Spark is an open-source cluster computing framework. It was developed in 2009 at UC Berkeley and open sourced in 2010. Spark supports batch, streaming, and interactive computations in a unified framework. The core abstraction in Spark is the resilient distributed dataset (RDD), which allows data to be partitioned across a cluster for parallel processing. RDDs support transformations like map and filter that return new RDDs and actions that return values to the driver program.