyperbolic Pdes Dispersive And Transport...
PPTX
TE ITS 2018-lesson 7 car following models v01
PDF
File 4 a k-tung 2 radial na printed 12-11
Representation formula for traffic flow estimation on a network
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
Numerical approach for Hamilton-Jacobi equations on a network: application to...
Hamilton-Jacobi approach for second order traffic flow models
Numerical approach for Hamilton-Jacobi equations on a network: application to...
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formula
Closed-form Solutions of Generalized Greenshield Relations for the Social and...
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...
Mathematical Understanding in Traffic Flow Modelling
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...
Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...
Numerical methods for variational principles in traffic
Traffic flow modeling on road networks using Hamilton-Jacobi equations
Road junction modeling using a scheme based on Hamilton-Jacobi equations
thesis
A Dual Scheme For Traffic Assignment Problems
Micro to macro passage in traffic models including multi-anticipation effect
Hcdte Lecture Notes Part I Nonlinear Hyperbolic Pdes Dispersive And Transport...
TE ITS 2018-lesson 7 car following models v01
File 4 a k-tung 2 radial na printed 12-11
Ad

More from Guillaume Costeseque (16)

PDF
Impacts de la "Ville 30" sur les trafics, les vitesses et les temps de parcou...
PDF
Présentation aux RFTM 2024 sur l'estimation des débits à partir des données FCD
PDF
Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
PDF
Nouvelles mobilités, nouveaux usages, évolutions des marchés
PDF
Cours its-ecn-2021
PDF
Cours its-ecn-2020
PDF
A multi-objective optimization framework for a second order traffic flow mode...
PDF
Evaluation d'une navette autonome à Nantes 2019
PDF
TramOpt: plateforme logicielle pour l'optimisation du trafic routier
PDF
A new solver for the ARZ traffic flow model on a junction
PDF
Mesoscopic multiclass traffic flow modeling on multi-lane sections
PDF
The impact of source terms in the variational representation of traffic flow
PDF
Second order traffic flow models on networks
PDF
Queue length estimation on urban corridors
PDF
Second order traffic flow models on networks
PDF
Second order traffic flow models on networks
Impacts de la "Ville 30" sur les trafics, les vitesses et les temps de parcou...
Présentation aux RFTM 2024 sur l'estimation des débits à partir des données FCD
Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
Nouvelles mobilités, nouveaux usages, évolutions des marchés
Cours its-ecn-2021
Cours its-ecn-2020
A multi-objective optimization framework for a second order traffic flow mode...
Evaluation d'une navette autonome à Nantes 2019
TramOpt: plateforme logicielle pour l'optimisation du trafic routier
A new solver for the ARZ traffic flow model on a junction
Mesoscopic multiclass traffic flow modeling on multi-lane sections
The impact of source terms in the variational representation of traffic flow
Second order traffic flow models on networks
Queue length estimation on urban corridors
Second order traffic flow models on networks
Second order traffic flow models on networks

Recently uploaded (20)

PDF
LOW POWER CLASS AB SI POWER AMPLIFIER FOR WIRELESS MEDICAL SENSOR NETWORK
PPT
UNIT-I Machine Learning Essentials for 2nd years
PPTX
Cisco Network Behaviour dibuywvdsvdtdstydsdsa
PDF
Mechanics of materials week 2 rajeshwari
PDF
Research on ultrasonic sensor for TTU.pdf
PDF
Computer organization and architecuture Digital Notes....pdf
PPTX
Environmental studies, Moudle 3-Environmental Pollution.pptx
PDF
AIGA 012_04 Cleaning of equipment for oxygen service_reformat Jan 12.pdf
DOCX
ENVIRONMENTAL PROTECTION AND MANAGEMENT (18CVL756)
PPTX
WN UNIT-II CH4_MKaruna_BapatlaEngineeringCollege.pptx
PDF
Designing Fault-Tolerant Architectures for Resilient Oracle Cloud ERP and HCM...
