SlideShare a Scribd company logo
ようやく分かった!
最尤推定とベイズ推定
-そして機械学習へ-
大阪大学 情報科学研究科
マルチメディア工学専攻
修士2年 増田 彬
まずは反省
• 機械学習のツールを使っていてもその中身
をほとんど理解していなかった
→ブラックボックス統計学
• 手法の実現を試みてばかりで,学習手法の
特性や分析するデータの特性を考えずに
研究してきた
?
時間ないし,理論
むずいからデータ
突っ込めー
何か知らんけどパ
ラメータ変えたら
良い結果やし,
論文書いてまえー
構成
• 最尤推定とベイズ推定の話
• 機械学習を使う際の心構え
ベイズ推定と最尤推定
• Wikipediaより
分かったような,分からないような…
でも,これを理解しないとより高度な手法
が理解できない [機械学習の基礎]
“ベイズ確率の考え方に基づき、観測事象(観測された
事実)から、推定したい事柄(それの起因である原因
事象)を、確率的な意味で推論することを指す。”
身近なことで説明しよう
• 世の研究室には学生とラボ畜がいる
よゆー
今日もラボだブヒ~
研究室のブラック具合
• ホワイトな研究室もあれば,ブラックな
研究室もある
... ...研究室 M研究室 A
M教授
条件付き確率
• 研究室AとMがあるとする.
ともに学生が3人所属している.
ランダムに選んだ研究室から1人の
学生を選んだとき「ラボ畜」かどうか?
研究室 M研究室 A
研究室A 研究室M
学生
ラボ畜
どちらの研究室が選ばれるか?
ランダムに選ぶのでともに
𝑝 𝐻 = 𝐴 = 𝑝 𝐻 = 𝑀 =
1
2
学生全体のうち「学生」
か「ラボ畜」か?
𝑝 𝐷 = 畜 =
2
3
研究室がMの時,ラボ畜の割合は?
条件付き確率 𝑝 𝐷 = 畜|𝐻 = M =
3
3
同時確率の表
2
3
∙
1
2
1
3
∙
1
2
1
2
1
2
0
3
∙
1
2
3
3
∙
1
2
1
3
2
3
D H 𝑝 𝐷
𝑝 𝐻
• 事象 𝐷を「観測データ」事象 𝐻を「データの発生源」とする.
• ラボ畜モデルで言えば, 𝐷が学生, 𝐻が研究室
同時確率は
と表せるため,以下のベイズの公式が求まる
ここで,尤度 𝑃 𝐷 𝐻 とは
「研究室𝐻が与えられたときにデータDが発生する確率」
あるいは
「データDが観測されたとき研究室𝐻 から発生した確率」
例えば,研究室𝑀から選ばれた学生が D = ラボ畜 である
確率 は
3
3
ベイズの公式
𝑃 𝐻 𝐷 =
𝑃 𝐷 𝐻 𝑃(𝐻)
𝑃(𝐷)
=
𝑃 𝐷 𝐻 𝑃(𝐻)
𝑃 𝐷 𝐻 𝑃(𝐻)
𝑃 𝐷, 𝐻 = 𝑃 𝐷 𝐻 𝑃 𝐻 = 𝑃 𝐻 𝐷 𝑃(𝐷)
𝑃 𝐻 𝐷 ∶ 事後確率
𝑃 D H ∶ 尤度
𝑃(𝐻) ∶ 事前確率
• 事象 𝐷を「観測データ」事象 𝐻を「データの発生源」とする.
• ラボ畜モデルで言えば, 𝐷が学生, 𝐻が研究室
同時確率は
と表せるため,以下のベイズの公式が求まる
「ある学生がラボ畜のとき,研究室M所属である確率」を
𝑃 𝐻 𝐷 から求められる
→ラボ畜はM研によく所属している
(観測データ「ラボ畜」は発生源「M研究室」から生じた)
ベイズの公式
𝑃 𝐻 𝐷 =
𝑃 𝐷 𝐻 𝑃(𝐻)
𝑃(𝐷)
=
𝑃 𝐷 𝐻 𝑃(𝐻)
𝑃 𝐷 𝐻 𝑃(𝐻)
𝑃 𝐷, 𝐻 = 𝑃 𝐷 𝐻 𝑃 𝐻 = 𝑃 𝐻 𝐷 𝑃(𝐷)
𝑃 𝐻 = 𝑀 𝐷1 = 畜 =
3
3
∙
1
2
2
3
=
3
4
𝑃 𝐻 𝐷 ∶ 事後確率
𝑃 D H ∶ 尤度
𝑃(𝐻) ∶ 事前確率
ブヒー
ベイズ推定
Q: ある研究室から学生を2回選択したら共に「ラボ畜」だった.
その研究室は何研でしょう?
ベイズ推定
Q: ある研究室から学生を2回選択したら共に「ラボ畜」だった.
その研究室は何研でしょう?
D = [ラボ畜, ラボ畜] とするとまず最初(D1 )の「ラボ畜」学生
だけを考えて
ここで,最初の学生だけでは事前確率 p(H) はランダムに
研究室AかMかを仮定しているため,
𝑃 𝐻 = 𝐴 𝐷1 = 畜 =
𝑃 𝐷1 = 畜 𝐻 = 𝐴 𝑃(𝐻 = 𝐴)
𝑃(𝐷1 = 畜)
=
1
4
𝑃 𝐻 = 𝑀 𝐷1 = 畜 =
𝑃 𝐷1 = 畜 𝐻 = 𝑀 𝑃(𝐻 = 𝑀)
𝑃(𝐷1 = 畜)
=
3
4
𝑝 𝐻 = 𝐴 = 𝑝 𝐻 = 𝑀 =
1
2
ベイズ推定
Q: ある研究室から学生を2回選択したら共に「ラボ畜」だった.
その研究室は何研でしょう?
一回目に選ばれた学生が「ラボ畜」だったことから,
