Download free for 30 days
Sign in
Upload
Language (EN)
Support
Business
Mobile
Social Media
Marketing
Technology
Art & Photos
Career
Design
Education
Presentations & Public Speaking
Government & Nonprofit
Healthcare
Internet
Law
Leadership & Management
Automotive
Engineering
Software
Recruiting & HR
Retail
Sales
Services
Science
Small Business & Entrepreneurship
Food
Environment
Economy & Finance
Data & Analytics
Investor Relations
Sports
Spiritual
News & Politics
Travel
Self Improvement
Real Estate
Entertainment & Humor
Health & Medicine
Devices & Hardware
Lifestyle
Change Language
Language
English
Español
Português
Français
Deutsche
Cancel
Save
Submit search
EN
MN
Uploaded by
MAY NURHAYATI
DOCX, PDF
2,020 views
Tugas fisika untuk matematika 2
PENYELESAIAN FISMAT MARRY L BOAS
Education
◦
Read more
0
Save
Share
Embed
Download
Download to read offline
1
/ 12
2
/ 12
Most read
3
/ 12
4
/ 12
5
/ 12
Most read
6
/ 12
Most read
7
/ 12
8
/ 12
9
/ 12
10
/ 12
11
/ 12
12
/ 12
More Related Content
DOCX
Fismat chapter 4
by
MAY NURHAYATI
PDF
Metamtika teknik 03-bernouli dan pdl-tk1
by
el sucahyo
PDF
Deret Fourier
by
Heni Widayani
PPT
sumur potensial persegi berhingga
by
suyono fis
PPTX
Gerak Gelombang
by
Rizka A. Hutami
PPTX
teori Bohr tentang Atom Hidrogen
by
Khotim U
PDF
Fisika kuantum 2
by
keynahkhun
DOC
Bab ii atom hidrogen
by
Dwi Karyani
Fismat chapter 4
by
MAY NURHAYATI
Metamtika teknik 03-bernouli dan pdl-tk1
by
el sucahyo
Deret Fourier
by
Heni Widayani
sumur potensial persegi berhingga
by
suyono fis
Gerak Gelombang
by
Rizka A. Hutami
teori Bohr tentang Atom Hidrogen
by
Khotim U
Fisika kuantum 2
by
keynahkhun
Bab ii atom hidrogen
by
Dwi Karyani
What's hot
PDF
Persamaan Diferensial Biasa (PDB) Orde 2
by
made dwika
PPS
Persamaan Diferensial Biasa ( Kalkulus 2 )
by
Kelinci Coklat
PDF
Fisika statistik
by
putuhermanwianta
PDF
persamaan-diferensial-orde-ii
by
Faried Doank
PDF
Dinamika relativitas
by
SMA Negeri 9 KERINCI
PPTX
Kel 9 Gaya Sentral.pptx
by
FourtwenoneTambunan
PPTX
Gelombang bunyi
by
nurulqomariyah33
PPTX
Contoh Soal Persamaan Schrodinger dan penyelesaiannya
by
AyuShaleha
PPTX
Analisis vektor
by
rahwan fisika
PPSX
Teori Pita Energi
by
Hariaty Fisika UNHAS
PPSX
Optik Geometris - Jarak benda, jarak bayangan dan jarak fokus
by
meift4h
PDF
Sistem Termodinamika
by
AlpiYanti
PPTX
Persamaan Schrodinger
by
Risdawati Hutabarat
PPTX
Fisika Potensial Listrik
by
willson willz
DOCX
Makalah osilator harmonik
by
bestricabebest
DOCX
Makalah interferensi dan difraksi
by
Annis Kenny
PDF
Laporan praktikum Efek Fotolistrik
by
Prisilia Meifi Mondigir
DOCX
Laporan Eksperimen Efek Fotolistrik
by
