http://simonborgert.com          http://onlinemaths.net   © Simon Borgert 2011




                          Further Trig Formulae
http://simonborgert.com http://onlinemaths.net                         © Simon Borgert 2011


                           Products as Sums or
                               Differences
                               sin(A + B) = sin A cos B + cos Asin B
                               sin(A − B) = sin A cos B − cos Asin B
                                      Add the two together
http://simonborgert.com http://onlinemaths.net                            © Simon Borgert 2011


                           Products as Sums or
                               Differences
                               sin(A + B) = sin A cos B + cos Asin B
                               sin(A − B) = sin A cos B − cos Asin B
                                      Add the two together
                                 2sin A cos B = sin(A + B) + sin(A − B)
                                                  or
http://simonborgert.com http://onlinemaths.net                               © Simon Borgert 2011


                           Products as Sums or
                               Differences
                               sin(A + B) = sin A cos B + cos Asin B
                               sin(A − B) = sin A cos B − cos Asin B
                                      Add the two together
                                 2sin A cos B = sin(A + B) + sin(A − B)
                                                  or
                                 2sin A cos B = sin(sum) + sin(difference)
http://simonborgert.com http://onlinemaths.net                               © Simon Borgert 2011


                           Products as Sums or
                               Differences
                               sin(A + B) = sin A cos B + cos Asin B
                               sin(A − B) = sin A cos B − cos Asin B
                                      Add the two together
                                 2sin A cos B = sin(A + B) + sin(A − B)
                                                  or
                                 2sin A cos B = sin(sum) + sin(difference)
                                             1          1
                                sin A cos B = sin(sum) + sin(difference)
                                             2          2
http://simonborgert.com http://onlinemaths.net                               © Simon Borgert 2011


                           Products as Sums or
                               Differences
                               sin(A + B) = sin A cos B + cos Asin B
                               sin(A − B) = sin A cos B − cos Asin B
                                Subtract the second from the first
                                 2 cos Asin B = sin(A + B) − sin(A − B)
                                                  or
                                 2 cos Asin B = sin(sum) − sin(difference)
                                              1          1
                                  cos Asin B = sin(sum) − sin(difference)
                                              2          2
http://simonborgert.com http://onlinemaths.net                           © Simon Borgert 2011


                           Products as Sums or
                               Differences
                               cos(A + B) = cos A cos B − sin Asin B
                               cos(A − B) = cos A cos B + sin Asin B
                                     Add the two together
                                2 cos A cos B = cos(A + B) + cos(A − B)
                                                  or
                                2 cos A cos B = cos(sum) + cos(difference)
                                             1          1
                                cos A cos B = cos(sum) + cos(difference)
                                             2          2
http://simonborgert.com http://onlinemaths.net                             © Simon Borgert 2011


                           Products as Sums or
                               Differences
                               cos(A + B) = cos A cos B − sin Asin B
                               cos(A − B) = cos A cos B + sin Asin B
                                Subtract the first from the second
                                2sin Asin B = cos(A − B) − cos(A + B)
                                                or
                                2sin Asin B = cos(difference) − cos(sum)
                                           1                 1
                               sin Asin B = cos(difference) − cos(sum)
                                           2                 2
http://simonborgert.com http://onlinemaths.net                      © Simon Borgert 2011



                                             Summary
                        2sin A cos B = sin(sum) + sin(difference)


                        2 cos Asin B = sin(sum) − sin(difference)

                       2 cos A cos B = cos(sum) + cos(difference)


                        2sin Asin B = cos(difference) − cos(sum)
http://simonborgert.com http://onlinemaths.net                     © Simon Borgert 2011




                                                 or...
                                     1          1
                        sin A cos B = sin(sum) + sin(difference)
                                     2          2
                                    1          1
                        cos Asin B = sin(sum) − sin(difference)
                                    2          2
                                    1          1
                       cos A cos B = cos(sum) + cos(difference)
                                    2          2
                                    1                 1
                        sin Asin B = cos(difference) − cos(sum)
                                    2                 2
http://simonborgert.com http://onlinemaths.net                         © Simon Borgert 2011




                                            Example 1
          Express the product of cos 5x sin 3x as a sum of trigonometric functions
http://simonborgert.com http://onlinemaths.net                         © Simon Borgert 2011




                                            Example 1
          Express the product of cos 5x sin 3x as a sum of trigonometric functions
   Step 1: Identify the product to sum formula
http://simonborgert.com http://onlinemaths.net                         © Simon Borgert 2011




                                            Example 1
          Express the product of cos 5x sin 3x as a sum of trigonometric functions
   Step 1: Identify the product to sum formula
                          1          1
              cos Asin B = sin(sum) − sin(difference)
                          2          2
http://simonborgert.com http://onlinemaths.net                         © Simon Borgert 2011




