This document introduces artificial intelligence (AI) and discusses examples of AI being used in everyday life. It defines AI as machines that mimic human intelligence, and notes most current AI is specialized or "weak AI" that can only perform specific tasks rather than general human-level intelligence. Examples discussed include voice recognition, chatbots, facial recognition, image recognition for medical diagnosis, recommendation systems, AI in games like Go, and applications in business like sharing economies and customer monitoring.
The document discusses distances between data and similarity measures in data analysis. It introduces the concept of distance between data as a quantitative measure of how different two data points are, with smaller distances indicating greater similarity. Distances are useful for tasks like clustering data, detecting anomalies, data recognition, and measuring approximation errors. The most common distance measure, Euclidean distance, is explained for vectors of any dimension using the concept of norm from geometry. Caution is advised when calculating distances between data with differing scales.
LLM Threats: Prompt Injections and Jailbreak AttacksThien Q. Tran
Introducing the concept of prompt jailbreak attacks of LLM, including existing attack methods, an explanation why these attacks succeed and several methods to mitigate such attacks.
Several recent papers have explored self-supervised learning methods for vision transformers (ViT). Key approaches include:
1. Masked prediction tasks that predict masked patches of the input image.
2. Contrastive learning using techniques like MoCo to learn representations by contrasting augmented views of the same image.
3. Self-distillation methods like DINO that distill a teacher ViT into a student ViT using different views of the same image.
4. Hybrid approaches that combine masked prediction with self-distillation, such as iBOT.
This document summarizes a research paper on scaling laws for neural language models. Some key findings of the paper include:
- Language model performance depends strongly on model scale and weakly on model shape. With enough compute and data, performance scales as a power law of parameters, compute, and data.
- Overfitting is universal, with penalties depending on the ratio of parameters to data.
- Large models have higher sample efficiency and can reach the same performance levels with less optimization steps and data points.
- The paper motivated subsequent work by OpenAI on applying scaling laws to other domains like computer vision and developing increasingly large language models like GPT-3.
Several recent papers have explored self-supervised learning methods for vision transformers (ViT). Key approaches include:
1. Masked prediction tasks that predict masked patches of the input image.
2. Contrastive learning using techniques like MoCo to learn representations by contrasting augmented views of the same image.
3. Self-distillation methods like DINO that distill a teacher ViT into a student ViT using different views of the same image.
4. Hybrid approaches that combine masked prediction with self-distillation, such as iBOT.
This document summarizes a research paper on scaling laws for neural language models. Some key findings of the paper include:
- Language model performance depends strongly on model scale and weakly on model shape. With enough compute and data, performance scales as a power law of parameters, compute, and data.
- Overfitting is universal, with penalties depending on the ratio of parameters to data.
- Large models have higher sample efficiency and can reach the same performance levels with less optimization steps and data points.
- The paper motivated subsequent work by OpenAI on applying scaling laws to other domains like computer vision and developing increasingly large language models like GPT-3.
Introduction to Chainer: A Flexible Framework for Deep LearningSeiya Tokui
This is the slide used for PFI/PFN weekly seminar on June 18, 2015. Video (in Japanese): http://www.ustream.tv/recorded/64082997
Future Standard では、IoTを活用した映像解析のサービス開発を行っており、その仕組みを支える技術についてお話をさせて頂きます。前半では、AWSでサーバー側の仕組みを構築した際に、どのような設計思想に基づいてアーキテクチャを構築したのかといったポイントを中心に説明します。後半は、NVIDIAのJetsonという組み込みコンピューターを使った、Faster R-CNN を使ったエッジでのリアルタイム物体認識の取り組みについてお話させて頂きます。
Japan's virtual currency regulation and its recent developmentsMasakazu Masujima
Explaining outlines of Japan's virtual currency regulation and related issues surrounding virtual currencies. The topics include application of financial regulations to virtual currency and initial coin offering.
The document discusses pattern recognition and classification. It begins by defining pattern recognition as a method for determining what something is based on data like images, audio, or text. It then provides examples of common types of pattern recognition like image recognition and speech recognition. It notes that while pattern recognition comes easily to humans, it can be difficult for computers which lack abilities like unconscious, high-speed, high-accuracy recognition. The document then discusses the basic principle of computer-based pattern recognition as classifying inputs into predefined classes based on their similarity to training examples.
