SlideShare a Scribd company logo
2017-08-05 @ Tokyo Web Mining
Yuta Kashino ( )
BakFoo, Inc. CEO
Astro Physics /Observational Cosmology
Zope / Python
Realtime Data Platform for Enterprise / Prototyping
Yuta Kashino ( )
arXiv
stat.ML, stat.TH, cs.CV, cs.CL, cs.LG
math-ph, astro-ph
PyCon2016
@yutakashino
https://www.slideshare.net/yutakashino/pyconjp2016
-
-
-
深層学習とベイズ統計
http://bayesiandeeplearning.org/
Shakir Mohamed
http://blog.shakirm.com/wp-content/uploads/2015/11/CSML_BayesDeep.pdf
-
Denker, Schwartz, Wittner, Solla, Howard, Jackel, Hopfield (1987)
Denker and LeCun (1991)
MacKay (1992)
Hinton and van Camp (1993)
Neal (1995)
Barber and Bishop (1998)
Graves (2011)
Blundell, Cornebise, Kavukcuoglu, and Wierstra (2015)
Hernandez-Lobato and Adam (2015)
-
Yarin Gal
Zoubin Ghahramani
Shakir Mohamed
Dastin Tran
Rajesh Ranganath
David Blei
Ian Goodfellow
Columbia U
U of Cambridge
-
- :
- :
- :
- :
- : SGD + BackProp
…
…x1 x2 xd
✓(2)
✓(1)
x
y
y(n)
=
X
j
✓
(2)
j (
X
i
✓
(1)
ji x
(n)
i ) + ✏(n)
p(y(n)
| x(n)
, ✓) = (
X
i
✓
(n)
i x
(n)
i )
✓
D = {x(n)
, y(n)
}N
n=1 = (X, y)
:
- +
- 2012 ILSVRC
→ 2015
-
-
-
-
:
-
- ReLU, DropOut, Mini Batch, SGD(Adam), LSTM…
-
- ImageNet, MSCoCo…
- : GPU,
- :
- Theano, Torch, Caffe, TensorFlow, Chainer, MxNet, PyTorch…
:
-
-
-
-
-
https://lossfunctions.tumblr.com/
:
-
-
-
- Adversarial examples
-
-
=
=
-
-
- :
- :
- :
- :
- : SGD + BackProp
…
…x1 x2 xd
✓(2)
✓(1)
x
y
y(n)
=
X
j
✓
(2)
j (
X
i
✓
(1)
ji x
(n)
i ) + ✏(n)
p(y(n)
| x(n)
, ✓) = (
X
i
✓
(n)
i x
(n)
i )
✓
D = {x(n)
, y(n)
}N
n=1 = (X, y)
- data hypothesis
-
-
P(H | D) =
P(H)P(D | H)
P
H P(H)P(D|H)
P(x) =
X
y
P(x, y)
P(x, y) = P(x)P(y | x)
- :
- :
-
-
- :
P(H | D) =
P(H)P(D | H)
P
H P(H)P(D|H)
likelihood priorposterior
P(✓ | D, m) =
P(D | ✓, m)P(✓ | m)
P(D | m)
m:
P(x | D, m) =
Z
P(x | ✓, D, m)P(✓ | D, m)d✓
P(m | D) =
P(D | m)P(m)
P(D)
-
- :
- :
- :
- :
…
…x1 x2 xd
✓(2)
✓(1)
x
y
✓
D = {x(n)
, y(n)
}N
n=1 = (X, y)
P(✓ | D, m) =
P(D | ✓, m)P(✓ | m)
P(D | m)
m:
P(x | D, m) =
Z
P(x | ✓, D, m)P(✓ | D, m)d✓
prior
- (Variational Bayes)
- (MCMC)
P(✓ | D, m) =
P(D | ✓, m)P(✓ | m)
P(D | m)
m:
p(θ|D) KL q(θ)
ELBO
⇤
= argmin KL(q(✓; ) || p(✓ | D))
= argmin Eq(✓; )[logq(✓; ) p(✓ | D)]
ELBO( ) = Eq(✓; )[p(✓, D) logq(✓; )]
⇤
= argmax ELBO( )
- VI
-
- David MacKay “Lecture 14 of the Cambridge Course”
- PRML 10
http://www.inference.org.uk/itprnn_lectures/
- KL =ELBO
q(✓; 1)
q(✓; 5)
p(✓, D) p(✓, D)
✓✓
⇤
= argmax ELBO( )
ELBO( ) = Eq(✓; )[p(✓, D) logq(✓; )]
- p q
- :
- ADVI: Automatic Differentiation Variational Inference
- BBVI: Blackbox Variational Inference
q(✓; 1)
q(✓; 5)
p(✓, D) p(✓, D)
✓✓
arxiv:1603.00788
arxiv:1401.0118
Reference
- Zoubin Ghahramani “History of Bayesian neural
networks” NIPS 2016 Workshop Bayesian Deep
Learning
- Yarin Gal “Bayesian Deep Learning"O'Reilly
Artificial Intelligence in New York, 2017
深層学習とベイズ統計
- Probabilistic Programing Library/Langage
- Stan, PyMC3, Anglican, Church, Venture,Figaro, WebPPL,
Edward
- : Edward / PyMC3
- (VI)
Metropolis Hastings
Hamilton Monte Carlo
Stochastic Gradient Langevin Dynamics
No-U-Turn Sampler
Blackbox Variational Inference
Automatic Differentiation Variational Inference
Edward
Edward
- Dustin Tran (Open AI)
- Blei Lab
- (PPL)
- Stan, PyMC3, Anglican, Church, Venture,Figaro, WebPPL
- 2016 2 PPL
- TensorFlow
- George Edward Pelham Box
Box-Cox Trans., Box-Jenkins, Ljung-Box test box plot Tukey,
3 2 RA Fisher
PPL
Edward
TensorFlow(TF) + (PPL)
TF:
PPL: + +
Python/Numpy
1. TF:
-
- :
1. TF:
1. TF:
-
-
- GPU / TPU
Inception v3 Inception v4
1. TF:
- Keras, Slim
- TensorBoard
2.
x:
edward
x⇤
s P(x | ↵)
✓⇤
⇠ Beta(✓ | 1, 1)
2.
- ( )
Edward
p(x, ✓) = Beta(✓ | 1, 1)
50Y
n=1
Bernoulli(xn | ✓),
2.
-
log_prob()
-
mean()
-
sample()
3.
Edward TF
3.
256 28*28
4.
X, Z Z
- (Variational Bayes)
- (MCMC)
p(z | x) =
p(x, z)
R
p(x, z)dz
.
4.
4.
p(z|x) KL q(z)
ELBO
4.
Edward KLqp
5. Box’s loop
George Edward Pelham Box
Blei 2014
5. Box’s loop
Edward
- Edward = TensorFlow + +
- TensorFlow
-
- TF GPU, TPU, TensorBoard, Keras
-
- Box’s Loop
- Python
深層学習とベイズ統計
Refrence
•D. Tran, A. Kucukelbir, A. Dieng, M. Rudolph, D. Liang, and
D.M. Blei. Edward: A library for probabilistic modeling,
inference, and criticism.(arXiv preprint arXiv:1610.09787)
•D. Tran, M.D. Hoffman, R.A. Saurous, E. Brevdo, K. Murphy,
and D.M. Blei. Deep probabilistic programming.(arXiv
preprint arXiv:1701.03757)
•Box, G. E. (1976). Science and statistics. (Journal of the
American Statistical Association, 71(356), 791–799.)
•D.M. Blei. Build, Compute, Critique, Repeat: Data Analysis
with Latent Variable Models. (Annual Review of Statistics
and Its Application Volume 1, 2014)
深層学習とベイズ統計
Dropout
- Yarin Gal ”Uncertainty in Deep Learning”
- Dropout
- Dropout : conv
- LeNet with Dropout http://mlg.eng.cam.ac.uk/yarin/blog_2248.html
Dropout
- LeNet DNN
- conv Dropout MNIST
Dropout
- CO2
-
-
-
Questions
kashino@bakfoo.com
@yutakashino
BakFoo, Inc.
NHK NMAPS: +
BakFoo, Inc.
PyConJP 2015
Python
BakFoo, Inc.
BakFoo, Inc.
: SNS +