だと分かった.二回目の学生も「ラボ畜」だったから,
𝑃 𝐻 = 𝐴 𝐷 = 畜 =
1
4
𝑃 𝐻 = 𝑀 𝐷 = 畜 =
3
4
𝑃 𝐻 = 𝐴 𝐷2 = 畜 =
𝑃 𝐷2 = 畜 𝐻 = 𝐴 𝑃(𝐻 = 𝐴)
𝑃(𝐷2 = 畜)
=
1
8
𝑃 𝐻 = 𝐴 𝐷1 = 畜 =
1
4
で更新研究室Aである確率が減った
ベイズ推定
Q: ある研究室から学生を2回選択したら共に「ラボ畜」だった.
その研究室は何研でしょう?
一回目に選ばれた学生が「ラボ畜」だったことから,
だと分かった.二回目の学生も「ラボ畜」だったから,
𝑃 𝐻 = 𝐴 𝐷 = 畜 =
1
4
𝑃 𝐻 = 𝑀 𝐷 = 畜 =
3
4
𝑃 𝐻 = 𝑀 𝐷2 = 畜 =
𝑃 𝐷2 = 畜 𝐻 = 𝑀 𝑃(𝐻 = 𝑀)
𝑃(𝐷2 = 畜)
=
7
8
𝑃 𝐻 = M 𝐷1 = 畜 =
3
4
で更新研究室Mである確率が増えた
研究テーマと絡めてみよう
• 先ほどの問題は「あるデータ(学生)が観測され
た場合,研究室AとMのどちらに所属するのか」 と
いう2クラス分類問題
• 研究のテーマで
「加速度データから男女の性別推定」や
「歩行データからの酩酊検知」を行っているが
どれも根底にある考え方は一緒!
ここまでは講義の内容
尤度って分からなくない?
• 研究室AとMにそれぞれどれほどの割合で
P 𝐷 = 畜|𝐻 = 𝐴 =
1
3
, P 𝐷 = 畜|𝐻 = M =
3
3
「ラボ畜」学生が所属していたか分かっている前提だった
→ 現実は甘くない
• 現実問題,例えば男女の違いがどれほどの割合で
加速度データに影響するか分からない
→ 確率分布を仮定する [統計モデリング]
研究室 M研究室 A
• どんな人でも観測できるのはデータ𝐷のみ
• データ𝐷は何かしらの分布Hから生成される
• 観測されたデータ𝐷 から分布H(のパラメータ)を推定する
のが最尤推定とベイズ推定(&機械学習)
データ𝐷
(研究室Hから選ばれた学生)
パラメータ○○の
二項分布
だから推定を行う
に
正規分布一様分布 混合分布
に
分布は数個の
パラメータで
表せる
正体不明の
分布
ラボ畜モデル再来
• 𝑖をある研究室に所属する「ラボ畜」の数とする
(𝑖をパラメータと呼ぶ)
• 研究室の学生の数をNとおいてもよいが,簡単
のため,3人とする (0 ≤ 𝑖 ≤ 3 )
• パラメータ𝑖をおいたことにより,ある研究室の
「ラボ畜」尤度を以下のように仮定できる
ある研究室のモデル
Lラボ畜 = P 𝐷 = 畜|𝐻 =
𝑖
3
ラボ畜数 𝑖
L学生 = P 𝐷 = 学生|𝐻 =
3 − 𝑖
3
尤度最大化とは?
• 「観測データ」Dに対してもっと(尤)もらしい
「データの発生源」Hを求める
Lラボ畜 = P 𝐷 = 畜|𝐻 =
𝑖
3
と仮定したから,「ラボ畜」が1回のみ観測され
たとき尤もらしい発生源Hは最大の値となる 𝑖 = 3
3人中3人が「ラボ畜」のような
ブラック研究室
尤度最大化とは?
• 「観測データ」Dに対してもっと(尤)もらしい
「データの発生源」Hを求める
Lラボ畜 = P 𝐷 = 畜|𝐻 =
𝑖
3
と仮定したから,「ラボ畜」が1回のみ観測され
たとき尤もらしい発生源Hは最大の値となる 𝑖 = 3
反対に「通常の学生」が1回のみ観測されたとき
尤もらしい発生源Hは
L学生 = P 𝐷 = 学生|𝐻 =
3 − 𝑖
3
が最大となる 𝑖 = 0
3人中0人が「ラボ畜」の
ようなホワイト研究室
尤度最大化とは?
D = ラボ畜, ラボ畜, 学生 だとするとどうなるか?
各データは互いに独立であるため,
LD = L
ラボ畜
2
L
学生
=
𝑖
3
2
3 − 𝑖
3
を最大化すればよい.グラフを書けば分かるが,
簡単に解くために対数をかける(対数尤度)
ln LD = 2 ln
𝑖
3
+ ln
3 − 𝑖
3
これを微分し傾きが0になる 𝑖 = 2 で尤度が最大
3人中2人が「ラボ
畜」のような
グレー研究室
「最初がラボ畜だと次のデータもラボ畜になりやすい」のような影響を及ぼさない
時系列データ(例えば自然言語処理)は各データが独立でない
尤度最大でいいの?
D = 学生, 学生, 学生 というデータが得られたとする
実際はブラックな研究室からたまたま3回とも通常の学生が
選ばれただけかもしれないのに最大尤度 𝑖 = 0(つまりラボ畜
の学生がいない)で本当にいいのか?
選ばれた学生が全員通常なんで,
「ラボ畜」な学生なんていませんよ~
M教授
実際の分布
・・・