PDF
Computer System Architecture 3rd Edition-M Morris Mano.pdf
PPTX
CS6006 - CLOUD COMPUTING - Module - 1.pptx
PPTX
MAD Unit - 3 User Interface and Data Management (Diploma IT)
PPTX
Micro1New.ppt.pptx the mai themes of micfrobiology
PDF
August -2025_Top10 Read_Articles_ijait.pdf
PDF
Cryptography and Network Security-Module-I.pdf
PDF
Unit I -OPERATING SYSTEMS_SRM_KATTANKULATHUR.pptx.pdf
PPTX
Wireless sensor networks (WSN) SRM unit 2
PPTX
CNS - Unit 1 (Introduction To Computer Networks) - PPT (2).pptx
LOW POWER CLASS AB SI POWER AMPLIFIER FOR WIRELESS MEDICAL SENSOR NETWORK
UNIT-I Machine Learning Essentials for 2nd years
Cisco Network Behaviour dibuywvdsvdtdstydsdsa
Mechanics of materials week 2 rajeshwari
Research on ultrasonic sensor for TTU.pdf
Computer organization and architecuture Digital Notes....pdf
Environmental studies, Moudle 3-Environmental Pollution.pptx
AIGA 012_04 Cleaning of equipment for oxygen service_reformat Jan 12.pdf
ENVIRONMENTAL PROTECTION AND MANAGEMENT (18CVL756)
WN UNIT-II CH4_MKaruna_BapatlaEngineeringCollege.pptx
Designing Fault-Tolerant Architectures for Resilient Oracle Cloud ERP and HCM...
Computer System Architecture 3rd Edition-M Morris Mano.pdf
CS6006 - CLOUD COMPUTING - Module - 1.pptx
MAD Unit - 3 User Interface and Data Management (Diploma IT)
Micro1New.ppt.pptx the mai themes of micfrobiology
August -2025_Top10 Read_Articles_ijait.pdf
Cryptography and Network Security-Module-I.pdf
Unit I -OPERATING SYSTEMS_SRM_KATTANKULATHUR.pptx.pdf
Wireless sensor networks (WSN) SRM unit 2
CNS - Unit 1 (Introduction To Computer Networks) - PPT (2).pptx

Some recent developments in the traffic flow variational formulation

  • 1. Some recent developments in the traffic flow variational formulation Guillaume Costeseque collaborations with J-P. Lebacque and J. Laval Inria Sophia-Antipolis M´editerran´ee S´eminaire Mod´elisation des R´eseaux de Transports – IFSTTAR Marne-la-Vall´ee – May 12, 2016 G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 1 / 50
  • 2. Motivation HJ & Lax-Hopf formula Hamilton-Jacobi equations: why and what for? Smoothness of the solution (no shocks) Physically meaningful quantity G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 2 / 50
  • 3. Motivation HJ & Lax-Hopf formula Hamilton-Jacobi equations: why and what for? Smoothness of the solution (no shocks) Physically meaningful quantity Analytical expression of the solution Efficient computational methods Easy integration of GPS data [Mazar´e et al, 2012] G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 2 / 50
  • 4. Motivation HJ & Lax-Hopf formula Hamilton-Jacobi equations: why and what for? Smoothness of the solution (no shocks) Physically meaningful quantity Analytical expression of the solution Efficient computational methods Easy integration of GPS data [Mazar´e et al, 2012] Everything broken for network applications? G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 2 / 50
  • 5. Motivation Network model Simple case study: generalized three-detector problem (Newell (1993)) N(t, x) G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 3 / 50
  • 6. Motivation Outline 1 Notations from traffic flow modeling 2 Basic recalls on Lax-Hopf formula 3 Hamilton-Jacobi and source terms 4 Hamilton-Jacobi on networks G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 4 / 50
  • 7. Notations from traffic flow modeling Outline 1 Notations from traffic flow modeling 2 Basic recalls on Lax-Hopf formula 3 Hamilton-Jacobi and source terms 4 Hamilton-Jacobi on networks G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 5 / 50