Nurfaizatul Jannah
DOCX
Bab iii(fix)
by
tedykorupselalu
DOCX
Tugas ringkasan materi bab 8 fisika modern tentang molekul (adi & andi)
by
SMP IT Putra Mataram
Persamaan Diferensial Biasa (PDB) Orde 2
by
made dwika
Persamaan Diferensial Biasa ( Kalkulus 2 )
by
Kelinci Coklat
Fisika statistik
by
putuhermanwianta
persamaan-diferensial-orde-ii
by
Faried Doank
Dinamika relativitas
by
SMA Negeri 9 KERINCI
Kel 9 Gaya Sentral.pptx
by
FourtwenoneTambunan
Gelombang bunyi
by
nurulqomariyah33
Contoh Soal Persamaan Schrodinger dan penyelesaiannya
by
AyuShaleha
Analisis vektor
by
rahwan fisika
Teori Pita Energi
by
Hariaty Fisika UNHAS
Optik Geometris - Jarak benda, jarak bayangan dan jarak fokus
by
meift4h
Sistem Termodinamika
by
AlpiYanti
Persamaan Schrodinger
by
Risdawati Hutabarat
Fisika Potensial Listrik
by
willson willz
Makalah osilator harmonik
by
bestricabebest
Makalah interferensi dan difraksi
by
Annis Kenny
Laporan praktikum Efek Fotolistrik
by
Prisilia Meifi Mondigir
Laporan Eksperimen Efek Fotolistrik
by
Nurfaizatul Jannah
Bab iii(fix)
by
tedykorupselalu
Tugas ringkasan materi bab 8 fisika modern tentang molekul (adi & andi)
by
SMP IT Putra Mataram
More from MAY NURHAYATI
DOCX
Uas fismat 2
by
MAY NURHAYATI
DOCX
LAPORAN OBSERVASI EKSISTENSI PERPUSTAKAAN
by
MAY NURHAYATI
DOCX
LAPORAN KEGIATAN OBSERVASI MAGANG I
by
MAY NURHAYATI
DOCX
May nurhayati k2315048 tugas 2
by
MAY NURHAYATI
DOCX
FEDERASI GURU INDEPENDEN INDONESIA
by
MAY NURHAYATI
DOCX
May nurhayati k2315048 tugas
by
MAY NURHAYATI
Uas fismat 2
by
MAY NURHAYATI
LAPORAN OBSERVASI EKSISTENSI PERPUSTAKAAN
by
MAY NURHAYATI
LAPORAN KEGIATAN OBSERVASI MAGANG I
by
MAY NURHAYATI
May nurhayati k2315048 tugas 2
by
MAY NURHAYATI
FEDERASI GURU INDEPENDEN INDONESIA
by
MAY NURHAYATI
May nurhayati k2315048 tugas
by
MAY NURHAYATI
Recently uploaded
PDF
Maintenance of Lhb Coaches for C&W staff
by
TCCW1
PDF
( مقرر لدبلومات مادة (الرياضيات عامة.pdf
by
masirh15
PPTX
amabizo kanye nezinhlobo ISIZULU PRESENTATION.pptx
by
Simphiwe Mkhize
PPTX
Sepedi Methodology 3B Microlesson2 Presentation (1).pptx
by
Kgomotso Molaba
PDF
SEPEDI Presentation [Histori ya Balobedu le Dingwala tsa sebjale]
by
u25560574
PPTX
AFT121(Pego)KA SEHLOPHA SA Kgosi Thobela
by
u25040643
PPTX
AFT 121 BAKWENA FINAL DOCUMENT FOR PEGO .pptx
by
u24812511
PPTX
Sehlopha_sa_Kgoši_Mampuru-LERIBA -CORRECT.pptx
by
u25469984
PPTX
AFT_121 Sepedi dipego legoro le legolo la ditiragalo
by
phutiseletisha391
PPTX
SEHLOPHA SA KGOŠI SEKHUKHUNE LE SERERWA SA BA BAKA MOHU .pptx
by
paballodiale8
PDF
SEHLOPHA SA KGOSHI SHAI TSHEKATSHEKO YA MOANEGWA LERATO
by
mahlodifiotha
PPTX
AFT 121(Sepedi) Presentation FINAL.pptx.