研究室1 研究室2 研究室100
尤度以外も考慮する手法があったような...
Thomas Bayes
(1702-1761)
Yes,
Bayes!
ベイズの公式
𝑃 𝐻 𝐷 =
𝑃 𝐷 𝐻 𝑃(𝐻)
𝑃(𝐷)
を用いると,
𝑃 𝐻 = ブラック 𝐷 = [畜, 畜, 畜] =
1
3
∙
99
100
1 ∙
1
100
+
1
3
∙
99
100
=
33
34
𝑃(𝐻)を考慮する
ブラック研究室の確率が高い!
尤度最大化と比べてベイズ推定は事後確率 𝑃 𝐻 𝐷 を最大にする
𝑃 𝐻 𝐷 =
𝑃 𝐷 𝐻 𝑃(𝐻)
𝑃(𝐷)
D = ラボ畜 だとすると,パラメータ𝑖の範囲を0 ≤ 𝑖 ≤ 3とし
ていたため,𝑃(𝐻)が一様だと仮定すると 𝑃 𝐻 =
1
3
となる
𝑃 𝐻 𝐷1 = 畜 =
𝑖
3
∙
1
4
𝑃(𝐷1 = 畜)
=
𝑖
12
∙
1
𝑃 𝐷 𝐻 𝑃 𝐻
=
𝑖
12
∙
1
6
12
=
𝑖
6
これが最大になるのは𝑖 = 3のとき
→ 結果は尤度最大化と同じ
(事前確率𝑃(𝐻)が一様だから)
ベイズ推定(再登場)
𝑃(𝐷)は事後確率の総和を1とするための正規化項
𝑃 𝐻 𝐷 ∶ 事後確率
𝑃 D H ∶ 尤度
𝑃(𝐻) ∶ 事前確率
𝑖
𝑃(𝐻|𝐷1)
3
1
2
総和1
D = ラボ畜, ラボ畜 のとき,事前確率が 𝑃 𝐻 =
2
9
𝑖になるため,
𝑃 𝐻 𝐷2 = 畜 =
𝑃 𝐷2 = 畜 𝐻 𝑃(𝐻)
𝑃(𝐷2 = 畜)
=
𝑖
3
∙
𝑖
6
14
18
=
𝑖2
14
ベイズ推定(再登場)
2乗になって
より𝑖の影響
が強くなった
新しいデータで
ベイズ更新
𝑖
𝑃(𝐻|𝐷2, 𝐷1)
3
新しいデータによって,
より分布が急になった!
この例では簡単のため,「ブラックな研究室もホワイトな研究室も一様に存在する」
分布を用いたが,実際は「グレーな研究室が多くて,ブラックやホワイトは少ない」
かもしれない.
その場合は P 𝐷 = 畜|𝐻 =
3
𝑖
𝑞 𝑖 1 − 𝑞 3−𝑖 のような二項分布を仮定する
𝑖
𝑃(𝐻|𝐷1)
3
1
2
総和1
9
14
総和1
まとめ
確率・統計の教科書で出てくる問題は尤度 𝑃 𝐷 𝐻 が
与えられていることが多い
→ 現実はそんなに甘くない
パラメータ(例ではラボ畜の数 i)をおいて,
尤度の分布を仮定する = 統計モデリング することで
尤度最大化やベイズ推定で尤もらしい分布を推定できる
(実際は尤度の分布に正規分布など多種多様な分布を用いる)
→現実はそれでもまだ甘くない
例では尤度最大化などを解析的に解けたが,現実には
解けない場合がある(MCMCの出番).
しかも,尤度のパラメータだけでは説明できず
超パラメータを追加する場合も…
まとめ
確率・統計の教科書で出てくる問題は尤度 𝑃 𝐷 𝐻 が
与えられていることが多い
→ 現実はそんなに甘くない
パラメータ(例ではラボ畜の数 i)をおいて,
尤度の分布を仮定する = 統計モデリング することで
尤度最大化やベイズ推定で尤もらしい分布を推定できる
(実際は尤度の分布に正規分布など多種多様な分布を用いる)
→現実はそれでもまだ甘くない
例では尤度最大化などを解析的に解けたが,現実には
解けない場合がある(MCMCの出番).
しかも,尤度のパラメータだけでは説明できず
超パラメータを追加する場合も…
現実は甘く
ないよ!
構成
• 最尤推定とベイズ推定の話
• 機械学習を使う際の心構え
そして機械学習へ
• 機械学習がブラックボックスになりがちな理由
• ラボ畜モデルのように,
「データがどの分布に従うと仮定するのか」
が非常に大切
– とりま,混合ガウス分布で!
– 流行りのDeep Learningしょ!
– CRFがですね...
となる前にデータを視覚化しよう!
グラフ化してどの分布が適切かを考えるのが大切
解析的に解けないものを計算機的に近似して解いている
研究の道は険しい
• 今回説明したデータの分析だけでなく,
データの取得や分析結果の評価などが
全て正しくてようやく研究成果となる
研究の道は険しい...
ではどうしたら良いか?
皆さんも
ラボ畜になりましょう!
今日もラボだブヒ~
参考文献
• 「史上最強図解 これならわかる!ベイズ統計学」
涌井 良幸 (著), 涌井 貞美 (著)
• 「データ解析のための統計モデリング入門」
久保 拓弥 (著)
• イラストに「いらすとや」さんのものを使わせて頂きました
ありがとうございます. http://www.irasutoya.com/