More Related Content

What's hot (20)

変分推論と Normalizing Flow
変分推論と Normalizing Flow変分推論と Normalizing Flow
変分推論と Normalizing Flow
Akihiro Nitta
 
Domain Adaptation 発展と動向まとめ(サーベイ資料)
Domain Adaptation 発展と動向まとめ(サーベイ資料)Domain Adaptation 発展と動向まとめ(サーベイ資料)
Domain Adaptation 発展と動向まとめ(サーベイ資料)
Yamato OKAMOTO
 
SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜
SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜
SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜
SSII
 
Active Learning 入門
Active Learning 入門Active Learning 入門
Active Learning 入門
Shuyo Nakatani
 
【解説】 一般逆行列
【解説】 一般逆行列【解説】 一般逆行列
【解説】 一般逆行列
Kenjiro Sugimoto
 
CV分野におけるサーベイ方法
CV分野におけるサーベイ方法CV分野におけるサーベイ方法
CV分野におけるサーベイ方法
Hirokatsu Kataoka
 
[DL輪読会]Revisiting Deep Learning Models for Tabular Data (NeurIPS 2021) 表形式デー...
[DL輪読会]Revisiting Deep Learning Models for Tabular Data  (NeurIPS 2021) 表形式デー...[DL輪読会]Revisiting Deep Learning Models for Tabular Data  (NeurIPS 2021) 表形式デー...
[DL輪読会]Revisiting Deep Learning Models for Tabular Data (NeurIPS 2021) 表形式デー...
Deep Learning JP
 
PRML第6章「カーネル法」
PRML第6章「カーネル法」PRML第6章「カーネル法」
PRML第6章「カーネル法」
Keisuke Sugawara
 
[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...
[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...
[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...
Deep Learning JP
 
CatBoost on GPU のひみつ
CatBoost on GPU のひみつCatBoost on GPU のひみつ
CatBoost on GPU のひみつ
Takuji Tahara
 
ドメイン適応の原理と応用
ドメイン適応の原理と応用ドメイン適応の原理と応用
ドメイン適応の原理と応用
Yoshitaka Ushiku
 
ブラックボックスからXAI (説明可能なAI) へ - LIME (Local Interpretable Model-agnostic Explanat...
ブラックボックスからXAI (説明可能なAI) へ - LIME (Local Interpretable Model-agnostic Explanat...ブラックボックスからXAI (説明可能なAI) へ - LIME (Local Interpretable Model-agnostic Explanat...
ブラックボックスからXAI (説明可能なAI) へ - LIME (Local Interpretable Model-agnostic Explanat...
西岡 賢一郎
 
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
Preferred Networks
 
[DL輪読会]Deep Learning 第15章 表現学習
[DL輪読会]Deep Learning 第15章 表現学習[DL輪読会]Deep Learning 第15章 表現学習
[DL輪読会]Deep Learning 第15章 表現学習
Deep Learning JP
 
非ガウス性を利用した 因果構造探索
非ガウス性を利用した因果構造探索非ガウス性を利用した因果構造探索
非ガウス性を利用した 因果構造探索
Shiga University, RIKEN
 
ベイズ最適化によるハイパラーパラメータ探索
ベイズ最適化によるハイパラーパラメータ探索ベイズ最適化によるハイパラーパラメータ探索
ベイズ最適化によるハイパラーパラメータ探索
西岡 賢一郎
 