by
bridgetk099
PPTX
SEPEDI AFT PRESENTATION.pptx 2025 EDUCATION
by
starmabjwale24
PDF
KEY IELTS LISTENING 04.pdf - ielts listening
by
Ngân Nguyễn
PPTX
Histori ya Kgoši Nkwana, boetapele ga mmogo le bophelo bjwa gagwe
by
u25465521
PDF
IsiZulu Ulwimi lasekhaya Inkulumo elungiselelwe
by
NoluvoMpangase
PPTX
Sehlopha_sa_Kgoši_Molepo[1].pptx Thulaganyo
by
hellenntombi630
PPTX
SEP 3B 29 July 2025 Lecture 3 Drama.pptx
by
Univerity of Johannesburg
PPTX
SEPEDI PRESENTATION.Sehlopha sa Kgosi Boleu
by
u23743302
PPTX
PEGO YA SEHLOPHA SA DIKOLOBE TSA BJATLADI : LEGORO LE LEGOLO LA DITIRAGALO KA...
by
venetiaphaho
Maintenance of Lhb Coaches for C&W staff
by
TCCW1
( مقرر لدبلومات مادة (الرياضيات عامة.pdf
by
masirh15
amabizo kanye nezinhlobo ISIZULU PRESENTATION.pptx
by
Simphiwe Mkhize
Sepedi Methodology 3B Microlesson2 Presentation (1).pptx
by
Kgomotso Molaba
SEPEDI Presentation [Histori ya Balobedu le Dingwala tsa sebjale]
by
u25560574
AFT121(Pego)KA SEHLOPHA SA Kgosi Thobela
by
u25040643
AFT 121 BAKWENA FINAL DOCUMENT FOR PEGO .pptx
by
u24812511
Sehlopha_sa_Kgoši_Mampuru-LERIBA -CORRECT.pptx
by
u25469984
AFT_121 Sepedi dipego legoro le legolo la ditiragalo
by
phutiseletisha391
SEHLOPHA SA KGOŠI SEKHUKHUNE LE SERERWA SA BA BAKA MOHU .pptx
by
paballodiale8
SEHLOPHA SA KGOSHI SHAI TSHEKATSHEKO YA MOANEGWA LERATO
by
mahlodifiotha
AFT 121(Sepedi) Presentation FINAL.pptx.
by
bridgetk099
SEPEDI AFT PRESENTATION.pptx 2025 EDUCATION
by
starmabjwale24
KEY IELTS LISTENING 04.pdf - ielts listening
by
Ngân Nguyễn
Histori ya Kgoši Nkwana, boetapele ga mmogo le bophelo bjwa gagwe
by
u25465521
IsiZulu Ulwimi lasekhaya Inkulumo elungiselelwe
by
NoluvoMpangase
Sehlopha_sa_Kgoši_Molepo[1].pptx Thulaganyo
by
hellenntombi630
SEP 3B 29 July 2025 Lecture 3 Drama.pptx
by
Univerity of Johannesburg
SEPEDI PRESENTATION.Sehlopha sa Kgosi Boleu
by
u23743302
PEGO YA SEHLOPHA SA DIKOLOBE TSA BJATLADI : LEGORO LE LEGOLO LA DITIRAGALO KA...
by
venetiaphaho
Tugas fisika untuk matematika 2
1.
TUGAS FISIKA UNTUK
MATEMATIKA 2 Penyelesaian Soal Soal Chapter 5 Dosen Pengampu : Drs. Pujayanto, MSi DISUSUN OLEH MAY NURHAYATI (K2315048) PROGRAM STUDI PENDIDIKAN FISIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS SEBELAS MARET SURAKARTA 2016
2.