More Related Content

What's hot (20)

グラフィカル Lasso を用いた異常検知
グラフィカル Lasso を用いた異常検知グラフィカル Lasso を用いた異常検知
グラフィカル Lasso を用いた異常検知
Yuya Takashina
 
機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明
Satoshi Hara
 
社会心理学者のための時系列分析入門_小森
社会心理学者のための時系列分析入門_小森社会心理学者のための時系列分析入門_小森
社会心理学者のための時系列分析入門_小森
Masashi Komori
 
PCAの最終形態GPLVMの解説
PCAの最終形態GPLVMの解説PCAの最終形態GPLVMの解説
PCAの最終形態GPLVMの解説
弘毅 露崎
 
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
Ken'ichi Matsui
 
機械学習による統計的実験計画(ベイズ最適化を中心に)
機械学習による統計的実験計画(ベイズ最適化を中心に)機械学習による統計的実験計画(ベイズ最適化を中心に)
機械学習による統計的実験計画(ベイズ最適化を中心に)
Kota Matsui
 
ベイズ統計学の概論的紹介
ベイズ統計学の概論的紹介ベイズ統計学の概論的紹介
ベイズ統計学の概論的紹介
Naoki Hayashi
 
Active Learning 入門
Active Learning 入門Active Learning 入門
Active Learning 入門
Shuyo Nakatani
 
因果探索: 基本から最近の発展までを概説
因果探索: 基本から最近の発展までを概説因果探索: 基本から最近の発展までを概説
因果探索: 基本から最近の発展までを概説
Shiga University, RIKEN
 
『バックドア基準の入門』@統数研研究集会
『バックドア基準の入門』@統数研研究集会『バックドア基準の入門』@統数研研究集会
『バックドア基準の入門』@統数研研究集会
takehikoihayashi
 
cvpaper.challenge 研究効率化 Tips
cvpaper.challenge 研究効率化 Tipscvpaper.challenge 研究効率化 Tips
cvpaper.challenge 研究効率化 Tips
cvpaper. challenge
 
機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門
hoxo_m
 
【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習
cvpaper. challenge
 
マルコフ連鎖モンテカルロ法 (2/3はベイズ推定の話)
マルコフ連鎖モンテカルロ法 (2/3はベイズ推定の話)マルコフ連鎖モンテカルロ法 (2/3はベイズ推定の話)
マルコフ連鎖モンテカルロ法 (2/3はベイズ推定の話)
Yoshitake Takebayashi
 
PRMLの線形回帰モデル(線形基底関数モデル)
PRMLの線形回帰モデル(線形基底関数モデル)PRMLの線形回帰モデル(線形基底関数モデル)
PRMLの線形回帰モデル(線形基底関数モデル)
Yasunori Ozaki
 
感覚運動随伴性、予測符号化、そして自由エネルギー原理 (Sensory-Motor Contingency, Predictive Coding and ...
感覚運動随伴性、予測符号化、そして自由エネルギー原理 (Sensory-Motor Contingency, Predictive Coding and ...感覚運動随伴性、予測符号化、そして自由エネルギー原理 (Sensory-Motor Contingency, Predictive Coding and ...
感覚運動随伴性、予測符号化、そして自由エネルギー原理 (Sensory-Motor Contingency, Predictive Coding and ...
Masatoshi Yoshida
 
よくわかるフリストンの自由エネルギー原理
よくわかるフリストンの自由エネルギー原理よくわかるフリストンの自由エネルギー原理
よくわかるフリストンの自由エネルギー原理
Masatoshi Yoshida
 
ベイズ推定の概要@広島ベイズ塾
ベイズ推定の概要@広島ベイズ塾ベイズ推定の概要@広島ベイズ塾
ベイズ推定の概要@広島ベイズ塾
Yoshitake Takebayashi
 
Transformerを雰囲気で理解する
Transformerを雰囲気で理解するTransformerを雰囲気で理解する
Transformerを雰囲気で理解する
AtsukiYamaguchi1
 
第8章 ガウス過程回帰による異常検知
第8章 ガウス過程回帰による異常検知第8章 ガウス過程回帰による異常検知
第8章 ガウス過程回帰による異常検知
Chika Inoshita
 
グラフィカル Lasso を用いた異常検知
グラフィカル Lasso を用いた異常検知グラフィカル Lasso を用いた異常検知
グラフィカル Lasso を用いた異常検知
Yuya Takashina
 
機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明
Satoshi Hara
 
社会心理学者のための時系列分析入門_小森
社会心理学者のための時系列分析入門_小森社会心理学者のための時系列分析入門_小森
社会心理学者のための時系列分析入門_小森
Masashi Komori
 
