David Research Group for RF Communications 2003-5-26 1
Parallel interference cancellation
in beyond 3G multi-user and
multi-antenna OFDM systems
David Sabater Dinter
University of Kaiserslautern
dinter@rhrk.uni-kl.de
Supervisor: A. Sklavos
David Research Group for RF Communications 2003-5-26 2
summary
• service area based system in the uplink
• transmission model
• subcarrierwise investigation
• optimum and suboptimum linear detection
• parallel interference cancellation
• PIC with improved estimate refinement
• simulation results
• conclusions
David Research Group for RF Communications 2003-5-26 3
uplink transmission in a service area
MT
AP
CU
AP
AP
MT
MT
( )1
ˆd
( )2
ˆd
( )
ˆ K
d
( )1
d
( )2
d
( )K
d
David Research Group for RF Communications 2003-5-26 4
( ) ( )
( ) ( )
( ) ( )B B
1,1 ,1
1,2 ,2
1, , B
(1)
(2)
( )B
(1)
(2)
( )
(1)
(2)
( )
K
K
K K K K KK
•= +
H H
H H
H H
d
d
d
n
n
n
e
e
e
% %L
% %L
M O M
% %L
M
%
%
M
%
%
%
M
%
transmission model
• Additive noise vector at AP :
• Received signal vector at AP :
Bk
Bk
B B B F( ) ( ,1) ( , ) T
( )k k k N
n n=n% % %K
B B B F( ) ( ,1) ( , ) T
( )k k k N
e e=e% % %K
B F FK N KN× F 1KN ×B F 1K N × B F 1K N ×
• data symbol vector sent by MT k: F( , )(k) ( ,1) T
( )k Nk
d d=d K
David Research Group for RF Communications 2003-5-26 5
subcarrierwise investigation
( )
( )
( )F
1
2
N
 
 ÷
 ÷
= ÷
 ÷
 ÷ ÷
 
H 0 0
0 H 0
H
0 0 H
% L
% L%
M M O M
%L
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )B B B
1,1 2,1 ,1
1,2 2,2 ,2
1, 1, ,
K
K
K K K K
 
 ÷
 ÷
=  ÷
 ÷
 ÷
 
H H H
H H H
H
H H H
% % %L
% % %L%
M M O M
% % %L
B F F block diagonal matrixK N xKN
•conversion of totalsystem to smaller parallel systems
•significant effort reduction in
•linear ZF, MMSE
•non linear MLVE
FN
B F F matrixsparseK N xKN
David Research Group for RF Communications 2003-5-26 6
( )
( )
( )
( ) ( ) ( )
F
F
F FF F
2
all data vectors equiprobable and Gauss noise
maximum likehood vector estimator (MLVE)
ˆ arg min
n
n
K
n nn n
∈
  
 
  
→
= −
d
d
d e H d
g
%%
D
optimum non-linear and
suboptimum linear detector
( )
( )
( ) ( )
( ){ }F
F F Fˆ arg max |n
n n n
K
P
∈
=
d
d d e%
D
F F F
( ) ( ) ( )ˆ .
n n n
=d D e% %
( )F F F F
1( ) ( )*T ( ) ( )*Tn n n n−
=D H H H% % % %
• Optimum multiuser detector,
• suboptimum linear detection
• Example: ZF criterion
F
F F
( )( ) ( )
2
min
nn n 
 
 
−e H d%%
David Research Group for RF Communications 2003-5-26 7
parallel interference cancellation
( )( )
( )
1
*T
*T
diag
diag
−
=
=
F H H
R H H
% % %
% % %
*T
H%
e% r%
F%
R%
$ ( )pd
$
( )ˆ 1p −d
-bank
of MF
( )ˆ pu
iterative MUD
estimaterefinement
andFECdecoding
• Forward matrix:
• Feedback matrix:
David Research Group for RF Communications 2003-5-26 8
no estimate refinement
F
, , (non zero) eigenvalues ofKNλ λ1 FR% %K
• no estimate refinement,
• PIC convergent if
• convergence value
ˆˆ ˆ=d d
( ) 1ρ ≤FR% %
$d FECdemod
ˆd
ˆu
$ˆd
estimate refinement and
FEC decoding
spectral radius
( ) { }F
FR max , , KNρ λ λ1=% % K
ZF
ˆ ˆ( )=∞d d
David Research Group for RF Communications 2003-5-26 9
spectral radius example
2,...,8K =
{ }P Rρ ≤
divergenceconvergence
•
• exp. Channel
snapshot
B 8K =
R
David Research Group for RF Communications 2003-5-26 10
estimate refinement by hard quantization
$d FECdemod
ˆd
ˆu
$ˆd
estimate refinement and
FEC decoding
• exploit knowledge of discrete
• quantization of to the modulation constellation
F( , )k n
d ∈D
$d
{ }F
2ˆˆ ˆarg min ( )
KN
p
∈
= −
d
d d d
D
D
David Research Group for RF Communications 2003-5-26 11
estimate refinement by soft quantization
$d FECdemod ˆu
$ˆd
estimate refinement and FEC decoding
$$ ( )
( )
2
min E
k
k
m md d
    