  • 8. Notations from traffic flow modeling Convention for vehicle labeling N x t Flow G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 6 / 50
  • 9. Notations from traffic flow modeling Three representations of traffic flow Moskowitz’ surface Flow x t N x See also [Makigami et al, 1971], [Laval and Leclercq, 2013] G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 7 / 50
  • 10. Notations from traffic flow modeling Overview: conservation laws (CL) / Hamilton-Jacobi (HJ) Eulerian Lagrangian t − x t − n CL Variable Density ρ Spacing r Equation ∂tρ + ∂x Q(ρ) = 0 ∂tr + ∂x V (r) = 0 HJ Variable Label N Position X N(t, x) = +∞ x ρ(t, ξ)dξ X(t, n) = +∞ n r(t, η)dη Equation ∂tN + H (∂x N) = 0 ∂tX + V (∂x X) = 0 Hamiltonian H(p) = −Q(−p) V(p) = −V (−p) G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 8 / 50
  • 11. Basic recalls on Lax-Hopf formula Outline 1 Notations from traffic flow modeling 2 Basic recalls on Lax-Hopf formula 3 Hamilton-Jacobi and source terms 4 Hamilton-Jacobi on networks G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 9 / 50
  • 12. Basic recalls on Lax-Hopf formula Lax-Hopf formula Setting Consider Cauchy problem ut + H(Du) = 0, in Rn × (0, +∞), u(., 0) = u0(.), on Rn. (1) Two formulas according to the smoothness of the Hamiltonian H the initial data u0 G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 10 / 50
  • 13. Basic recalls on Lax-Hopf formula Lax-Hopf formula Lax-Hopf formulæ Assumptions: case 1 (A1) H : Rn → R is convex (A2) u0 : Rn → R is uniformly Lipschitz Theorem (First Lax-Hopf formula) If (A1)-(A2) hold true, then u(x, t) := inf z∈Rn sup y∈Rn [u0(z) + y.(x − z) − tH(y)] (2) is the unique uniformly continuous viscosity solution of (1). G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 11 / 50
  • 14. Basic recalls on Lax-Hopf formula Lax-Hopf formula Legendre-Fenchel transform First Lax-Hopf formula (2) can be recast as u(x, t) := inf z∈Rn u0(z) − tH∗ x − z t thanks to Legendre-Fenchel transform L(z) = H∗ (z) := sup y∈Rn (y.z − H(y)) . Proposition (Bi-conjugate) If H is strictly convex, 1-coercive i.e. lim |p|→∞ H(p) |p| = +∞, then H∗ is also convex and (H∗ )∗ = H. G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 12 / 50
  • 15. Basic recalls on Lax-Hopf formula Lax-Hopf formula Legendre-Fenchel transform First Lax-Hopf formula (2) can be recast as u(x, t) := inf z∈Rn u0(z) − tH∗ x − z t thanks to Legendre-Fenchel transform L(z) = H∗ (z) := sup y∈Rn (y.z − H(y)) . Proposition (Bi-conjugate) If H is strictly convex, 1-coercive i.e. lim |p|→∞ H(p) |p| = +∞, then H∗ is also convex and (H∗ )∗ = H. G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 12 / 50
  • 16. Basic recalls on Lax-Hopf formula LWR in Eulerian LWR in Eulerian (t, x) Cumulative vehicles count (CVC) or Moskowitz surface N(t, x) q = ∂tN and ρ = −∂x N If density ρ satisfies the scalar (LWR) conservation law ∂tρ + ∂x Q(ρ) = 0 Then N satisfies the first order Hamilton-Jacobi equation ∂tN − Q(−∂x N) = 0 (3) G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 13 / 50
  • 17. Basic recalls on Lax-Hopf formula LWR in Eulerian LWR in Eulerian (t, x) Legendre-Fenchel transform with Q concave (relative capacity) M(q) = sup ρ [Q(ρ) − ρq] M(q) u w Density ρ q q Flow F w u q Transform M −wρmax G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 14 / 50
  • 18. Basic recalls on Lax-Hopf formula LWR in Eulerian LWR in Eulerian (t, x) (continued) Lax-Hopf formula N(T, xT ) = min u(.),(t0,x0) T t0 M(u(τ))dτ + N(t0, x0), ˙X = u u ∈ U X(t0) = x0, X(T) = xT (t0, x0) ∈ J (4) Time Space J (T, xT )˙X(τ) (t0, x0) Viability theory [Claudel and Bayen, 2010] G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 15 / 50