PCAの最終形態GPLVMの解説
PCAの最終形態GPLVMの解説PCAの最終形態GPLVMの解説
PCAの最終形態GPLVMの解説
弘毅 露崎
 
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
Ken'ichi Matsui
 
機械学習による統計的実験計画(ベイズ最適化を中心に)
機械学習による統計的実験計画(ベイズ最適化を中心に)機械学習による統計的実験計画(ベイズ最適化を中心に)
機械学習による統計的実験計画(ベイズ最適化を中心に)
Kota Matsui
 
ベイズ統計学の概論的紹介
ベイズ統計学の概論的紹介ベイズ統計学の概論的紹介
ベイズ統計学の概論的紹介
Naoki Hayashi
 
Active Learning 入門
Active Learning 入門Active Learning 入門
Active Learning 入門
Shuyo Nakatani
 
因果探索: 基本から最近の発展までを概説
因果探索: 基本から最近の発展までを概説因果探索: 基本から最近の発展までを概説
因果探索: 基本から最近の発展までを概説
Shiga University, RIKEN
 
『バックドア基準の入門』@統数研研究集会
『バックドア基準の入門』@統数研研究集会『バックドア基準の入門』@統数研研究集会
『バックドア基準の入門』@統数研研究集会
takehikoihayashi
 
cvpaper.challenge 研究効率化 Tips
cvpaper.challenge 研究効率化 Tipscvpaper.challenge 研究効率化 Tips
cvpaper.challenge 研究効率化 Tips
cvpaper. challenge
 
機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門
hoxo_m
 
【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習
cvpaper. challenge
 
マルコフ連鎖モンテカルロ法 (2/3はベイズ推定の話)
マルコフ連鎖モンテカルロ法 (2/3はベイズ推定の話)マルコフ連鎖モンテカルロ法 (2/3はベイズ推定の話)
マルコフ連鎖モンテカルロ法 (2/3はベイズ推定の話)
Yoshitake Takebayashi
 
PRMLの線形回帰モデル(線形基底関数モデル)
PRMLの線形回帰モデル(線形基底関数モデル)PRMLの線形回帰モデル(線形基底関数モデル)
PRMLの線形回帰モデル(線形基底関数モデル)
Yasunori Ozaki
 
感覚運動随伴性、予測符号化、そして自由エネルギー原理 (Sensory-Motor Contingency, Predictive Coding and ...
感覚運動随伴性、予測符号化、そして自由エネルギー原理 (Sensory-Motor Contingency, Predictive Coding and ...感覚運動随伴性、予測符号化、そして自由エネルギー原理 (Sensory-Motor Contingency, Predictive Coding and ...
感覚運動随伴性、予測符号化、そして自由エネルギー原理 (Sensory-Motor Contingency, Predictive Coding and ...
Masatoshi Yoshida
 
よくわかるフリストンの自由エネルギー原理
よくわかるフリストンの自由エネルギー原理よくわかるフリストンの自由エネルギー原理
よくわかるフリストンの自由エネルギー原理
Masatoshi Yoshida
 
ベイズ推定の概要@広島ベイズ塾
ベイズ推定の概要@広島ベイズ塾ベイズ推定の概要@広島ベイズ塾
ベイズ推定の概要@広島ベイズ塾
Yoshitake Takebayashi
 
Transformerを雰囲気で理解する
Transformerを雰囲気で理解するTransformerを雰囲気で理解する
Transformerを雰囲気で理解する
AtsukiYamaguchi1
 
第8章 ガウス過程回帰による異常検知
第8章 ガウス過程回帰による異常検知第8章 ガウス過程回帰による異常検知
第8章 ガウス過程回帰による異常検知
Chika Inoshita
 

Viewers also liked (20)

エクセルで統計分析 統計プログラムHADについて
エクセルで統計分析 統計プログラムHADについてエクセルで統計分析 統計プログラムHADについて
エクセルで統計分析 統計プログラムHADについて
Hiroshi Shimizu
 
IoT and 5G: Opportunities and Challenges, SenZations 2015
IoT and 5G: Opportunities and Challenges, SenZations 2015IoT and 5G: Opportunities and Challenges, SenZations 2015
IoT and 5G: Opportunities and Challenges, SenZations 2015
SenZations Summer School
 
PRML輪読#1
PRML輪読#1PRML輪読#1
PRML輪読#1
matsuolab
 
スパース推定
スパース推定スパース推定
スパース推定
y-uti
 
PRML輪読#13
PRML輪読#13PRML輪読#13
PRML輪読#13
matsuolab
 
エクセルで統計分析5 マルチレベル分析のやり方
エクセルで統計分析5 マルチレベル分析のやり方エクセルで統計分析5 マルチレベル分析のやり方
エクセルで統計分析5 マルチレベル分析のやり方
Hiroshi Shimizu
 
エクセルで統計分析2 HADの使い方
エクセルで統計分析2 HADの使い方エクセルで統計分析2 HADの使い方
エクセルで統計分析2 HADの使い方
Hiroshi Shimizu
 
エクセルで統計分析4 因子分析のやり方
エクセルで統計分析4 因子分析のやり方エクセルで統計分析4 因子分析のやり方
エクセルで統計分析4 因子分析のやり方
Hiroshi Shimizu
 
数式を使わずイメージで理解するEMアルゴリズム
数式を使わずイメージで理解するEMアルゴリズム数式を使わずイメージで理解するEMアルゴリズム
数式を使わずイメージで理解するEMアルゴリズム
裕樹 奥田
 