ガイデットフィルタとその周辺
ガイデットフィルタとその周辺ガイデットフィルタとその周辺
ガイデットフィルタとその周辺
Norishige Fukushima
 
[DL輪読会]ICLR2020の分布外検知速報
[DL輪読会]ICLR2020の分布外検知速報[DL輪読会]ICLR2020の分布外検知速報
[DL輪読会]ICLR2020の分布外検知速報
Deep Learning JP
 
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
Preferred Networks
 
最適輸送の計算アルゴリズムの研究動向
最適輸送の計算アルゴリズムの研究動向最適輸送の計算アルゴリズムの研究動向
最適輸送の計算アルゴリズムの研究動向
ohken
 
変分推論と Normalizing Flow
変分推論と Normalizing Flow変分推論と Normalizing Flow
変分推論と Normalizing Flow
Akihiro Nitta
 
Domain Adaptation 発展と動向まとめ(サーベイ資料)
Domain Adaptation 発展と動向まとめ(サーベイ資料)Domain Adaptation 発展と動向まとめ(サーベイ資料)
Domain Adaptation 発展と動向まとめ(サーベイ資料)
Yamato OKAMOTO
 
SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜
SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜
SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜
SSII
 
Active Learning 入門
Active Learning 入門Active Learning 入門
Active Learning 入門
Shuyo Nakatani
 
【解説】 一般逆行列
【解説】 一般逆行列【解説】 一般逆行列
【解説】 一般逆行列
Kenjiro Sugimoto
 
CV分野におけるサーベイ方法
CV分野におけるサーベイ方法CV分野におけるサーベイ方法
CV分野におけるサーベイ方法
Hirokatsu Kataoka
 
[DL輪読会]Revisiting Deep Learning Models for Tabular Data (NeurIPS 2021) 表形式デー...
[DL輪読会]Revisiting Deep Learning Models for Tabular Data  (NeurIPS 2021) 表形式デー...[DL輪読会]Revisiting Deep Learning Models for Tabular Data  (NeurIPS 2021) 表形式デー...
[DL輪読会]Revisiting Deep Learning Models for Tabular Data (NeurIPS 2021) 表形式デー...
Deep Learning JP
 
PRML第6章「カーネル法」
PRML第6章「カーネル法」PRML第6章「カーネル法」
PRML第6章「カーネル法」
Keisuke Sugawara
 
[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...
[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...
[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...
Deep Learning JP
 
CatBoost on GPU のひみつ
CatBoost on GPU のひみつCatBoost on GPU のひみつ
CatBoost on GPU のひみつ
Takuji Tahara
 
ドメイン適応の原理と応用
ドメイン適応の原理と応用ドメイン適応の原理と応用
ドメイン適応の原理と応用
Yoshitaka Ushiku
 
ブラックボックスからXAI (説明可能なAI) へ - LIME (Local Interpretable Model-agnostic Explanat...
ブラックボックスからXAI (説明可能なAI) へ - LIME (Local Interpretable Model-agnostic Explanat...ブラックボックスからXAI (説明可能なAI) へ - LIME (Local Interpretable Model-agnostic Explanat...
ブラックボックスからXAI (説明可能なAI) へ - LIME (Local Interpretable Model-agnostic Explanat...
西岡 賢一郎
 
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
Preferred Networks
 
[DL輪読会]Deep Learning 第15章 表現学習
[DL輪読会]Deep Learning 第15章 表現学習[DL輪読会]Deep Learning 第15章 表現学習
[DL輪読会]Deep Learning 第15章 表現学習
Deep Learning JP
 
非ガウス性を利用した 因果構造探索
非ガウス性を利用した因果構造探索非ガウス性を利用した因果構造探索
非ガウス性を利用した 因果構造探索
Shiga University, RIKEN
 
ベイズ最適化によるハイパラーパラメータ探索
ベイズ最適化によるハイパラーパラメータ探索ベイズ最適化によるハイパラーパラメータ探索
ベイズ最適化によるハイパラーパラメータ探索
西岡 賢一郎
 
ガイデットフィルタとその周辺
ガイデットフィルタとその周辺ガイデットフィルタとその周辺
ガイデットフィルタとその周辺
Norishige Fukushima
 
[DL輪読会]ICLR2020の分布外検知速報
[DL輪読会]ICLR2020の分布外検知速報[DL輪読会]ICLR2020の分布外検知速報
[DL輪読会]ICLR2020の分布外検知速報
Deep Learning JP
 
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
Preferred Networks
 
最適輸送の計算アルゴリズムの研究動向
最適輸送の計算アルゴリズムの研究動向最適輸送の計算アルゴリズムの研究動向
最適輸送の計算アルゴリズムの研究動向
ohken
 

Viewers also liked (14)

オープニングトーク - 創設の思い・目的・進行方針  -データマイニング+WEB勉強会@東京
オープニングトーク - 創設の思い・目的・進行方針  -データマイニング+WEB勉強会@東京オープニングトーク - 創設の思い・目的・進行方針  -データマイニング+WEB勉強会@東京
オープニングトーク - 創設の思い・目的・進行方針  -データマイニング+WEB勉強会@東京
Koichi Hamada
 
映像解析における周辺要素
映像解析における周辺要素映像解析における周辺要素
映像解析における周辺要素
Takashi Kaneda
 
Variational Autoencoderの紹介
Variational Autoencoderの紹介Variational Autoencoderの紹介
Variational Autoencoderの紹介
Ken'ichi Matsui
 
対話返答生成における個性の追加反映
対話返答生成における個性の追加反映対話返答生成における個性の追加反映
対話返答生成における個性の追加反映
Koichi Hamada
 
Tokyo webmining 2017-10-28
Tokyo webmining 2017-10-28Tokyo webmining 2017-10-28
Tokyo webmining 2017-10-28
Kimikazu Kato
 
ウェブアプリケーションセキュリティ超入門
ウェブアプリケーションセキュリティ超入門ウェブアプリケーションセキュリティ超入門
ウェブアプリケーションセキュリティ超入門
Hiroshi Tokumaru
 