Section 2 2.1 ∫
∫ 𝟑𝐱 𝐝𝐲𝐝𝐱 𝟒 𝐲=𝟐 𝟏 𝐱=𝟎 =∫ [3𝑥𝑦]2 4 𝑑𝑥 1 𝑥=0 = ∫ (3x. 4 − 3x. 2)𝑑𝑥 1 𝑥=0 = ∫ (12x − 6x)𝑑𝑥 1 𝑥=0 = ∫ (6x)𝑑𝑥 1 𝑥=0 = [3𝑥2]0 1 = 3 2.5 ∫ ∫ 𝐲 𝐝𝐲𝐝𝐱 𝐞 𝐱 𝐲=𝐱 𝟏 𝐱=𝟎 =∫ [ 1 2 y2 ] x ex dx 1 x=0 =∫ ( 1 2 (ex)2 − 1 2 x2 )dx 1 x=0 = 1 2 ∫ (e2x − x2)dx 1 x=0 = 1 2 [ 1 2 e2x − 1 3 x3 ] 0 1 = ( 1 4 e2 − 1 6 ) – ( 1 4 − 0) = ( 1 4 e2 − 1 6 ) – ( 1 4 − 0) = 1 4 𝑒2 − 2−3 12 = 1 4 𝑒2 − 5 12 2.11 𝒘𝒉𝒆𝒓𝒆 𝑨 𝒊𝒔 𝒕𝒉𝒆 𝒂𝒓𝒆𝒂 𝒃𝒆𝒕𝒘𝒆𝒆𝒏 𝒕𝒉𝒆 𝒑𝒂𝒓𝒂𝒃𝒐𝒍𝒂 𝒚 = 𝒙 𝟐 𝒂𝒏𝒅 𝒕𝒉𝒆 𝒔𝒕𝒓𝒂𝒊𝒈𝒉𝒕 𝒍𝒊𝒏𝒆 𝟐𝒙 − 𝒚 + 𝟖 = 0.  Penyelesaian: Menentukanbatas y x = x 𝑥2 = 𝑥2 𝑦 = ( 𝑦 − 8 2 ) 2 𝑦 = 𝑦2 − 16𝑦 + 64 4 4𝑦 = 𝑦2 − 16𝑦 + 64 𝑦2 − 20𝑦 + 64 = 0 ( 𝑦 − 16) 𝑉( 𝑦 − 4) 𝑦 = 16 𝑉 𝑦 = 4 Menentukanbatas x
3.
𝑦 = 𝑦 𝑥2
= 2𝑥 + 8 𝑥2 − 2𝑥 − 8 = 0 ( 𝑥 − 4) 𝑉 (𝑥 + 2) 𝑥 = 4 𝑉 𝑥 = −2 Menentukanluas ∫ ∫ 𝑥𝑑𝑥𝑑𝑦 16 𝑦=4 4 𝑥=−2 = ∫ [ 𝑥𝑦]4 16 4 𝑥=−2 𝑑𝑥 = ∫ [16𝑥 − 4𝑥] 𝑑𝑥 4 −2 = ∫ [12𝑥] 𝑑𝑥 4 −2 = [6𝑥2]−2 4 = 96 − 24 = 72 2.39 ∫ ∫ ∫ 𝟔𝐲𝐝𝐱𝐝𝐳𝐝𝐲 = ∫ ∫ [6xy]y+z 2y+z2 z=1 dzdy 3 y=−2 𝟐𝐲+𝐳 𝐱=𝐲+𝐳 𝟐 𝐳=𝟏 𝟑 𝐲=−𝟐 = ∫ ∫ (6(2y+ z)y − 6(y + z)y 2 z=1 dzdy 3 y=−2 = ∫ ∫ 6((2y2 + yz) − (y2 + yz)) 2 z=1 dzdy 3 y=−2 = ∫ ∫ 6(y2 ) 2 z=1 dzdy 3 y=−2 = ∫ ∫ (6y2 ) 2 z=1 dzdy 3 y=−2 = ∫ [6y2 z]z=1 2 dy 3 y=−2 = ∫ (12y2 − 6y2 )dy 3 y=−2 = ∫ (6y2 )dy 3 y=−2 = [6 . 1 3 y3 ] −2 3 = [2y3]−2 3 = 54 − (−16) = 70
4.