  • 19. Basic recalls on Lax-Hopf formula LWR in Eulerian LWR in Eulerian (t, x) (Historical note) Dynamic programming [Daganzo, 2006] for triangular FD (u and w free and congested speeds) Flow, F w u 0 ρmax Density, ρ u x w t Time Space (t, x) Minimum principle [Newell, 1993] N(t, x) = min N t − x − xu u , xu , N t − x − xw w , xw + ρmax (xw − x) , (5) G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 16 / 50
  • 20. Hamilton-Jacobi and source terms Outline 1 Notations from traffic flow modeling 2 Basic recalls on Lax-Hopf formula 3 Hamilton-Jacobi and source terms 4 Hamilton-Jacobi on networks G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 17 / 50
  • 21. Hamilton-Jacobi and source terms Problem Formulation Long homogeneous corridor with numerous entrances and exits Net lateral freeway “inflow” rate φ Flow inflow outflow = φ ∂tρ + ∂x H(ρ) = φ, k = g on Γ (6) ∂tN − H (−∂x N) = Φ, N = G on Γ, (7) where Φ(t, x) = − x 0 φ(t, y)dy G(t, x) = Γ g(t, x)dΓ, (t, x) ∈ Γ G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 18 / 50
  • 22. Hamilton-Jacobi and source terms Problem Formulation Some remarks The flow reads q = Nt − Φ and the cumulative count curves are N(t, x) = t 0 q(s, x)ds usual N-curve + t 0 x 0 φ(s, y)dsdy net number of vehicles “entering” If φ = φ(k) then Φ(t, x) = ˜Φ(t, x, −Nx ) = − x 0 φ(−Nx (t, y))dy, (8) This means that (7) becomes the more general HJ equation Nt − ˜H(t, x, −Nx ) = 0 where ˜H(t, x, k) = H(k) + ˜Φ(t, x, k). G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 19 / 50
  • 23. Hamilton-Jacobi and source terms Exogenous inflow Variational problem Lax-Hopf formula: N(P) = min B∈ΓP , ξ∈VBP f (B, ξ) (9) f (B, ξ) := G(B) + t tB R(s, ξ(s), ξ′ (s)) ds P ≡ (t, x) “target” point B ≡ (tB , y) on the boundary ΓP ξ ∈ VBP set of valid paths B → P R(·) Legendre transform of ˜H R(t, x, v) = sup k ˜H(t, x, k) − vk . G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 20 / 50
  • 24. Hamilton-Jacobi and source terms Exogenous inflow Assume a triangular flow-density diagram The function f (B, ξ) to be minimized reads f (B, ξ) = G(B) + (t − tB)Q − (x − y)K + t tB Φ(s, ξ(s)) ds =:J (10) where Q = capacity, K = critical density. J = net number of vehicles leaving the area A(ξ) below the curve x = ξ(t) J = − t tB ξ(s) y φ(s, x) dxds, (11) G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 21 / 50
  • 25. Hamilton-Jacobi and source terms Exogenous inflow Initial value problems with constant density Assume N(0, x) = G(x) = −k0x (g(x) = k0) , φ(t, x) = a, (12) min f (B ≡ (y, 0), ξ) reached for a path (i) maximizing A(ξ) when a > 0 (ii) or minimizing A(ξ) when a < 0 f (y) = c0 + c1y + c2y2 with c2 > 0 Explicit solution: N(t, x) = f (y∗), t > K−k0 a > 0 min{f (xU), f (xD)}, otherwise G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 22 / 50
  • 26. Hamilton-Jacobi and source terms Exogenous inflow Extended Riemann problem (ERP) Consider (g(x), φ(x)) = (kU, aU), x ≤ x0 (kD, aD), x > x0, (13) Assuming G(x0) = 0 G(x) = (x0 − x)kU , x ≤ x0 (x0 − x)kD , x > x0 (14) J-integral = weighted average of the portion of A(ξ) upstream and downstream of x = x0 with weighs aU and aD G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 23 / 50
  • 27. Hamilton-Jacobi and source terms Exogenous inflow Extended Riemann problem (ERP) (continued) Same minimization of J(ξ) f (y) = G(y) + tQ − (x0 − y)K + J(y) with J(y) = min{j1(y), j2(y), j3(y)}, y > x0 min{j4(y), j5(y), j6(y)}, y ≤ x0 Possible minima for the components of f (y) y = yi ∈ ΓP , i = 1, . . . 6 Semi-explicit solution (9 candidates): N(t, x0) = min y∈Y f (y) Y = {xU, x0, xD, y∗ 1 , . . . y∗ 6 } G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 24 / 50