−  
    
$$ ( )k
md must satisfy
estim.
2
dσ
2
d
ˆ2 σ
( )tanh 2•
( )sign •
mod
( ) ( )
{ }ˆk k
m mL d d
David Research Group for RF Communications 2003-5-26 12
-10 -5 0 5 10 15 20
10
-3
10
-2
10
-1
10
0
simulation results
F( )
1n
ρ >
•
•
• subc.
• exp. channel
• no quant.
4K =
B 4K =
( )10 b 010log / /dBE N
bP
AWGN ZF
PICMF
David Research Group for RF Communications 2003-5-26 13
-10 -5 0 5 10 15 20
10
-3
10
-2
10
-1
10
0
simulation results
F( )
1n
ρ >
( )10 b 010log / /dBE N
bP
•
•
• subc.
• exp. channel
• hard quant.
4K =
B 4K =
AWGN
ZF
PICMF
David Research Group for RF Communications 2003-5-26 14
-10 -5 0 5 10 15 20
10
-3
10
-2
10
-1
10
0
simulation results
F( )
1n
ρ >
( )10 b 010log / /dBE N
bP
•
•
• subc.
• exp. channel
• soft quant.
4K =
B 4K =
AWGN
ZF
PICMF
David Research Group for RF Communications 2003-5-26 15
-10 -5 0 5 10 15 20
10
-3
10
-2
10
-1
10
0
simulation results
bP
( )10 b 010log / /dBE N
•
•
• subc.
• exp. channel
• no quant.
2K =
B 4K =
F( )
1n
ρ ;
AWGN
PIC
(even iterations)
PIC
(odd iterations)
ZF
David Research Group for RF Communications 2003-5-26 16
PIC with improved estimate refinement
*T
H%
e% r%
F%
$ ( )1d
bank
of MF
iterative MUD
first iterationsecond iterationthird iteration
*T
H%
e% r%
F%
R%
$ ( )2d
-bank
of MF
iterative MUD
demod
( )ˆ 2u
$
( )ˆ 1d
*T
H%
e% r%
F%
R%
$ ( )3d
-bank
of MF
iterative MUD
demod
( )ˆ 3u
$
( )ˆ 2d
hard Q
or
soft Q
• principle: input MAI-free at quantization process
• starting estimate refinement at the third iteration, errors
introduced by quantization method can be reduced
$d
David Research Group for RF Communications 2003-5-26 17
-10 -5 0 5 10 15 20
10
-3
10
-2
10
-1
10
0
simulation results
( )10 b 010log / /dBE N
bP
•
•
• subc.
• exp. channel
• hard quant.
• hard mod.
quant.
2K =
B 4K =
F( )
1n
ρ >
AWGN
MF
ZF
PIC
PIC mod
David Research Group for RF Communications 2003-5-26 18
-10 -5 0 5 10 15 20
10
-3
10
-2
10
-1
10
0
simulation results
( )10 b 010log / /dBE N
bP
•
•
• subc.
• exp. Channel
• soft quant.
• soft mod.
quant.
2K =
B 4K =
F( )
1n
ρ >
AWGN
MF
ZF
PICPIC mod
David Research Group for RF Communications 2003-5-26 19
-10 -5 0 5 10 15 20
10
-3
10
-2
10
-1
10
0
simulation results
( )10 b 010log / /dBE N
bP
•
•
•
• exp. Channel
• hard quant.
• hard mod.
quant.
3K =
B 6K =
F 32N =
AWGN
MF
ZF
PIC
PIC mod
David Research Group for RF Communications 2003-5-26 20
-10 -5 0 5 10 15 20
10
-3
10
-2
10
-1
10
0
simulation results
( )10 b 010log / /dBE N
bP
•
•
•
• exp. Channel
• soft quant.
• soft mod.
quant.
3K =
B 6K =
F 32N =
AWGN
MF
ZF
PIC mod
PIC
David Research Group for RF Communications 2003-5-26 21
conclusions
• PIC is a flexible JD scheme
• PIC is not always convergent
• performance improvement with modified
estimate refinement
• more investigation towards PIC necessary