エクセルで統計分析3 回帰分析のやり方
エクセルで統計分析3 回帰分析のやり方エクセルで統計分析3 回帰分析のやり方
エクセルで統計分析3 回帰分析のやり方
Hiroshi Shimizu
 
5G Cloud RAN & IoT Architecture
5G Cloud RAN & IoT Architecture5G Cloud RAN & IoT Architecture
5G Cloud RAN & IoT Architecture
Sathiya keerthi
 
フリーソフトウェア「KH Coder」を使った計量テキスト分析 ―手軽なマウス操作による分析からプラグイン作成まで― #TokyoWebmining 41st
フリーソフトウェア「KH Coder」を使った計量テキスト分析 ―手軽なマウス操作による分析からプラグイン作成まで― #TokyoWebmining 41stフリーソフトウェア「KH Coder」を使った計量テキスト分析 ―手軽なマウス操作による分析からプラグイン作成まで― #TokyoWebmining 41st
フリーソフトウェア「KH Coder」を使った計量テキスト分析 ―手軽なマウス操作による分析からプラグイン作成まで― #TokyoWebmining 41st
khcoder
 
Rファイルの保存と活用1―KH Coderによる対応分析の結果のエクスポートと活用―
Rファイルの保存と活用1―KH Coderによる対応分析の結果のエクスポートと活用―Rファイルの保存と活用1―KH Coderによる対応分析の結果のエクスポートと活用―
Rファイルの保存と活用1―KH Coderによる対応分析の結果のエクスポートと活用―
khcoder
 
KH Coder 2 チュートリアル(スライド版)
KH Coder 2 チュートリアル(スライド版)KH Coder 2 チュートリアル(スライド版)
KH Coder 2 チュートリアル(スライド版)
khcoder
 
2 2.尤度と最尤法
2 2.尤度と最尤法2 2.尤度と最尤法
2 2.尤度と最尤法
logics-of-blue
 
PRML輪読#14
PRML輪読#14PRML輪読#14
PRML輪読#14
matsuolab
 
Stan超初心者入門
Stan超初心者入門Stan超初心者入門
Stan超初心者入門
Hiroshi Shimizu
 
マルコフ連鎖モンテカルロ法入門-1
マルコフ連鎖モンテカルロ法入門-1マルコフ連鎖モンテカルロ法入門-1
マルコフ連鎖モンテカルロ法入門-1
Nagi Teramo
 
学部生向けベイズ統計イントロ(公開版)
学部生向けベイズ統計イントロ(公開版)学部生向けベイズ統計イントロ(公開版)
学部生向けベイズ統計イントロ(公開版)
考司 小杉
 
エクセルで統計分析 統計プログラムHADについて
エクセルで統計分析 統計プログラムHADについてエクセルで統計分析 統計プログラムHADについて
エクセルで統計分析 統計プログラムHADについて
Hiroshi Shimizu
 
IoT and 5G: Opportunities and Challenges, SenZations 2015
IoT and 5G: Opportunities and Challenges, SenZations 2015IoT and 5G: Opportunities and Challenges, SenZations 2015
IoT and 5G: Opportunities and Challenges, SenZations 2015
SenZations Summer School
 
PRML輪読#1
PRML輪読#1PRML輪読#1
PRML輪読#1
matsuolab
 
スパース推定
スパース推定スパース推定
スパース推定
y-uti
 
PRML輪読#13
PRML輪読#13PRML輪読#13
PRML輪読#13
matsuolab
 
エクセルで統計分析5 マルチレベル分析のやり方
エクセルで統計分析5 マルチレベル分析のやり方エクセルで統計分析5 マルチレベル分析のやり方
エクセルで統計分析5 マルチレベル分析のやり方
Hiroshi Shimizu
 
エクセルで統計分析2 HADの使い方
エクセルで統計分析2 HADの使い方エクセルで統計分析2 HADの使い方
エクセルで統計分析2 HADの使い方
Hiroshi Shimizu
 
エクセルで統計分析4 因子分析のやり方
エクセルで統計分析4 因子分析のやり方エクセルで統計分析4 因子分析のやり方
エクセルで統計分析4 因子分析のやり方
Hiroshi Shimizu
 
数式を使わずイメージで理解するEMアルゴリズム
数式を使わずイメージで理解するEMアルゴリズム数式を使わずイメージで理解するEMアルゴリズム
数式を使わずイメージで理解するEMアルゴリズム
裕樹 奥田
 
エクセルで統計分析3 回帰分析のやり方
エクセルで統計分析3 回帰分析のやり方エクセルで統計分析3 回帰分析のやり方
エクセルで統計分析3 回帰分析のやり方
Hiroshi Shimizu
 
5G Cloud RAN & IoT Architecture
5G Cloud RAN & IoT Architecture5G Cloud RAN & IoT Architecture
5G Cloud RAN & IoT Architecture
Sathiya keerthi
 
フリーソフトウェア「KH Coder」を使った計量テキスト分析 ―手軽なマウス操作による分析からプラグイン作成まで― #TokyoWebmining 41st
フリーソフトウェア「KH Coder」を使った計量テキスト分析 ―手軽なマウス操作による分析からプラグイン作成まで― #TokyoWebmining 41stフリーソフトウェア「KH Coder」を使った計量テキスト分析 ―手軽なマウス操作による分析からプラグイン作成まで― #TokyoWebmining 41st
フリーソフトウェア「KH Coder」を使った計量テキスト分析 ―手軽なマウス操作による分析からプラグイン作成まで― #TokyoWebmining 41st
khcoder
 