This document discusses non-structured data analysis, focusing on image data. It defines structured and non-structured data, with images, text, and audio given as examples of non-structured data. Images are described as high-dimensional vectors that are generated from analog to digital conversion via sampling and quantization. Various types of image data and analysis tasks are introduced, including image recognition, computer vision, feature extraction and image compression. Image processing techniques like filtering and binarization are also briefly covered.
This document provides an introduction to probability and probability distributions for data analysis. It explains that probability, like histograms, can help understand how data is distributed. Probability distributions describe the "easiness" or likelihood that a random variable takes on a particular value, and can be discrete (for a finite number of possible values) or continuous (for infinite possible values). Key probability distributions like the normal distribution are fundamental to many statistical analyses and machine learning techniques. Understanding probability distributions allows expressing data distributions with mathematical formulas parameterized by a few values.
The document discusses predictive modeling and regression analysis using data. It explains that predictive modeling involves collecting data, creating a predictive model by fitting the model to the data, and then using the model to predict outcomes for new input data. Regression analysis specifically aims to model relationships between input and output variables in data to enable predicting outputs for new inputs. The document provides examples of using linear regression to predict exam scores from study hours, and explains that the goal in model fitting is to minimize the sum of squared errors between predicted and actual output values in the data.
1. The document discusses principal component analysis (PCA) and explains how it can be used to determine the "true dimension" of vector data distributions.
2. PCA works by finding orthogonal bases (principal components) that best describe the variance in high-dimensional data, with the first principal component accounting for as much variance as possible.
3. The lengths of the principal component vectors indicate their importance, with longer vectors corresponding to more variance in the data. Analyzing the variances of the principal components can provide insight into the shape of the distribution and its true dimension.
This document discusses using linear algebra concepts to analyze data. It explains that vectors can be used to represent data, with each component of the vector corresponding to a different attribute or variable. The amount of each attribute in the data is equivalent to the component value. Vectors can be decomposed into the sum of their components multiplied by basis vectors, and recomposed using those values. This relationship allows the amount of each attribute to be calculated using the inner product of the vector and basis vector. So linear algebra provides a powerful framework for understanding and analyzing complex, multi-dimensional data.
This document discusses clustering and anomaly detection in data science. It introduces the concept of clustering, which is grouping a set of data into clusters so that data within each cluster are more similar to each other than data in other clusters. The k-means clustering algorithm is described in detail, which works by iteratively assigning data to the closest cluster centroid and updating the centroids. Other clustering algorithms like k-medoids and hierarchical clustering are also briefly mentioned. The document then discusses how anomaly detection, which identifies outliers in data that differ from expected patterns, can be performed based on measuring distances between data points. Examples applications of anomaly detection are provided.
The document discusses various measures of central tendency, including the mean, median, and weighted mean. It explains how to calculate the arithmetic mean of a data set by summing all values and dividing by the number of values. The mean works for vector data by taking the mean of each dimension separately. However, the mean can be overly influenced by outliers. Alternatively, the median is not influenced by outliers, as it is the middle value of the data when sorted. The document provides examples to illustrate these concepts for measuring central tendency.
This document discusses representing data as vectors. It explains that vectors are simply sets of numbers, and gives examples of representing human body measurements and image pixels as vectors of various dimensions. Higher-dimensional vectors can be used to encode complex data like images, time series, and survey responses. Visualizing vectors in coordinate systems becomes more abstract in higher dimensions. The key point is that vectors provide a unified way to represent diverse types of data.
Machine learning for document analysis and understandingSeiichi Uchida
The document discusses machine learning and document analysis using neural networks. It begins with an overview of the nearest neighbor method and how neural networks perform similarity-based classification and feature extraction. It then explains how neural networks work by calculating inner products between input and weight vectors. The document outlines how repeating these feature extraction layers allows the network to learn more complex patterns and separate classes. It provides examples of convolutional neural networks for tasks like document image analysis and discusses techniques for training networks and visualizing their representations.
An opening talk at ICDAR2017 Future Workshop - Beyond 100%Seiichi Uchida
What are the possible future research directions for OCR researchers (when we achieve almost 100% accuracy)? This slide is for a short opening talk to stimulate audiences. Actually, young researchers on OCR or other document processing-related research need to think about their "NEXT".