                                            Example 1
          Express the product of cos 5x sin 3x as a sum of trigonometric functions
  Step 1: Identify the product to sum formula
                         1          1
             cos Asin B = sin(sum) − sin(difference)
                         2          2
  Step 2: Apply it to the given product
http://simonborgert.com http://onlinemaths.net                         © Simon Borgert 2011




                                            Example 1
          Express the product of cos 5x sin 3x as a sum of trigonometric functions
  Step 1: Identify the product to sum formula
                           1           1
             cos Asin B = sin(sum) − sin(difference)
                           2           2
  Step 2: Apply it to the given product
                           1              1
            cos 5x sin 3x = sin(5x + 3x) − sin(5x − 3x)
                           2              2
http://simonborgert.com http://onlinemaths.net                         © Simon Borgert 2011




                                            Example 1
          Express the product of cos 5x sin 3x as a sum of trigonometric functions
  Step 1: Identify the product to sum formula
                           1           1
             cos Asin B = sin(sum) − sin(difference)
                           2           2
  Step 2: Apply it to the given product
                           1              1
            cos 5x sin 3x = sin(5x + 3x) − sin(5x − 3x)
                           2              2
                                             1         1
                                            = sin(8x) − sin(2x)
                                             2         2
http://simonborgert.com http://onlinemaths.net                         © Simon Borgert 2011




                                            Example 2
       Express the product of 2sin3x sin 2x as a difference of trigonometric functions
   Step 1: Identify the product to sum formula
http://simonborgert.com http://onlinemaths.net                         © Simon Borgert 2011




                                            Example 2
       Express the product of 2sin3x sin 2x as a difference of trigonometric functions
   Step 1: Identify the product to sum formula
                         2sin Asin B = cos(difference) − cos(sum)
http://simonborgert.com http://onlinemaths.net                         © Simon Borgert 2011




                                            Example 2
       Express the product of 2sin3x sin 2x as a difference of trigonometric functions
   Step 1: Identify the product to sum formula
                         2sin Asin B = cos(difference) − cos(sum)

  Step 2: Apply it to the given product
http://simonborgert.com http://onlinemaths.net                         © Simon Borgert 2011




                                            Example 2
       Express the product of 2sin3x sin 2x as a difference of trigonometric functions
   Step 1: Identify the product to sum formula
                         2sin Asin B = cos(difference) − cos(sum)

  Step 2: Apply it to the given product
                      2sin 3x sin 2x = cos(3x − 2x) − cos(3x + 2x)
http://simonborgert.com http://onlinemaths.net                         © Simon Borgert 2011




                                            Example 2
       Express the product of 2sin3x sin 2x as a difference of trigonometric functions
   Step 1: Identify the product to sum formula
                         2sin Asin B = cos(difference) − cos(sum)

  Step 2: Apply it to the given product
                      2sin 3x sin 2x = cos(3x − 2x) − cos(3x + 2x)

                                                 = cos x − cos 5x
http://simonborgert.com http://onlinemaths.net   © Simon Borgert 2011


 Sums and Differences as Products
      2sin A cos B = sin(A + B) + sin(A − B)

     2 cos Asin B = sin(A + B) − sin(A − B)

     2 cos A cos B = cos(A + B) + cos(A − B)

      2sin Asin B = cos(A − B) − cos(A + B)
http://simonborgert.com http://onlinemaths.net                         © Simon Borgert 2011



   Sums and Differences as Products
                                                 Let U = A + B and V = A − B
      2sin A cos B = sin(A + B) + sin(A − B)
                                                      U +V           U −V
     2 cos Asin B = sin(A + B) − sin(A − B)      ∴A =        and B =
     2 cos A cos B = cos(A + B) + cos(A − B)
                                                         2             2
      2sin Asin B = cos(A − B) − cos(A + B)
http://simonborgert.com http://onlinemaths.net                         © Simon Borgert 2011



   Sums and Differences as Products
                                                 Let U = A + B and V = A − B
      2sin A cos B = sin(A + B) + sin(A − B)
                                                      U +V           U −V
     2 cos Asin B = sin(A + B) − sin(A − B)      ∴A =        and B =
     2 cos A cos B = cos(A + B) + cos(A − B)
                                                         2             2
      2sin Asin B = cos(A − B) − cos(A + B)
http://simonborgert.com http://onlinemaths.net                         © Simon Borgert 2011



   Sums and Differences as Products
                                                 Let U = A + B and V = A − B
      2sin A cos B = sin(A + B) + sin(A − B)
                                                      U +V           U −V
     2 cos Asin B = sin(A + B) − sin(A − B)      ∴A =        and B =
     2 cos A cos B = cos(A + B) + cos(A − B)
                                                         2             2
      2sin Asin B = cos(A − B) − cos(A + B)




            so the formulas become
http://simonborgert.com http://onlinemaths.net                                      © Simon Borgert 2011