Section 3 3.3 A
thin rod 10 fr longhas a densitywhich variesuniformlyfrom 4 to 24 lb/ft.Find M, 𝒙̅, 𝑰 𝒎,𝒂𝒏𝒅 𝑰.  Penyelesaian: 4 2 24 (𝜆) 0 x 10 (x) 𝑥−0 10−0 = 𝜆−4 24−4 𝑥 10 = 𝜆−4 20 2𝑥 = 𝜆 − 4 𝜆 = 2𝑥 + 4 𝑎. 𝑀 = ∫ 𝜆 𝑑𝑥 = ∫ (2𝑥 + 4) 𝑑𝑥 = [ 𝑥2 + 4𝑥]0 10 10 𝑥=0 = 100 + 40 = 140 𝑏. 𝑥̅ = ∫ 𝑥 𝑑𝑚 ∫ 𝑑𝑚 = ∫ 𝑥 (2𝑥+4) 𝑑𝑥 ∫(2𝑥+4) = ∫ (2𝑥2+4𝑥) 𝑑𝑥 ∫(2𝑥+4) = [ ( 2 3 𝑥3+2𝑥2) ( 𝑥2+4𝑥) ] 0 10 = [ ( 2 3 (1000)+2(100)) (100+40) ] = 130 21 𝑐. 𝐼 𝑦0 = ∫ 𝑥2 𝑑𝑚 = ∫ 𝑥2(2𝑥 + 4) 𝑑𝑥 10 𝑥=0 = ∫ 2𝑥3 + 4𝑥210 𝑥=0 = [ 2 4 𝑥4 + 4 3 𝑥3] 0 10 = [ 2 4 (10000) + 4 3 (1000)] = 5000 + 4000 3 = 19000 3 𝑑. 𝐼 = 𝐼𝑐𝑚 + 𝑚𝑑2 𝐼 𝑐𝑚 = 𝐼 − 𝑚𝑑2 𝐼 𝑐𝑚 = 19000 3 − 140. 130 21 (6. 4 2 )
5.
= 19000 3 − 1280 7 𝐼 = 𝐼𝑐𝑚
+ 𝑚𝑑2 = ( 19000 3 − 1280 7 )+ 140. 80 24 = ( 19000 3 − 1280 7 )+ 140. 80 24 = ( 19000 3 − 1280 7 )+ 1400 3 = 133000−3840+9800 21 = 138960 21 = 46320 7 3.7 A rectangular lamina has vertices (0,0), (0,2), (3,0), (3,2) and density xy. Find: a) 𝒎 = ∫ 𝝆𝒅𝒎 = ∫ ∫ 𝑥𝑦𝑑𝑥𝑑𝑦 3 𝑥=0 2 𝑦=0 = ∫ ∫ 𝑥𝑑𝑥𝑦𝑑𝑦 3 𝑥=0 2 𝑦=0 = ∫ ( 1 2 𝑥2 ) 𝑥=0 32 𝑦=0 = ∫ ( 9 2 ) 2 𝑦=0 𝑦𝑑𝑦 = ( 9 4 𝑦2 ) 𝑦=0 2 = 9 b) 𝒙̅ = ∫ 𝒙𝒅𝒎 ∫ 𝒅𝒎 = ∫ ∫ 𝑥2 𝑦𝑑𝑥𝑑𝑦 9 = ∫ ∫ 𝑥2 𝑑𝑥𝑦𝑑𝑦 3 𝑥=0 2 𝑦=0 9 = ∫ ( 1 3 𝑥3) 0 3 𝑦𝑑𝑦 2 𝑦=0 9 = ∫ 9𝑦𝑑𝑦 2 𝑦=0 9 = ( 9 2 𝑦2) 0 2 9 = 18 9 = 2 𝒚̅ = ∫ 𝒚𝒅𝒎 ∫ 𝒅𝒎 = ∫ ∫ 𝑦2 𝑥𝑑𝑥𝑑𝑦 9
6.