  • 28. Hamilton-Jacobi and source terms Numerical solution methods Godunov’s method Basis of the well known Cell Transmission (CT) model Time and space increments ∆t and ∆x = u∆t Numerical approximation of the density kj i = k(j∆t, i∆x) (15) Discrete approximation of the conservation law (6): kj+1 i − kj i ∆t + qj i+1 − qj i ∆x = φ(kj i ) (16) with (CT rule) qj i = min{Q, ukj i , (κ − kj i+1)w} (17) G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 25 / 50
  • 29. Hamilton-Jacobi and source terms Numerical solution methods Example Consider an empty freeway at t = 0 with g(x) = 0, (18a) φ(k) = ax − buk, a, b > 0. (18b) Exact solution (method of characteristics): k(t, x) = a b2u bx − 1 + (1 − b(x − tu))e−btu (19) provided k(t, x) ≤ K (Laval, Leclercq (2010)) G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 26 / 50
  • 30. Hamilton-Jacobi and source terms Numerical solution methods Example (continued) Comparison of numerical solutions (∆t = 40 s) and the exact solution Main difference = the flow estimates G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 27 / 50
  • 31. Hamilton-Jacobi and source terms Numerical solution methods Example (continued) Density RMSE (numerical VS exact solution) for varying ∆t: Both converge as ∆t → 0 Accuracy of ERP > CT rule G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 28 / 50
  • 32. Hamilton-Jacobi and source terms Numerical solution methods Example (continued) Optimal candidate that minimizes f (y) at each time step Difference when k → K Most accurate optimal candidate y∗ 1 G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 29 / 50
  • 33. Hamilton-Jacobi and source terms Numerical solution methods Variational networks Dt u -w vi di ti timeti i Si = area Dx space G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 30 / 50
  • 34. Hamilton-Jacobi and source terms Numerical solution methods Variational networks Dt u -w vi di ti timeti i Si = area Dx space Only three wave speeds with costs L(vi ) = ⎧ ⎪⎨ ⎪⎩ wκ, vi = −w Q, vi = 0 0, vi = u (20) The cost on each link: ci = L(vi )τi + Ji . Ji = contribution of the J-integral in the cost of each link i G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 30 / 50
  • 35. Hamilton-Jacobi and source terms Numerical solution methods Variational networks Dt u -w vi di ti timeti i Si = area Dx space Advantage: free of numerical errors (when inflows are exogenous) Drawback: cumbersome to implement unless u w is an integer merge models expressed in terms of flows or densities rather than N values: additional computational layer needed G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 31 / 50
  • 36. Hamilton-Jacobi on networks Outline 1 Notations from traffic flow modeling 2 Basic recalls on Lax-Hopf formula 3 Hamilton-Jacobi and source terms 4 Hamilton-Jacobi on networks G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 32 / 50
  • 37. Hamilton-Jacobi on networks A special network = junction HJN HJ1 HJ2 HJ3 HJ4 HJ5 Network G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 33 / 50
  • 38. Hamilton-Jacobi on networks A special network = junction HJN HJ1 HJ2 HJ3 HJ4 HJ5 Network HJ4 HJ2 HJ1 HJ3 Junction J G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 33 / 50
  • 39. Hamilton-Jacobi on networks Space dependent Hamiltonian Consider HJ equation posed on a junction J ut + H(x, ux ) = 0, on J × (0, +∞), u(t = 0, x) = g(x), on J (21) Extension of Lax-Hopf formula(s)? No simple linear solutions for (21) No definition of convexity for discontinuous functions G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 34 / 50