   Sums and Differences as Products
                                                 Let U = A + B and V = A − B
      2sin A cos B = sin(A + B) + sin(A − B)
                                                      U +V           U −V
     2 cos Asin B = sin(A + B) − sin(A − B)      ∴A =        and B =
     2 cos A cos B = cos(A + B) + cos(A − B)
                                                         2             2
                                                                        U +V      U −V 
                                                     sinU + sinV = 2sin       cos 
      2sin Asin B = cos(A − B) − cos(A + B)                              2         2  
                                                                         U +V  U −V 
                                                     sinU − sinV = 2 cos       sin 
                                                                          2   2    
                                                                         U +V      U −V 
                                                     cosU + cosV = 2 cos       cos 
            so the formulas become                                        2         2  
                                                                        U +V  U −V 
                                                     cosV − cosU = 2sin       sin 
                                                                         2   2    
                                                                         U +V  U −V 
                                                     cosU − cosV = −2sin       sin 
                                                                          2   2    
http://simonborgert.com http://onlinemaths.net                              © Simon Borgert 2011



   Sums and Differences as Products
                      U +V      U −V 
   sinU + sinV = 2sin       cos                              1         1          
                       2         2           sin+ sin = 2sin  sum  cos  difference
                                                                 2         2          
                       U +V  U −V 
   sinU − sinV = 2 cos       sin 
                        2   2                                1     1              
                                                 sin− sin = 2 cos  sum  sin  difference
                                                                  2     2              
                       U +V      U −V 
   cosU + cosV = 2 cos       cos 
                        2         2                          1         1          
                                                 cos+ cos = 2 cos  sum  cos  difference
                                                                  2         2          
                      U +V  U −V 
   cosV − cosU = 2sin       sin                               1     1              
                       2   2                 cos− cos = −2sin  sum  sin  difference
                                                                  2     2              
                       U +V  U −V 
   cosU − cosV = −2sin       sin  
                        2   2 
http://simonborgert.com http://onlinemaths.net                             © Simon Borgert 2011


                                            Example 3
                                    Express cos 3x + cos 7x as a product
http://simonborgert.com http://onlinemaths.net                             © Simon Borgert 2011


                                            Example 3
                                    Express cos 3x + cos 7x as a product


   Step 1: Identify the sum to product formula
http://simonborgert.com http://onlinemaths.net                                © Simon Borgert 2011


                                            Example 3
                                    Express cos 3x + cos 7x as a product


   Step 1: Identify the sum to product formula
                                                  1         1          
                                 cos+ cos = 2 cos  sum  cos  difference
                                                  2         2          
http://simonborgert.com http://onlinemaths.net                                © Simon Borgert 2011


                                            Example 3
                                    Express cos 3x + cos 7x as a product


   Step 1: Identify the sum to product formula
                                                  1         1          
                                 cos+ cos = 2 cos  sum  cos  difference
                                                  2         2          

  Step 2: Apply it to the given product
http://simonborgert.com http://onlinemaths.net                                  © Simon Borgert 2011


                                            Example 3
                                    Express cos 3x + cos 7x as a product


   Step 1: Identify the sum to product formula
                                                  1         1          
                                 cos+ cos = 2 cos  sum  cos  difference
                                                  2         2          

  Step 2: Apply it to the given product
                                                1              1         
                        cos 3x + cos 7x = 2 cos  (3x + 7x) cos  (3x − 7x)
                                                2              2         
http://simonborgert.com http://onlinemaths.net                                  © Simon Borgert 2011


                                            Example 3
                                    Express cos 3x + cos 7x as a product


   Step 1: Identify the sum to product formula
                                                  1         1          
                                 cos+ cos = 2 cos  sum  cos  difference
                                                  2         2          

  Step 2: Apply it to the given product
                                                1              1         
                        cos 3x + cos 7x = 2 cos  (3x + 7x) cos  (3x − 7x)
                                                2              2         
                                            = 2 cos ( 5x ) cos ( −4x )
http://simonborgert.com http://onlinemaths.net                                      © Simon Borgert 2011


                                            Example 3
                                    Express cos 3x + cos 7x as a product


   Step 1: Identify the sum to product formula
                                                  1         1          
                                 cos+ cos = 2 cos  sum  cos  difference
                                                  2         2          

  Step 2: Apply it to the given product
                                                1              1         
                        cos 3x + cos 7x = 2 cos  (3x + 7x) cos  (3x − 7x)
                                                2              2         
                                            = 2 cos ( 5x ) cos ( −4x )

                                            = 2 cos ( 5x ) cos ( 4x )           as cos(−x) = cos x

Trig products as sum and differecnes