20161029 TVI Tokyowebmining Seminar for Share
20161029 TVI Tokyowebmining Seminar for Share20161029 TVI Tokyowebmining Seminar for Share
20161029 TVI Tokyowebmining Seminar for Share
Yasushi Gunya
 
動的最適化の今までとこれから
動的最適化の今までとこれから動的最適化の今までとこれから
動的最適化の今までとこれから
Kazuki Baba
 
ドローン農業最前線
ドローン農業最前線ドローン農業最前線
ドローン農業最前線
tetsuya furukawa
 
アンカンファレンス @ 第50回 データマイニング+WEB @東京
アンカンファレンス @ 第50回 データマイニング+WEB @東京アンカンファレンス @ 第50回 データマイニング+WEB @東京
アンカンファレンス @ 第50回 データマイニング+WEB @東京
Izumi Akiyama
 
PL/CUDA - GPU Accelerated In-Database Analytics
PL/CUDA - GPU Accelerated In-Database AnalyticsPL/CUDA - GPU Accelerated In-Database Analytics
PL/CUDA - GPU Accelerated In-Database Analytics
Kohei KaiGai
 
20170310_InDatabaseAnalytics_#1
20170310_InDatabaseAnalytics_#120170310_InDatabaseAnalytics_#1
20170310_InDatabaseAnalytics_#1
Kohei KaiGai
 
計量経済学と 機械学習の交差点入り口 (公開用)
計量経済学と 機械学習の交差点入り口 (公開用)計量経済学と 機械学習の交差点入り口 (公開用)
計量経済学と 機械学習の交差点入り口 (公開用)
Shota Yasui
 
レコメンド研究のあれこれ
レコメンド研究のあれこれレコメンド研究のあれこれ
レコメンド研究のあれこれ
Masahiro Sato
 
オープニングトーク - 創設の思い・目的・進行方針  -データマイニング+WEB勉強会@東京
オープニングトーク - 創設の思い・目的・進行方針  -データマイニング+WEB勉強会@東京オープニングトーク - 創設の思い・目的・進行方針  -データマイニング+WEB勉強会@東京
オープニングトーク - 創設の思い・目的・進行方針  -データマイニング+WEB勉強会@東京
Koichi Hamada
 
映像解析における周辺要素
映像解析における周辺要素映像解析における周辺要素
映像解析における周辺要素
Takashi Kaneda
 
Variational Autoencoderの紹介
Variational Autoencoderの紹介Variational Autoencoderの紹介
Variational Autoencoderの紹介
Ken'ichi Matsui
 
対話返答生成における個性の追加反映
対話返答生成における個性の追加反映対話返答生成における個性の追加反映
対話返答生成における個性の追加反映
Koichi Hamada
 
Tokyo webmining 2017-10-28
Tokyo webmining 2017-10-28Tokyo webmining 2017-10-28
Tokyo webmining 2017-10-28
Kimikazu Kato
 
ウェブアプリケーションセキュリティ超入門
ウェブアプリケーションセキュリティ超入門ウェブアプリケーションセキュリティ超入門
ウェブアプリケーションセキュリティ超入門
Hiroshi Tokumaru
 
20161029 TVI Tokyowebmining Seminar for Share
20161029 TVI Tokyowebmining Seminar for Share20161029 TVI Tokyowebmining Seminar for Share
20161029 TVI Tokyowebmining Seminar for Share
Yasushi Gunya
 
動的最適化の今までとこれから
動的最適化の今までとこれから動的最適化の今までとこれから
動的最適化の今までとこれから
Kazuki Baba
 
ドローン農業最前線
ドローン農業最前線ドローン農業最前線
ドローン農業最前線
tetsuya furukawa
 
アンカンファレンス @ 第50回 データマイニング+WEB @東京
アンカンファレンス @ 第50回 データマイニング+WEB @東京アンカンファレンス @ 第50回 データマイニング+WEB @東京
アンカンファレンス @ 第50回 データマイニング+WEB @東京
Izumi Akiyama
 
PL/CUDA - GPU Accelerated In-Database Analytics
PL/CUDA - GPU Accelerated In-Database AnalyticsPL/CUDA - GPU Accelerated In-Database Analytics
PL/CUDA - GPU Accelerated In-Database Analytics
Kohei KaiGai
 
20170310_InDatabaseAnalytics_#1
20170310_InDatabaseAnalytics_#120170310_InDatabaseAnalytics_#1
20170310_InDatabaseAnalytics_#1
Kohei KaiGai
 
計量経済学と 機械学習の交差点入り口 (公開用)
計量経済学と 機械学習の交差点入り口 (公開用)計量経済学と 機械学習の交差点入り口 (公開用)
計量経済学と 機械学習の交差点入り口 (公開用)
Shota Yasui
 
レコメンド研究のあれこれ
レコメンド研究のあれこれレコメンド研究のあれこれ
レコメンド研究のあれこれ
Masahiro Sato
 
Ad

Similar to 深層学習とベイズ統計 (20)

ベイジアンディープニューラルネット
ベイジアンディープニューラルネットベイジアンディープニューラルネット
ベイジアンディープニューラルネット
Yuta Kashino
 
Pycon2017
Pycon2017Pycon2017
Pycon2017
Yuta Kashino
 
Bayesian Neural Networks
Bayesian Neural NetworksBayesian Neural Networks
Bayesian Neural Networks
Natan Katz
 
GAN for Bayesian Inference objectives
GAN for Bayesian Inference objectivesGAN for Bayesian Inference objectives
GAN for Bayesian Inference objectives
Natan Katz
 
Bayesian Deep Learning
Bayesian Deep LearningBayesian Deep Learning
Bayesian Deep Learning
RayKim51
 
Modeling uncertainty in deep learning
Modeling uncertainty in deep learning Modeling uncertainty in deep learning
Modeling uncertainty in deep learning
Sungjoon Choi
 
Uncertainty in deep learning
Uncertainty in deep learningUncertainty in deep learning
Uncertainty in deep learning
Yujiro Katagiri
 