More Related Content

PPSX
Plan_design and FPGA implement of MIMO OFDM SDM systems
PPTX
Coherent Optical Orthogonal Frequency Division Multiplexing (CO-OFDM )
PDF
Short survey for Channel estimation using OFDM systems
PPS
Spatial Modulation
PPTX
Performance evaluation of multicast video distribution using lte a in vehicul...
PPTX
System Level 5G Evaluation of GFDM Waveforms in an LTE-A Platform
PPT
Precoding
PDF
Spatial techniques in WiFi 802.11ac
Plan_design and FPGA implement of MIMO OFDM SDM systems
Coherent Optical Orthogonal Frequency Division Multiplexing (CO-OFDM )
Short survey for Channel estimation using OFDM systems
Spatial Modulation
Performance evaluation of multicast video distribution using lte a in vehicul...
System Level 5G Evaluation of GFDM Waveforms in an LTE-A Platform
Precoding
Spatial techniques in WiFi 802.11ac

What's hot (20)

PPT
MIMO OFDM
PDF
Optical Spatial Modulation with Transmitter-Receiver Alignments
PPT
Final ppt
PDF
To MIMO or Not To MIMO in Mobile Satellite Broadcasting Systems
PPTX
FINAL SEMINAR REPORT-OFDM
PPTX
BER performance simulation in a multi user MIMO Presentation
PDF
Performance Analysis of Massive MIMO Downlink System with Imperfect Channel S...
PPTX
Coherent optical ofdm
PPT
Stbc.pptx(1)
PPTX
MIMO.ppt (2) 2
PPTX
Perfomance Evaluation of FBMC for an Underwater Acoustic Channel
PPT
PDF
CSI Acquisition for FDD-based Massive MIMO Systems
PPT
Mimo ofdm by abhishek pandey
PPTX
PDF
Mimo tutorial by-fuyun_ling
PPTX
LTE Vs. 3G
PDF
Beamforming for Antenna Array
PDF
Channel Models for Massive MIMO
MIMO OFDM
Optical Spatial Modulation with Transmitter-Receiver Alignments
Final ppt
To MIMO or Not To MIMO in Mobile Satellite Broadcasting Systems
FINAL SEMINAR REPORT-OFDM
BER performance simulation in a multi user MIMO Presentation
Performance Analysis of Massive MIMO Downlink System with Imperfect Channel S...
Coherent optical ofdm
Stbc.pptx(1)
MIMO.ppt (2) 2
Perfomance Evaluation of FBMC for an Underwater Acoustic Channel
CSI Acquisition for FDD-based Massive MIMO Systems
Mimo ofdm by abhishek pandey
Mimo tutorial by-fuyun_ling
LTE Vs. 3G
Beamforming for Antenna Array
Channel Models for Massive MIMO
Ad

Similar to Parallel Interference Cancellation in beyond 3G multi-user and multi-antenna OFDM systems (20)