= ∫ ∫ 𝑥𝑑𝑥𝑦2 𝑑𝑦 3 𝑥=0 2 𝑦=0 9 = ∫
( 1 2 𝑥2) 0 3 𝑦2 𝑑𝑦 2 𝑦=0 9 = ∫ 9 2 𝑦2 𝑑𝑦 2 𝑦=0 9 = ( 9 6 𝑦3) 0 2 9 = 12 9 = 4 3 c) 𝑰 𝒙 = ∫ 𝒚 𝟐 𝒅𝒎 = ∫ ∫ 𝑦3 𝑥𝑑𝑥𝑑𝑦 = ∫ ∫ 𝑦3 𝑑𝑦𝑥𝑑𝑥 2 𝑦=0 3 𝑥=0 = ∫ ( 1 4 𝑦4 ) 0 2 𝑥𝑑𝑥 3 𝑥=0 = ∫ 4𝑥𝑑𝑥 3 𝑥=0 = (2𝑥2)0 3 = 18 = 2𝑚 𝐼 𝑦 = ∫ 𝑥2 𝑑𝑚 = ∫ ∫ 𝑥3 𝑦𝑑𝑥𝑑𝑦 = ∫ ∫ 𝑦𝑑𝑦𝑥3 𝑑𝑥 2 𝑦=0 3 𝑥=0 = ∫ ( 1 2 𝑦2 ) 0 2 𝑥3 𝑑𝑥 3 𝑥=0 = ∫ 2𝑥3 𝑑𝑥 3 𝑥=0 = ( 1 2 𝑥4 ) 0 3 = 81 2 = 9 2 𝑚 d) 𝑰 𝒁 = 𝑰 𝒙 + 𝑰 𝒚 = 18 + 81 2 = 117 2 = 13 18 𝑚 3.21. Kurva y = √ 𝒙 diantara x=0 dan x=2 Tentukan : a) the centroids of the arc b) the volume c) the surface area jawab: a) ∫ 𝑥̅ 𝑑𝑚 = ∫ 𝑥 𝑑𝑚
7.
= ∫ ∫
𝑥 𝑑𝑦𝑑𝑥 √ 𝑥 𝑦=0 2 𝑥=0 = ∫ 𝑥 ]0 √ 𝑥 𝑑𝑥 2 𝑥=0 =∫ √ 𝑥 2 𝑥=0 𝑑𝑥 = 2 3 𝑥 3 2]0 2 = 4 3 √2 ∫ 𝑦̅ 𝑑𝑚 = ∫ 𝑦 𝑑𝑚 =∫ ∫ 𝑦 𝑑𝑦𝑑𝑥 √ 𝑥 𝑦=0 2 𝑥=0 =∫ 1 2 𝑦2]0 √ 𝑥 𝑑𝑥 2 𝑥=0 =∫ 1 2 𝑥 𝑑𝑥 2 𝑥=0 = 1 4 𝑥2]0 2 = 1 b) ?????????????????????????????????? c) dA = 2𝜋𝑦 𝑑𝑠 A = ∫ 2𝜋𝑥𝑦 𝑑𝑠 2 𝑥=0 A = ∫ 2𝜋√1 + 4𝑥22 𝑥=0 𝑑𝑥 A = 2𝜋 (1 + 𝑋2)]0 2 A = 10𝜋 3.28 For the curve 𝒚 = √ 𝒙. 𝒃𝒆𝒕𝒘𝒆𝒆𝒏 𝒙 = 𝟎 𝒂𝒏𝒅 𝒙 = 𝟐, 𝒇𝒊𝒏𝒅 𝒕he mass of a wire bent in the shape of the arc if its density (mass per unit length) is √ 𝒙.  Penyelesaian: dm = σ dA M =∫ 𝑑𝑚 σ = √ 𝑥 M = ∫ 𝜎 𝑑𝐴 = ∬ 𝜎 𝑑𝑥 𝑑𝑦 = ∫ ∫ 𝜎 𝑑𝑥 𝑑𝑦 √ 𝑥 𝑦=0 2 𝑥=0 = ∫ 𝑦 ]0 √2 𝜎 𝑑𝑥 2 𝑥=0 =∫ √ 𝑥 2 𝑥=0 √ 𝑥 𝑑𝑥 = ∫ 𝑥 𝑑𝑥 2 𝑥=0 = 1 2 𝑥2]0 2 = 1 2 (2 − 0)2 = 1 2 x 4 = 2
8.
