Kaggle M5 Forecasting - Uncertainty 4th Place SolutionMasakazu Mori
This document describes the 4th place solution to the M5 Forecasting competition. It includes an introduction to the author, summaries of the model structure and features, details on exploratory data analysis, cross validation approach, and issues with seed values. The solution used two neural network models: one to predict individual item sales with a negative binomial distribution, and one to predict aggregated sales with a normal or student's t-distribution.
An Introduction to Variable and Feature Selectionの紹介となります。
実際の解説をYouTube (https://youtu.be/TiUCozZqR1w ) にもアップしています。
研究室の輪講で使った古いスライド。物体検出の黎明期からシングルショット系までのまとめ。
Old slides used in a lab lecture. A summary of object detection from its early days to single-shot systems.
フォント不足による表示崩れがあります(筑紫A丸ゴシック、Montserratを使用)。
How to organize data science project (データサイエンスプロジェクトの始め方101)Yasuyuki Kataoka
(Japanese) This is some tips on how to organize artificial intelligence or machine learning projects. This is presented in the engineering community event, NTT Engineer Festa#3, in Japan.
Kaggle M5 Forecasting - Uncertainty 4th Place SolutionMasakazu Mori
This document describes the 4th place solution to the M5 Forecasting competition. It includes an introduction to the author, summaries of the model structure and features, details on exploratory data analysis, cross validation approach, and issues with seed values. The solution used two neural network models: one to predict individual item sales with a negative binomial distribution, and one to predict aggregated sales with a normal or student's t-distribution.
An Introduction to Variable and Feature Selectionの紹介となります。
実際の解説をYouTube (https://youtu.be/TiUCozZqR1w ) にもアップしています。
研究室の輪講で使った古いスライド。物体検出の黎明期からシングルショット系までのまとめ。
Old slides used in a lab lecture. A summary of object detection from its early days to single-shot systems.
フォント不足による表示崩れがあります(筑紫A丸ゴシック、Montserratを使用)。
How to organize data science project (データサイエンスプロジェクトの始め方101)Yasuyuki Kataoka
(Japanese) This is some tips on how to organize artificial intelligence or machine learning projects. This is presented in the engineering community event, NTT Engineer Festa#3, in Japan.