PPT
Modal Analysis Basic Theory
PDF
OPTIMIZED RATE ALLOCATION OF HYPERSPECTRAL IMAGES IN COMPRESSED DOMAIN USING ...
PDF
Asynchronous Differential Distributed Space-Time Coding
PPTX
final.pptx
PDF
RF Module Design - [Chapter 1] From Basics to RF Transceivers
PDF
Slide11 icc2015
PDF
射頻電子 - [第一章] 知識回顧與通訊系統簡介
PPT
PDF
Multiband Transceivers - [Chapter 1]
PPT
Signal Processing Algorithms for MIMO Radar
PDF
Dds 2
PDF
E 2017 1
PPT
2007 EuRad Conference: Speech on Rough Layers (ppt)
ODP
2007 EuRad Conference: Speech on Rough Layers (odp)
PDF
Gu2512391243
PDF
Gu2512391243
PDF
Spacecraft RF Communications Course Sampler
PPT
Introduction to OFDM.ppt
PPTX
vdocument.in_an-introduction-to-discrete-wavelet-transforms-56cc7a2622445.pptx
PPT
Frequency Modulation.ppt
Modal Analysis Basic Theory
OPTIMIZED RATE ALLOCATION OF HYPERSPECTRAL IMAGES IN COMPRESSED DOMAIN USING ...
Asynchronous Differential Distributed Space-Time Coding
final.pptx
RF Module Design - [Chapter 1] From Basics to RF Transceivers
Slide11 icc2015
射頻電子 - [第一章] 知識回顧與通訊系統簡介
Multiband Transceivers - [Chapter 1]
Signal Processing Algorithms for MIMO Radar
Dds 2
E 2017 1
2007 EuRad Conference: Speech on Rough Layers (ppt)
2007 EuRad Conference: Speech on Rough Layers (odp)
Gu2512391243
Gu2512391243
Spacecraft RF Communications Course Sampler
Introduction to OFDM.ppt
vdocument.in_an-introduction-to-discrete-wavelet-transforms-56cc7a2622445.pptx
Frequency Modulation.ppt
Ad

Recently uploaded (20)

PDF
Transform-Your-Factory-with-AI-Driven-Quality-Engineering.pdf
PDF
Transform-Your-Streaming-Platform-with-AI-Driven-Quality-Engineering.pdf
PDF
Connector Corner: Transform Unstructured Documents with Agentic Automation
PDF
ment.tech-Siri Delay Opens AI Startup Opportunity in 2025.pdf
PDF
Electrocardiogram sequences data analytics and classification using unsupervi...
PDF
Aug23rd - Mulesoft Community Workshop - Hyd, India.pdf
PDF
The AI Revolution in Customer Service - 2025
PDF
Introduction to MCP and A2A Protocols: Enabling Agent Communication
PPTX
AI-driven Assurance Across Your End-to-end Network With ThousandEyes
PDF
Advancing precision in air quality forecasting through machine learning integ...
PDF
4 layer Arch & Reference Arch of IoT.pdf
PDF
Rapid Prototyping: A lecture on prototyping techniques for interface design
PDF
Early detection and classification of bone marrow changes in lumbar vertebrae...
PDF
Accessing-Finance-in-Jordan-MENA 2024 2025.pdf
PDF
Transform-Your-Supply-Chain-with-AI-Driven-Quality-Engineering.pdf
PDF
CEH Module 2 Footprinting CEH V13, concepts
PDF
SaaS reusability assessment using machine learning techniques
PDF
giants, standing on the shoulders of - by Daniel Stenberg
PDF
Transform-Quality-Engineering-with-AI-A-60-Day-Blueprint-for-Digital-Success.pdf
PDF
EIS-Webinar-Regulated-Industries-2025-08.pdf
Transform-Your-Factory-with-AI-Driven-Quality-Engineering.pdf
Transform-Your-Streaming-Platform-with-AI-Driven-Quality-Engineering.pdf
Connector Corner: Transform Unstructured Documents with Agentic Automation
ment.tech-Siri Delay Opens AI Startup Opportunity in 2025.pdf
Electrocardiogram sequences data analytics and classification using unsupervi...
Aug23rd - Mulesoft Community Workshop - Hyd, India.pdf
The AI Revolution in Customer Service - 2025
Introduction to MCP and A2A Protocols: Enabling Agent Communication
AI-driven Assurance Across Your End-to-end Network With ThousandEyes
Advancing precision in air quality forecasting through machine learning integ...
4 layer Arch & Reference Arch of IoT.pdf
Rapid Prototyping: A lecture on prototyping techniques for interface design
Early detection and classification of bone marrow changes in lumbar vertebrae...
Accessing-Finance-in-Jordan-MENA 2024 2025.pdf
Transform-Your-Supply-Chain-with-AI-Driven-Quality-Engineering.pdf
CEH Module 2 Footprinting CEH V13, concepts
SaaS reusability assessment using machine learning techniques
giants, standing on the shoulders of - by Daniel Stenberg
Transform-Quality-Engineering-with-AI-A-60-Day-Blueprint-for-Digital-Success.pdf
EIS-Webinar-Regulated-Industries-2025-08.pdf