Deep Learning in Finance
Deep Learning in FinanceDeep Learning in Finance
Deep Learning in Finance
Altoros
 
[DL輪読会]Recent Advances in Autoencoder-Based Representation Learning
[DL輪読会]Recent Advances in Autoencoder-Based Representation Learning[DL輪読会]Recent Advances in Autoencoder-Based Representation Learning
[DL輪読会]Recent Advances in Autoencoder-Based Representation Learning
Deep Learning JP
 
SGLD Berlin ML GROUP
SGLD Berlin ML GROUPSGLD Berlin ML GROUP
SGLD Berlin ML GROUP
Natan Katz
 
Introduction to Deep Learning and TensorFlow
Introduction to Deep Learning and TensorFlowIntroduction to Deep Learning and TensorFlow
Introduction to Deep Learning and TensorFlow
Oswald Campesato
 
H2 o berkeleydltf
H2 o berkeleydltfH2 o berkeleydltf
H2 o berkeleydltf
Oswald Campesato
 
Intro to Deep Learning, TensorFlow, and tensorflow.js
Intro to Deep Learning, TensorFlow, and tensorflow.jsIntro to Deep Learning, TensorFlow, and tensorflow.js
Intro to Deep Learning, TensorFlow, and tensorflow.js
Oswald Campesato
 
TensorFlow in Your Browser
TensorFlow in Your BrowserTensorFlow in Your Browser
TensorFlow in Your Browser
Oswald Campesato
 
20180722 pyro
20180722 pyro20180722 pyro
20180722 pyro
Taku Yoshioka
 
Deep Learning in Your Browser
Deep Learning in Your BrowserDeep Learning in Your Browser
Deep Learning in Your Browser
Oswald Campesato
 
Conditional neural processes
Conditional neural processesConditional neural processes
Conditional neural processes
Kazuki Fujikawa
 
[DL輪読会]Conditional Neural Processes
[DL輪読会]Conditional Neural Processes[DL輪読会]Conditional Neural Processes
[DL輪読会]Conditional Neural Processes
Deep Learning JP
 
20191123 bayes dl-jp
20191123 bayes dl-jp20191123 bayes dl-jp
20191123 bayes dl-jp
Taku Yoshioka
 
Goodfellow, Bengio, Couville (2016) "Deep Learning", Chap. 6
Goodfellow, Bengio, Couville (2016) "Deep Learning", Chap. 6Goodfellow, Bengio, Couville (2016) "Deep Learning", Chap. 6
Goodfellow, Bengio, Couville (2016) "Deep Learning", Chap. 6
Ono Shigeru
 
ベイジアンディープニューラルネット
ベイジアンディープニューラルネットベイジアンディープニューラルネット
ベイジアンディープニューラルネット
Yuta Kashino
 
Bayesian Neural Networks
Bayesian Neural NetworksBayesian Neural Networks
Bayesian Neural Networks
Natan Katz
 
GAN for Bayesian Inference objectives
GAN for Bayesian Inference objectivesGAN for Bayesian Inference objectives
GAN for Bayesian Inference objectives
Natan Katz
 
Bayesian Deep Learning
Bayesian Deep LearningBayesian Deep Learning
Bayesian Deep Learning
RayKim51
 
Modeling uncertainty in deep learning
Modeling uncertainty in deep learning Modeling uncertainty in deep learning
Modeling uncertainty in deep learning
Sungjoon Choi
 
Uncertainty in deep learning
Uncertainty in deep learningUncertainty in deep learning
Uncertainty in deep learning
Yujiro Katagiri
 
Deep Learning in Finance
Deep Learning in FinanceDeep Learning in Finance
Deep Learning in Finance
Altoros
 
[DL輪読会]Recent Advances in Autoencoder-Based Representation Learning
[DL輪読会]Recent Advances in Autoencoder-Based Representation Learning[DL輪読会]Recent Advances in Autoencoder-Based Representation Learning
[DL輪読会]Recent Advances in Autoencoder-Based Representation Learning
Deep Learning JP
 
SGLD Berlin ML GROUP
SGLD Berlin ML GROUPSGLD Berlin ML GROUP
SGLD Berlin ML GROUP
Natan Katz
 
Introduction to Deep Learning and TensorFlow
Introduction to Deep Learning and TensorFlowIntroduction to Deep Learning and TensorFlow
Introduction to Deep Learning and TensorFlow
Oswald Campesato
 
Intro to Deep Learning, TensorFlow, and tensorflow.js
Intro to Deep Learning, TensorFlow, and tensorflow.jsIntro to Deep Learning, TensorFlow, and tensorflow.js
Intro to Deep Learning, TensorFlow, and tensorflow.js
Oswald Campesato
 
TensorFlow in Your Browser
TensorFlow in Your BrowserTensorFlow in Your Browser
TensorFlow in Your Browser
Oswald Campesato
 
Deep Learning in Your Browser
Deep Learning in Your BrowserDeep Learning in Your Browser
Deep Learning in Your Browser
Oswald Campesato
 
Conditional neural processes
Conditional neural processesConditional neural processes
Conditional neural processes
Kazuki Fujikawa
 
[DL輪読会]Conditional Neural Processes
[DL輪読会]Conditional Neural Processes[DL輪読会]Conditional Neural Processes
[DL輪読会]Conditional Neural Processes
Deep Learning JP
 
20191123 bayes dl-jp
20191123 bayes dl-jp20191123 bayes dl-jp
20191123 bayes dl-jp
Taku Yoshioka
 
Goodfellow, Bengio, Couville (2016) "Deep Learning", Chap. 6
Goodfellow, Bengio, Couville (2016) "Deep Learning", Chap. 6Goodfellow, Bengio, Couville (2016) "Deep Learning", Chap. 6
Goodfellow, Bengio, Couville (2016) "Deep Learning", Chap. 6
Ono Shigeru
 
Ad

More from Yuta Kashino (20)