Rファイルの保存と活用1―KH Coderによる対応分析の結果のエクスポートと活用―
Rファイルの保存と活用1―KH Coderによる対応分析の結果のエクスポートと活用―Rファイルの保存と活用1―KH Coderによる対応分析の結果のエクスポートと活用―
Rファイルの保存と活用1―KH Coderによる対応分析の結果のエクスポートと活用―
khcoder
 
KH Coder 2 チュートリアル(スライド版)
KH Coder 2 チュートリアル(スライド版)KH Coder 2 チュートリアル(スライド版)
KH Coder 2 チュートリアル(スライド版)
khcoder
 
2 2.尤度と最尤法
2 2.尤度と最尤法2 2.尤度と最尤法
2 2.尤度と最尤法
logics-of-blue
 
PRML輪読#14
PRML輪読#14PRML輪読#14
PRML輪読#14
matsuolab
 
マルコフ連鎖モンテカルロ法入門-1
マルコフ連鎖モンテカルロ法入門-1マルコフ連鎖モンテカルロ法入門-1
マルコフ連鎖モンテカルロ法入門-1
Nagi Teramo
 
学部生向けベイズ統計イントロ(公開版)
学部生向けベイズ統計イントロ(公開版)学部生向けベイズ統計イントロ(公開版)
学部生向けベイズ統計イントロ(公開版)
考司 小杉
 

Similar to ようやく分かった!最尤推定とベイズ推定 (20)

いいからベイズ推定してみる
いいからベイズ推定してみるいいからベイズ推定してみる
いいからベイズ推定してみる
Makoto Hirakawa
 
2019年 演習II.第1章 ベイズ推論の考え方 Part 1
2019年 演習II.第1章 ベイズ推論の考え方 Part 12019年 演習II.第1章 ベイズ推論の考え方 Part 1
2019年 演習II.第1章 ベイズ推論の考え方 Part 1
Wataru Shito
 
20170630 Cognitive Interaction Design @ Kyoto Institute of Technology
20170630 Cognitive Interaction Design @ Kyoto Institute of Technology20170630 Cognitive Interaction Design @ Kyoto Institute of Technology
20170630 Cognitive Interaction Design @ Kyoto Institute of Technology
Kazushi Ikeda
 
Casual learning machine learning with_excel_no3
Casual learning machine learning with_excel_no3Casual learning machine learning with_excel_no3
Casual learning machine learning with_excel_no3
KazuhiroSato8
 
第4章 確率的学習---単純ベイズを使った分類
第4章 確率的学習---単純ベイズを使った分類第4章 確率的学習---単純ベイズを使った分類
第4章 確率的学習---単純ベイズを使った分類
Wataru Shito
 
演習II.第1章 ベイズ推論の考え方 Part 1.講義ノート
演習II.第1章 ベイズ推論の考え方 Part 1.講義ノート演習II.第1章 ベイズ推論の考え方 Part 1.講義ノート
演習II.第1章 ベイズ推論の考え方 Part 1.講義ノート
Wataru Shito
 
A09  穴田研究室1 木村優斗,小笠原琉佳,坂本慶多,高橋昂大
A09  穴田研究室1 木村優斗,小笠原琉佳,坂本慶多,高橋昂大A09  穴田研究室1 木村優斗,小笠原琉佳,坂本慶多,高橋昂大
A09  穴田研究室1 木村優斗,小笠原琉佳,坂本慶多,高橋昂大
aomorisix
 
Bayes
BayesBayes
Bayes
takutori
 
【DBDA 勉強会 2013 夏】Doing Bayesian Data Analysis Chapter 4: Bayes’ Rule
【DBDA 勉強会 2013 夏】Doing Bayesian Data Analysis Chapter 4: Bayes’ Rule【DBDA 勉強会 2013 夏】Doing Bayesian Data Analysis Chapter 4: Bayes’ Rule
【DBDA 勉強会 2013 夏】Doing Bayesian Data Analysis Chapter 4: Bayes’ Rule
Shuhei Iitsuka
 
正則化による尤度比推定法を応用した多値分類器の改良
正則化による尤度比推定法を応用した多値分類器の改良正則化による尤度比推定法を応用した多値分類器の改良
正則化による尤度比推定法を応用した多値分類器の改良
MasatoKikuchi4
 
ノンパラベイズ入門の入門
ノンパラベイズ入門の入門ノンパラベイズ入門の入門
ノンパラベイズ入門の入門
Shuyo Nakatani
 
ベイズ Chow-Liu アルゴリズム
ベイズ Chow-Liu アルゴリズムベイズ Chow-Liu アルゴリズム
ベイズ Chow-Liu アルゴリズム
Joe Suzuki
 
20190512 bayes hands-on
20190512 bayes hands-on20190512 bayes hands-on
20190512 bayes hands-on
Yoichi Tokita
 
PRML第3章_3.3-3.4
PRML第3章_3.3-3.4PRML第3章_3.3-3.4
PRML第3章_3.3-3.4
Takashi Tamura
 
ベイズ統計学
ベイズ統計学ベイズ統計学
ベイズ統計学
Monta Yashi
 
Bayesian statistics chapter2
Bayesian statistics chapter2Bayesian statistics chapter2
Bayesian statistics chapter2
yyone7
 