Parallel Interference Cancellation in beyond 3G multi-user and multi-antenna OFDM systems

  • 1. David Research Group for RF Communications 2003-5-26 1 Parallel interference cancellation in beyond 3G multi-user and multi-antenna OFDM systems David Sabater Dinter University of Kaiserslautern [email protected] Supervisor: A. Sklavos
  • 2. David Research Group for RF Communications 2003-5-26 2 summary • service area based system in the uplink • transmission model • subcarrierwise investigation • optimum and suboptimum linear detection • parallel interference cancellation • PIC with improved estimate refinement • simulation results • conclusions
  • 3. David Research Group for RF Communications 2003-5-26 3 uplink transmission in a service area MT AP CU AP AP MT MT ( )1 ˆd ( )2 ˆd ( ) ˆ K d ( )1 d ( )2 d ( )K d
  • 4. David Research Group for RF Communications 2003-5-26 4 ( ) ( ) ( ) ( ) ( ) ( )B B 1,1 ,1 1,2 ,2 1, , B (1) (2) ( )B (1) (2) ( ) (1) (2) ( ) K K K K K K KK •= + H H H H H H d d d n n n e e e % %L % %L M O M % %L M % % M % % % M % transmission model • Additive noise vector at AP : • Received signal vector at AP : Bk Bk B B B F( ) ( ,1) ( , ) T ( )k k k N n n=n% % %K B B B F( ) ( ,1) ( , ) T ( )k k k N e e=e% % %K B F FK N KN× F 1KN ×B F 1K N × B F 1K N × • data symbol vector sent by MT k: F( , )(k) ( ,1) T ( )k Nk d d=d K
  • 5. David Research Group for RF Communications 2003-5-26 5 subcarrierwise investigation ( ) ( ) ( )F 1 2 N    ÷  ÷ = ÷  ÷  ÷ ÷   H 0 0 0 H 0 H 0 0 H % L % L% M M O M %L ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )B B B 1,1 2,1 ,1 1,2 2,2 ,2 1, 1, , K K K K K K    ÷  ÷ =  ÷  ÷  ÷   H H H H H H H H H H % % %L % % %L% M M O M % % %L B F F block diagonal matrixK N xKN •conversion of totalsystem to smaller parallel systems •significant effort reduction in •linear ZF, MMSE •non linear MLVE FN B F F matrixsparseK N xKN
  • 6. David Research Group for RF Communications 2003-5-26 6 ( ) ( ) ( ) ( ) ( ) ( ) F F F FF F 2 all data vectors equiprobable and Gauss noise maximum likehood vector estimator (MLVE) ˆ arg min n n K n nn n ∈         → = − d d d e H d g %% D optimum non-linear and suboptimum linear detector ( ) ( ) ( ) ( ) ( ){ }F F F Fˆ arg max |n n n n K P ∈ = d d d e% D F F F ( ) ( ) ( )ˆ . n n n =d D e% % ( )F F F F 1( ) ( )*T ( ) ( )*Tn n n n− =D H H H% % % % • Optimum multiuser detector, • suboptimum linear detection • Example: ZF criterion F F F ( )( ) ( ) 2 min nn n      −e H d%%
  • 7. David Research Group for RF Communications 2003-5-26 7 parallel interference cancellation ( )( ) ( ) 1 *T *T diag diag − = = F H H R H H % % % % % % *T H% e% r% F% R% $ ( )pd $ ( )ˆ 1p −d -bank of MF ( )ˆ pu iterative MUD estimaterefinement andFECdecoding • Forward matrix: • Feedback matrix:
  • 8. David Research Group for RF Communications 2003-5-26 8 no estimate refinement F , , (non zero) eigenvalues ofKNλ λ1 FR% %K • no estimate refinement, • PIC convergent if • convergence value ˆˆ ˆ=d d ( ) 1ρ ≤FR% % $d FECdemod ˆd ˆu $ˆd estimate refinement and FEC decoding spectral radius ( ) { }F FR max , , KNρ λ λ1=% % K ZF ˆ ˆ( )=∞d d
  • 9. David Research Group for RF Communications 2003-5-26 9 spectral radius example 2,...,8K = { }P Rρ ≤ divergenceconvergence • • exp. Channel snapshot B 8K = R