  • 40. Hamilton-Jacobi on networks Literature with application to traffic Junction models Classical approaches for CL: Macroscopic modeling on (homogeneous) sections Coupling conditions at (pointwise) junction For instance, consider ⎧ ⎪⎨ ⎪⎩ ρt + (Q(ρ))x = 0, scalar conservation law, ρ(., t = 0) = ρ0(.), initial conditions, ψ(ρ(x = 0−, t), ρ(x = 0+, t)) = 0, coupling condition. (22) See Garavello, Piccoli [4], Lebacque, Khoshyaran [6] and Bressan et al. [1] G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 35 / 50
  • 41. Hamilton-Jacobi on networks Literature with application to traffic Examples of junction models Model with internal state (= buffer(s)) Bressan & Nguyen (NHM 2015) [2] ρ → Q(ρ) strictly concave advection of γij (t, x) turning ratios from (i) to (j) (GSOM model with passive attribute) internal dynamics of the buffers (ODEs): queue lengths Extended Link Transmission Model Jin (TR-B 2015) [5] Link Transmission Model (LTM) Yperman (2005, 2007) Triangular diagram Q(ρ) = min {uρ, w(ρmax − ρ)} for any ρ ∈ [0, ρmax] Commodity = turning ratios γij(t) Definition of boundary supply and demand functions G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 36 / 50
  • 42. Hamilton-Jacobi on networks Settings First remarks If N solves Nt + H (Nx ) = 0 then ¯N = N + c for any c ∈ R is also a solution G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 37 / 50
  • 43. Hamilton-Jacobi on networks Settings First remarks If N solves Nt + H (Nx ) = 0 then ¯N = N + c for any c ∈ R is also a solution Ni (t, x) N0 (t) Nj (t, x) (j) (i) No a priori relationship between initial conditions Nk (t, x) consistent along the same branch Jk and ∂tN0 (t) = i ∂tNi t, x = 0− = j ∂tNj t, x = 0+ G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 37 / 50
  • 44. Hamilton-Jacobi on networks Settings Key idea Assume that H is piecewise linear (triangular FD) Nt + H (Nx ) = 0 with H(p) = max{H+ (p) supply , H− (p) demand } G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 38 / 50
  • 45. Hamilton-Jacobi on networks Settings Key idea Assume that H is piecewise linear (triangular FD) Nt + H (Nx ) = 0 with H(p) = max{H+ (p) supply , H− (p) demand } Partial solutions N+ and N− that solve resp. ⎧ ⎪⎨ ⎪⎩ N+ t + H+ (N+ x ) = 0, N− t + H− (N− x ) = 0 such that N = min N− , N+ Upstream demand advected by waves moving forward Downstream supply transported by waves moving backward G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 38 / 50
  • 46. Hamilton-Jacobi on networks Mathematical expression Junction model Optimization junction model (Lebacque’s talk) Lebacque, Khoshyaran (2005) [6] max ⎡ ⎣ i φi (qi ) + j ψj (rj ) ⎤ ⎦ s.t. 0 ≤ qi ∀i qi ≤ δi ∀i 0 ≤ rj ∀j rj ≤ σj ∀j 0 = rj − i γij qi ∀j (23) where φi , ψj are concave, non-decreasing G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 39 / 50
  • 47. Hamilton-Jacobi on networks Mathematical expression Example of optimization junction models Herty and Klar (2003) Holden and Risebro (1995) Coclite, Garavello, Piccoli (2005) Daganzo’s merge model (1995) [3] ⎧ ⎪⎨ ⎪⎩ φi (qi ) = Nmax qi − q2 i 2pi qi,max ψ = 0 where pi is the priority of flow coming from road i and Nmax = φ′ i (0) G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 40 / 50
  • 48. Hamilton-Jacobi on networks Mathematical expression Solution of the optimization model Lebacque, Khoshyaran (2005) Karush-Kuhn-Tucker optimality conditions: For any incoming road i φ′ i (qi )+ k skγik −λi = 0, λi ≥ 0, qi ≤ δi and λi (qi −δi ) = 0, and for any outgoing road j ψ′ j (rj ) − sj − λj = 0, λj ≥ 0, ri ≤ σj and λj (rj − σj ) = 0, where (sj , λj ) = Karush-Kuhn-Tucker coefficients (or Lagrange multipliers) G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 41 / 50