クラシックな機械学習入門 1 導入
クラシックな機械学習入門 1 導入クラシックな機械学習入門 1 導入
クラシックな機械学習入門 1 導入
Hiroshi Nakagawa
 
全脳アーキテクチャ若手の会 機械学習勉強会 ベイジアンネットワーク
全脳アーキテクチャ若手の会 機械学習勉強会 ベイジアンネットワーク全脳アーキテクチャ若手の会 機械学習勉強会 ベイジアンネットワーク
全脳アーキテクチャ若手の会 機械学習勉強会 ベイジアンネットワーク
Erika_Fujita
 
Datamining 3rd naivebayes
Datamining 3rd naivebayesDatamining 3rd naivebayes
Datamining 3rd naivebayes
sesejun
 
bayesian inference
bayesian inferencebayesian inference
bayesian inference
Asako Yanuki
 
いいからベイズ推定してみる
いいからベイズ推定してみるいいからベイズ推定してみる
いいからベイズ推定してみる
Makoto Hirakawa
 
2019年 演習II.第1章 ベイズ推論の考え方 Part 1
2019年 演習II.第1章 ベイズ推論の考え方 Part 12019年 演習II.第1章 ベイズ推論の考え方 Part 1
2019年 演習II.第1章 ベイズ推論の考え方 Part 1
Wataru Shito
 
20170630 Cognitive Interaction Design @ Kyoto Institute of Technology
20170630 Cognitive Interaction Design @ Kyoto Institute of Technology20170630 Cognitive Interaction Design @ Kyoto Institute of Technology
20170630 Cognitive Interaction Design @ Kyoto Institute of Technology
Kazushi Ikeda
 
Casual learning machine learning with_excel_no3
Casual learning machine learning with_excel_no3Casual learning machine learning with_excel_no3
Casual learning machine learning with_excel_no3
KazuhiroSato8
 
第4章 確率的学習---単純ベイズを使った分類
第4章 確率的学習---単純ベイズを使った分類第4章 確率的学習---単純ベイズを使った分類
第4章 確率的学習---単純ベイズを使った分類
Wataru Shito
 
演習II.第1章 ベイズ推論の考え方 Part 1.講義ノート
演習II.第1章 ベイズ推論の考え方 Part 1.講義ノート演習II.第1章 ベイズ推論の考え方 Part 1.講義ノート
演習II.第1章 ベイズ推論の考え方 Part 1.講義ノート
Wataru Shito
 
A09  穴田研究室1 木村優斗,小笠原琉佳,坂本慶多,高橋昂大
A09  穴田研究室1 木村優斗,小笠原琉佳,坂本慶多,高橋昂大A09  穴田研究室1 木村優斗,小笠原琉佳,坂本慶多,高橋昂大
A09  穴田研究室1 木村優斗,小笠原琉佳,坂本慶多,高橋昂大
aomorisix
 
【DBDA 勉強会 2013 夏】Doing Bayesian Data Analysis Chapter 4: Bayes’ Rule
【DBDA 勉強会 2013 夏】Doing Bayesian Data Analysis Chapter 4: Bayes’ Rule【DBDA 勉強会 2013 夏】Doing Bayesian Data Analysis Chapter 4: Bayes’ Rule
【DBDA 勉強会 2013 夏】Doing Bayesian Data Analysis Chapter 4: Bayes’ Rule
Shuhei Iitsuka
 
正則化による尤度比推定法を応用した多値分類器の改良
正則化による尤度比推定法を応用した多値分類器の改良正則化による尤度比推定法を応用した多値分類器の改良
正則化による尤度比推定法を応用した多値分類器の改良
MasatoKikuchi4
 
ノンパラベイズ入門の入門
ノンパラベイズ入門の入門ノンパラベイズ入門の入門
ノンパラベイズ入門の入門
Shuyo Nakatani
 
ベイズ Chow-Liu アルゴリズム
ベイズ Chow-Liu アルゴリズムベイズ Chow-Liu アルゴリズム
ベイズ Chow-Liu アルゴリズム
Joe Suzuki
 
20190512 bayes hands-on
20190512 bayes hands-on20190512 bayes hands-on
20190512 bayes hands-on
Yoichi Tokita
 
ベイズ統計学
ベイズ統計学ベイズ統計学
ベイズ統計学
Monta Yashi
 
Bayesian statistics chapter2
Bayesian statistics chapter2Bayesian statistics chapter2
Bayesian statistics chapter2
yyone7
 
クラシックな機械学習入門 1 導入
クラシックな機械学習入門 1 導入クラシックな機械学習入門 1 導入
クラシックな機械学習入門 1 導入
Hiroshi Nakagawa
 
全脳アーキテクチャ若手の会 機械学習勉強会 ベイジアンネットワーク
全脳アーキテクチャ若手の会 機械学習勉強会 ベイジアンネットワーク全脳アーキテクチャ若手の会 機械学習勉強会 ベイジアンネットワーク
全脳アーキテクチャ若手の会 機械学習勉強会 ベイジアンネットワーク
Erika_Fujita
 
Datamining 3rd naivebayes
Datamining 3rd naivebayesDatamining 3rd naivebayes
Datamining 3rd naivebayes
sesejun
 
bayesian inference
bayesian inferencebayesian inference
bayesian inference
Asako Yanuki
 

ようやく分かった!最尤推定とベイズ推定