  • 10. David Research Group for RF Communications 2003-5-26 10 estimate refinement by hard quantization $d FECdemod ˆd ˆu $ˆd estimate refinement and FEC decoding • exploit knowledge of discrete • quantization of to the modulation constellation F( , )k n d ∈D $d { }F 2ˆˆ ˆarg min ( ) KN p ∈ = − d d d d D D
  • 11. David Research Group for RF Communications 2003-5-26 11 estimate refinement by soft quantization $d FECdemod ˆu $ˆd estimate refinement and FEC decoding $$ ( ) ( ) 2 min E k k m md d      −        $$ ( )k md must satisfy estim. 2 dσ 2 d ˆ2 σ ( )tanh 2• ( )sign • mod ( ) ( ) { }ˆk k m mL d d
  • 12. David Research Group for RF Communications 2003-5-26 12 -10 -5 0 5 10 15 20 10 -3 10 -2 10 -1 10 0 simulation results F( ) 1n ρ > • • • subc. • exp. channel • no quant. 4K = B 4K = ( )10 b 010log / /dBE N bP AWGN ZF PICMF
  • 13. David Research Group for RF Communications 2003-5-26 13 -10 -5 0 5 10 15 20 10 -3 10 -2 10 -1 10 0 simulation results F( ) 1n ρ > ( )10 b 010log / /dBE N bP • • • subc. • exp. channel • hard quant. 4K = B 4K = AWGN ZF PICMF
  • 14. David Research Group for RF Communications 2003-5-26 14 -10 -5 0 5 10 15 20 10 -3 10 -2 10 -1 10 0 simulation results F( ) 1n ρ > ( )10 b 010log / /dBE N bP • • • subc. • exp. channel • soft quant. 4K = B 4K = AWGN ZF PICMF
  • 15. David Research Group for RF Communications 2003-5-26 15 -10 -5 0 5 10 15 20 10 -3 10 -2 10 -1 10 0 simulation results bP ( )10 b 010log / /dBE N • • • subc. • exp. channel • no quant. 2K = B 4K = F( ) 1n ρ ; AWGN PIC (even iterations) PIC (odd iterations) ZF
  • 16. David Research Group for RF Communications 2003-5-26 16 PIC with improved estimate refinement *T H% e% r% F% $ ( )1d bank of MF iterative MUD first iterationsecond iterationthird iteration *T H% e% r% F% R% $ ( )2d -bank of MF iterative MUD demod ( )ˆ 2u $ ( )ˆ 1d *T H% e% r% F% R% $ ( )3d -bank of MF iterative MUD demod ( )ˆ 3u $ ( )ˆ 2d hard Q or soft Q • principle: input MAI-free at quantization process • starting estimate refinement at the third iteration, errors introduced by quantization method can be reduced $d
  • 17. David Research Group for RF Communications 2003-5-26 17 -10 -5 0 5 10 15 20 10 -3 10 -2 10 -1 10 0 simulation results ( )10 b 010log / /dBE N bP • • • subc. • exp. channel • hard quant. • hard mod. quant. 2K = B 4K = F( ) 1n ρ > AWGN MF ZF PIC PIC mod
  • 18. David Research Group for RF Communications 2003-5-26 18 -10 -5 0 5 10 15 20 10 -3 10 -2 10 -1 10 0 simulation results ( )10 b 010log / /dBE N bP • • • subc. • exp. Channel • soft quant. • soft mod. quant. 2K = B 4K = F( ) 1n ρ > AWGN MF ZF PICPIC mod
  • 19. David Research Group for RF Communications 2003-5-26 19 -10 -5 0 5 10 15 20 10 -3 10 -2 10 -1 10 0 simulation results ( )10 b 010log / /dBE N bP • • • • exp. Channel • hard quant. • hard mod. quant. 3K = B 6K = F 32N = AWGN MF ZF PIC PIC mod
  • 20. David Research Group for RF Communications 2003-5-26 20 -10 -5 0 5 10 15 20 10 -3 10 -2 10 -1 10 0 simulation results ( )10 b 010log / /dBE N bP • • • • exp. Channel • soft quant. • soft mod. quant. 3K = B 6K = F 32N = AWGN MF ZF PIC mod PIC
  • 21. David Research Group for RF Communications 2003-5-26 21 conclusions • PIC is a flexible JD scheme • PIC is not always convergent • performance improvement with modified estimate refinement • more investigation towards PIC necessary