  • 49. Hamilton-Jacobi on networks Mathematical expression Solution of the optimization model Lebacque, Khoshyaran (2005) ⎧ ⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎩ qi = Γ[0,δi ] (φ′ i )−1 − k γiksk , for any i, rj = Γ[0,σj ] (ψ′ j )−1 (sj ) , for any j, (24) ΓK is the projection operator on the set K i qi i γijδi σj rj sj G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 42 / 50
  • 50. Hamilton-Jacobi on networks Mathematical expression Model equations ⎧ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ Ni t + Hi (Ni x ) = 0, for any x ̸= 0, ∂tNi (t, x−) = qi (t), ∂tNj (t, x+) = rj (t), at x = 0, Ni (t = 0, x) = Ni 0(x), ∂tNi (t, x = ξi ) = ∆i (t), ∂tNj (t, x = χj ) = Σj(t) G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 43 / 50
  • 51. Hamilton-Jacobi on networks Mathematical expression Algorithm Inf-morphism property: compute partial solutions for initial conditions upstream boundary conditions downstream boundary conditions internal boundary conditions 1 Propagate demands forward through a junction, assume that the downstream supplies are maximal 2 Propagate supplies backward through a junction, assume that the upstream demands are maximal G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 44 / 50
  • 52. Hamilton-Jacobi on networks Application to a simple junction Spatial discontinuity Time Space Density Flow Downstream condition (u) (d) Upstream condition Initial condition G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 45 / 50
  • 53. Hamilton-Jacobi on networks Application to a simple junction Numerical results G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 46 / 50
  • 54. Hamilton-Jacobi on networks Application to a simple junction Numerical results G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 46 / 50
  • 55. Hamilton-Jacobi on networks Application to a simple junction Numerical results G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 46 / 50
  • 56. Conclusion and perspectives Final remarks In a nutshell: No explicit solution right now Only specific cases Importance of the supply/demand functions General optimization problem at the junction Perspectives: Lane changing behaviors Estimation on networks Stationary states G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 47 / 50
  • 57. References Some references I A. Bressan, S. Canic, M. Garavello, M. Herty, and B. Piccoli, Flows on networks: recent results and perspectives, EMS Surveys in Mathematical Sciences, (2014). A. Bressan and K. T. Nguyen, Conservation law models for traffic flow on a network of roads, to appear, (2014). C. F. Daganzo, The cell transmission model, part ii: network traffic, Transportation Research Part B: Methodological, 29 (1995), pp. 79–93. M. Garavello and B. Piccoli, Traffic flow on networks, American institute of mathematical sciences Springfield, MO, USA, 2006. W.-L. Jin, Continuous formulations and analytical properties of the link transmission model, Transportation Research Part B: Methodological, 74 (2015), pp. 88–103. G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 48 / 50
  • 58. References Some references II J.-P. Lebacque and M. M. Khoshyaran, First-order macroscopic traffic flow models: Intersection modeling, network modeling, in Transportation and Traffic Theory. Flow, Dynamics and Human Interaction. 16th International Symposium on Transportation and Traffic Theory, 2005. G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 49 / 50
  • 59. References Thanks for your attention [email protected] G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 50 / 50