時系列データと確率的プログラミング tfp.sts
時系列データと確率的プログラミング tfp.sts時系列データと確率的プログラミング tfp.sts
時系列データと確率的プログラミング tfp.sts
Yuta Kashino
 
Python kansai2019
Python kansai2019Python kansai2019
Python kansai2019
Yuta Kashino
 
Mlse20190208
Mlse20190208Mlse20190208
Mlse20190208
Yuta Kashino
 
Ml15m2018 10-27
Ml15m2018 10-27Ml15m2018 10-27
Ml15m2018 10-27
Yuta Kashino
 
Pydata2017 11-29
Pydata2017 11-29Pydata2017 11-29
Pydata2017 11-29
Yuta Kashino
 
私は如何にして心配するのを止めてPyTorchを愛するようになったか
私は如何にして心配するのを止めてPyTorchを愛するようになったか私は如何にして心配するのを止めてPyTorchを愛するようになったか
私は如何にして心配するのを止めてPyTorchを愛するようになったか
Yuta Kashino
 
Wasserstein GAN Tfug2017 07-12
Wasserstein GAN Tfug2017 07-12Wasserstein GAN Tfug2017 07-12
Wasserstein GAN Tfug2017 07-12
Yuta Kashino
 
確率的プログラミングライブラリEdward
確率的プログラミングライブラリEdward確率的プログラミングライブラリEdward
確率的プログラミングライブラリEdward
Yuta Kashino
 
PyConJP2016: 週末サイエンティストのススメ
PyConJP2016: 週末サイエンティストのススメPyConJP2016: 週末サイエンティストのススメ
PyConJP2016: 週末サイエンティストのススメ
Yuta Kashino
 
機械学習ビジネス研究会 第01回
機械学習ビジネス研究会 第01回機械学習ビジネス研究会 第01回
機械学習ビジネス研究会 第01回
Yuta Kashino
 
深層学習ライブラリの環境問題Chainer Meetup2016 07-02
深層学習ライブラリの環境問題Chainer Meetup2016 07-02深層学習ライブラリの環境問題Chainer Meetup2016 07-02
深層学習ライブラリの環境問題Chainer Meetup2016 07-02
Yuta Kashino
 
Chainer meetup2016 03-19pub
Chainer meetup2016 03-19pubChainer meetup2016 03-19pub
Chainer meetup2016 03-19pub
Yuta Kashino
 
"Automatic Variational Inference in Stan" NIPS2015_yomi2016-01-20
"Automatic Variational Inference in Stan" NIPS2015_yomi2016-01-20"Automatic Variational Inference in Stan" NIPS2015_yomi2016-01-20
"Automatic Variational Inference in Stan" NIPS2015_yomi2016-01-20
Yuta Kashino
 
深層学習ライブラリのプログラミングモデル
深層学習ライブラリのプログラミングモデル深層学習ライブラリのプログラミングモデル
深層学習ライブラリのプログラミングモデル
Yuta Kashino
 
TensorFlow White Paperを読む
TensorFlow White Paperを読むTensorFlow White Paperを読む
TensorFlow White Paperを読む
Yuta Kashino
 
Deep learning Libs @twm
Deep learning Libs @twmDeep learning Libs @twm
Deep learning Libs @twm
Yuta Kashino
 
日本のオープンデータプラットフォームをPythonでつくる
日本のオープンデータプラットフォームをPythonでつくる日本のオープンデータプラットフォームをPythonでつくる
日本のオープンデータプラットフォームをPythonでつくる
Yuta Kashino
 
Gunosy2015 09-16ts
Gunosy2015 09-16tsGunosy2015 09-16ts
Gunosy2015 09-16ts
Yuta Kashino
 
Gunosy2015-08-05
Gunosy2015-08-05Gunosy2015-08-05
Gunosy2015-08-05
Yuta Kashino
 
Gunosy2015 07-07
Gunosy2015 07-07Gunosy2015 07-07
Gunosy2015 07-07
Yuta Kashino
 
時系列データと確率的プログラミング tfp.sts
時系列データと確率的プログラミング tfp.sts時系列データと確率的プログラミング tfp.sts
時系列データと確率的プログラミング tfp.sts
Yuta Kashino
 
私は如何にして心配するのを止めてPyTorchを愛するようになったか
私は如何にして心配するのを止めてPyTorchを愛するようになったか私は如何にして心配するのを止めてPyTorchを愛するようになったか
私は如何にして心配するのを止めてPyTorchを愛するようになったか
Yuta Kashino
 
Wasserstein GAN Tfug2017 07-12
Wasserstein GAN Tfug2017 07-12Wasserstein GAN Tfug2017 07-12
Wasserstein GAN Tfug2017 07-12
Yuta Kashino
 
確率的プログラミングライブラリEdward
確率的プログラミングライブラリEdward確率的プログラミングライブラリEdward
確率的プログラミングライブラリEdward
Yuta Kashino
 
PyConJP2016: 週末サイエンティストのススメ
PyConJP2016: 週末サイエンティストのススメPyConJP2016: 週末サイエンティストのススメ
PyConJP2016: 週末サイエンティストのススメ
Yuta Kashino
 
機械学習ビジネス研究会 第01回
機械学習ビジネス研究会 第01回機械学習ビジネス研究会 第01回
機械学習ビジネス研究会 第01回
Yuta Kashino
 
深層学習ライブラリの環境問題Chainer Meetup2016 07-02
深層学習ライブラリの環境問題Chainer Meetup2016 07-02深層学習ライブラリの環境問題Chainer Meetup2016 07-02
深層学習ライブラリの環境問題Chainer Meetup2016 07-02
Yuta Kashino
 
Chainer meetup2016 03-19pub
Chainer meetup2016 03-19pubChainer meetup2016 03-19pub
Chainer meetup2016 03-19pub
Yuta Kashino
 
"Automatic Variational Inference in Stan" NIPS2015_yomi2016-01-20
"Automatic Variational Inference in Stan" NIPS2015_yomi2016-01-20"Automatic Variational Inference in Stan" NIPS2015_yomi2016-01-20
"Automatic Variational Inference in Stan" NIPS2015_yomi2016-01-20
Yuta Kashino
 
深層学習ライブラリのプログラミングモデル
深層学習ライブラリのプログラミングモデル深層学習ライブラリのプログラミングモデル
深層学習ライブラリのプログラミングモデル
Yuta Kashino
 
TensorFlow White Paperを読む
TensorFlow White Paperを読むTensorFlow White Paperを読む
TensorFlow White Paperを読む
Yuta Kashino
 
Deep learning Libs @twm
Deep learning Libs @twmDeep learning Libs @twm
Deep learning Libs @twm
Yuta Kashino
 
日本のオープンデータプラットフォームをPythonでつくる
日本のオープンデータプラットフォームをPythonでつくる日本のオープンデータプラットフォームをPythonでつくる
日本のオープンデータプラットフォームをPythonでつくる
Yuta Kashino
 
Gunosy2015 09-16ts
Gunosy2015 09-16tsGunosy2015 09-16ts
Gunosy2015 09-16ts
Yuta Kashino
 

Recently uploaded (20)

Create Your First AI Agent with UiPath Agent Builder
Create Your First AI Agent with UiPath Agent BuilderCreate Your First AI Agent with UiPath Agent Builder
Create Your First AI Agent with UiPath Agent Builder
DianaGray10
 
Droidal: AI Agents Revolutionizing Healthcare
Droidal: AI Agents Revolutionizing HealthcareDroidal: AI Agents Revolutionizing Healthcare
Droidal: AI Agents Revolutionizing Healthcare
Droidal LLC
 
Agentic AI - The New Era of Intelligence
Agentic AI - The New Era of IntelligenceAgentic AI - The New Era of Intelligence
Agentic AI - The New Era of Intelligence
Muzammil Shah
 
New Ways to Reduce Database Costs with ScyllaDB
New Ways to Reduce Database Costs with ScyllaDBNew Ways to Reduce Database Costs with ScyllaDB
New Ways to Reduce Database Costs with ScyllaDB
ScyllaDB
 
UiPath Community Berlin: Studio Tips & Tricks and UiPath Insights
UiPath Community Berlin: Studio Tips & Tricks and UiPath InsightsUiPath Community Berlin: Studio Tips & Tricks and UiPath Insights
UiPath Community Berlin: Studio Tips & Tricks and UiPath Insights
UiPathCommunity
 
European Accessibility Act & Integrated Accessibility Testing
European Accessibility Act & Integrated Accessibility TestingEuropean Accessibility Act & Integrated Accessibility Testing
European Accessibility Act & Integrated Accessibility Testing
Julia Undeutsch
 
Cognitive Chasms - A Typology of GenAI Failure Failure Modes
Cognitive Chasms - A Typology of GenAI Failure Failure ModesCognitive Chasms - A Typology of GenAI Failure Failure Modes
Cognitive Chasms - A Typology of GenAI Failure Failure Modes
Dr. Tathagat Varma
 
STKI Israel Market Study 2025 final v1 version
STKI Israel Market Study 2025 final v1 versionSTKI Israel Market Study 2025 final v1 version
STKI Israel Market Study 2025 final v1 version
Dr. Jimmy Schwarzkopf
 
Dev Dives: System-to-system integration with UiPath API Workflows
Dev Dives: System-to-system integration with UiPath API WorkflowsDev Dives: System-to-system integration with UiPath API Workflows
Dev Dives: System-to-system integration with UiPath API Workflows
UiPathCommunity
 
6th Power Grid Model Meetup - 21 May 2025
6th Power Grid Model Meetup - 21 May 20256th Power Grid Model Meetup - 21 May 2025
6th Power Grid Model Meetup - 21 May 2025
DanBrown980551
 
Data Virtualization: Bringing the Power of FME to Any Application
Data Virtualization: Bringing the Power of FME to Any ApplicationData Virtualization: Bringing the Power of FME to Any Application
Data Virtualization: Bringing the Power of FME to Any Application
Safe Software
 
AI Emotional Actors: “When Machines Learn to Feel and Perform"
AI Emotional Actors:  “When Machines Learn to Feel and Perform"AI Emotional Actors:  “When Machines Learn to Feel and Perform"
AI Emotional Actors: “When Machines Learn to Feel and Perform"
AkashKumar809858
 
Cyber security cyber security cyber security cyber security cyber security cy...
Cyber security cyber security cyber security cyber security cyber security cy...Cyber security cyber security cyber security cyber security cyber security cy...
Cyber security cyber security cyber security cyber security cyber security cy...
pranavbodhak
 
TrustArc Webinar: Mastering Privacy Contracting
TrustArc Webinar: Mastering Privacy ContractingTrustArc Webinar: Mastering Privacy Contracting
TrustArc Webinar: Mastering Privacy Contracting
TrustArc
 
ECS25 - The adventures of a Microsoft 365 Platform Owner - Website.pptx
ECS25 - The adventures of a Microsoft 365 Platform Owner - Website.pptxECS25 - The adventures of a Microsoft 365 Platform Owner - Website.pptx
ECS25 - The adventures of a Microsoft 365 Platform Owner - Website.pptx
Jasper Oosterveld
 
Jeremy Millul - A Talented Software Developer
Jeremy Millul - A Talented Software DeveloperJeremy Millul - A Talented Software Developer
Jeremy Millul - A Talented Software Developer
Jeremy Millul
 
Securiport - A Border Security Company
Securiport  -  A Border Security CompanySecuriport  -  A Border Security Company
Securiport - A Border Security Company
Securiport
 
Maxx nft market place new generation nft marketing place
Maxx nft market place new generation nft marketing placeMaxx nft market place new generation nft marketing place
Maxx nft market place new generation nft marketing place
usersalmanrazdelhi
 
Let’s Get Slack Certified! 🚀- Slack Community
Let’s Get Slack Certified! 🚀- Slack CommunityLet’s Get Slack Certified! 🚀- Slack Community
Let’s Get Slack Certified! 🚀- Slack Community
SanjeetMishra29
 
Offshore IT Support: Balancing In-House and Offshore Help Desk Technicians
Offshore IT Support: Balancing In-House and Offshore Help Desk TechniciansOffshore IT Support: Balancing In-House and Offshore Help Desk Technicians
Offshore IT Support: Balancing In-House and Offshore Help Desk Technicians
john823664
 
Create Your First AI Agent with UiPath Agent Builder
Create Your First AI Agent with UiPath Agent BuilderCreate Your First AI Agent with UiPath Agent Builder
Create Your First AI Agent with UiPath Agent Builder
DianaGray10
 
Droidal: AI Agents Revolutionizing Healthcare
Droidal: AI Agents Revolutionizing HealthcareDroidal: AI Agents Revolutionizing Healthcare
Droidal: AI Agents Revolutionizing Healthcare
Droidal LLC
 
Agentic AI - The New Era of Intelligence
Agentic AI - The New Era of IntelligenceAgentic AI - The New Era of Intelligence
Agentic AI - The New Era of Intelligence
Muzammil Shah
 
New Ways to Reduce Database Costs with ScyllaDB
New Ways to Reduce Database Costs with ScyllaDBNew Ways to Reduce Database Costs with ScyllaDB
New Ways to Reduce Database Costs with ScyllaDB
ScyllaDB
 
UiPath Community Berlin: Studio Tips & Tricks and UiPath Insights
UiPath Community Berlin: Studio Tips & Tricks and UiPath InsightsUiPath Community Berlin: Studio Tips & Tricks and UiPath Insights
UiPath Community Berlin: Studio Tips & Tricks and UiPath Insights
UiPathCommunity
 
European Accessibility Act & Integrated Accessibility Testing
European Accessibility Act & Integrated Accessibility TestingEuropean Accessibility Act & Integrated Accessibility Testing
European Accessibility Act & Integrated Accessibility Testing
Julia Undeutsch
 
Cognitive Chasms - A Typology of GenAI Failure Failure Modes
Cognitive Chasms - A Typology of GenAI Failure Failure ModesCognitive Chasms - A Typology of GenAI Failure Failure Modes
Cognitive Chasms - A Typology of GenAI Failure Failure Modes
Dr. Tathagat Varma
 
STKI Israel Market Study 2025 final v1 version
STKI Israel Market Study 2025 final v1 versionSTKI Israel Market Study 2025 final v1 version
STKI Israel Market Study 2025 final v1 version
Dr. Jimmy Schwarzkopf
 
Dev Dives: System-to-system integration with UiPath API Workflows
Dev Dives: System-to-system integration with UiPath API WorkflowsDev Dives: System-to-system integration with UiPath API Workflows
Dev Dives: System-to-system integration with UiPath API Workflows
UiPathCommunity
 
6th Power Grid Model Meetup - 21 May 2025
6th Power Grid Model Meetup - 21 May 20256th Power Grid Model Meetup - 21 May 2025
6th Power Grid Model Meetup - 21 May 2025
DanBrown980551
 
Data Virtualization: Bringing the Power of FME to Any Application
Data Virtualization: Bringing the Power of FME to Any ApplicationData Virtualization: Bringing the Power of FME to Any Application
Data Virtualization: Bringing the Power of FME to Any Application
Safe Software
 
AI Emotional Actors: “When Machines Learn to Feel and Perform"
AI Emotional Actors:  “When Machines Learn to Feel and Perform"AI Emotional Actors:  “When Machines Learn to Feel and Perform"
AI Emotional Actors: “When Machines Learn to Feel and Perform"
AkashKumar809858
 
Cyber security cyber security cyber security cyber security cyber security cy...
Cyber security cyber security cyber security cyber security cyber security cy...Cyber security cyber security cyber security cyber security cyber security cy...
Cyber security cyber security cyber security cyber security cyber security cy...
pranavbodhak
 
TrustArc Webinar: Mastering Privacy Contracting
TrustArc Webinar: Mastering Privacy ContractingTrustArc Webinar: Mastering Privacy Contracting
TrustArc Webinar: Mastering Privacy Contracting
TrustArc
 
ECS25 - The adventures of a Microsoft 365 Platform Owner - Website.pptx
ECS25 - The adventures of a Microsoft 365 Platform Owner - Website.pptxECS25 - The adventures of a Microsoft 365 Platform Owner - Website.pptx
ECS25 - The adventures of a Microsoft 365 Platform Owner - Website.pptx
Jasper Oosterveld
 
Jeremy Millul - A Talented Software Developer
Jeremy Millul - A Talented Software DeveloperJeremy Millul - A Talented Software Developer
Jeremy Millul - A Talented Software Developer
Jeremy Millul
 
Securiport - A Border Security Company
Securiport  -  A Border Security CompanySecuriport  -  A Border Security Company
Securiport - A Border Security Company
Securiport
 
Maxx nft market place new generation nft marketing place
Maxx nft market place new generation nft marketing placeMaxx nft market place new generation nft marketing place
Maxx nft market place new generation nft marketing place
usersalmanrazdelhi
 
Let’s Get Slack Certified! 🚀- Slack Community
Let’s Get Slack Certified! 🚀- Slack CommunityLet’s Get Slack Certified! 🚀- Slack Community
Let’s Get Slack Certified! 🚀- Slack Community
SanjeetMishra29
 
Offshore IT Support: Balancing In-House and Offshore Help Desk Technicians
Offshore IT Support: Balancing In-House and Offshore Help Desk TechniciansOffshore IT Support: Balancing In-House and Offshore Help Desk Technicians
Offshore IT Support: Balancing In-House and Offshore Help Desk Technicians
john823664
 

深層学習とベイズ統計