4.1 a. The area
of the disk Dengandi misalkanlingkaranbiruadalahA1dan lingkarandalamdimisalkanA2.Maka luasannya= A1-A2  𝑨 𝟏 = ∫ ∫ 𝒓 𝒅𝒓 𝒅𝜽 𝒂 𝒓=𝟎 𝟐 𝜽=𝟎 𝐴1 = ∫ 1 2 𝑟2]0 𝑎 𝑑𝜃 2 𝜃=0 𝐴1 = ∫ 1 2 𝑎2 − 0 𝑑𝜃 2 𝜃=0 𝐴1 = ∫ 1 2 𝑎2 𝑑𝜃 2 𝜃=0 𝐴1 = 1 2 𝑎2 𝜃] 0 2𝜋 𝐴1 = 1 2 𝑎22𝜋 − 0 𝐴1 = 𝑎2 𝜋  𝑨 𝟐 = ∫ ∫ 𝒓 𝒅𝒓 𝒅𝜽 𝒓 𝒓=𝟎 𝟐 𝜽=𝟎 𝐴2 = ∫ 1 2 𝑟2]0 𝑟 𝑑𝜃 2 𝜃=0 𝐴2 = ∫ 1 2 𝑟2 − 0 𝑑𝜃 2 𝜃=0 𝐴2 = ∫ 1 2 𝑟2 𝑑𝜃 2 𝜃=0 𝐴2 = 1 2 𝑟2 𝜃] 0 2𝜋 𝐴2 = 1 2 𝑟22𝜋− 0 𝐴2 = 𝑟2 𝜋 𝑨 𝟏 − 𝑨 𝟐 = 𝒂 𝟐 𝝅− 𝒓 𝟐 𝝅=𝝅(𝒂 𝟐 − 𝒓 𝟐)
9.
b. The centroidof
one quardiant of the disk  𝑥̅ = ∫ ∫ 𝑥 𝑑𝑥 𝑑𝑦 𝑎 𝑟 𝑎 0 𝑥̅ = ∫ 1 2 𝑥2] 𝑟 𝑎 𝑑𝑦 𝑎 0 𝑥̅ = ∫ 1 2 𝑎2 − 1 2 𝑟2 𝑑𝑦 𝑎 0 𝑥̅ = [ 1 2 𝑎2 𝑦 − 1 2 𝑟2 𝑦] 0 𝑎 𝑥̅ = 1 2 𝑎2(𝑎) − 1 2 𝑟2(𝑎) 𝑥̅ = 1 2 𝑎3 − 1 2 𝑎𝑟2  𝑦̅ = ∫ ∫ 𝑥 𝑑𝑥 𝑑𝑦 𝑎 𝑟 𝑎 0 𝑦̅ = ∫ 1 2 𝑥2] 𝑟 𝑎 𝑑𝑦 𝑎 0 𝑦̅ = ∫ 1 2 𝑎2 − 1 2 𝑟2 𝑑𝑦 𝑎 0 𝑦̅ = [ 1 2 𝑎2 𝑦 − 1 2 𝑟2 𝑦] 0 𝑎 𝑦̅ = 1 2 𝑎2(𝑎) − 1 2 𝑟2(𝑎) 𝑦̅ = 1 2 𝑎3 − 1 2 𝑎𝑟2 c. The momentof inertiaof the diskabout diameter 𝐼 𝑥 = ∫ 𝑦2 𝑑𝑚 𝐼 𝑥 = ∫∫ 𝑦2 𝜎 𝑑𝐴 𝐼 𝑥 = ∫∫ 𝑦2 𝜎 𝑟 𝑑𝑟 𝑑 𝜃 𝐼 𝑥 = ∫ ∫ 𝑦2 𝜎 𝑟 𝑑𝑟 𝑑𝜃 𝑎 𝑟=𝑟 𝜋 2 𝜃=0 𝐼 𝑥 = ∫ ∫ (r sin 𝜃)2 𝜎 𝑟 𝑑𝑟 𝑑𝜃 𝑎 𝑟=𝑟 𝜋 2 𝜃=0 𝐼 𝑥 = ∫ ∫ 𝑟2 𝑠𝑖𝑛2 𝜃 𝜎 𝑟 𝑑𝑟 𝑑𝜃 𝑎 𝑟=𝑟 𝜋 2 𝜃=0 𝐼 𝑥 = 𝜎 ∫ ∫ 𝑟3 𝑠𝑖𝑛2 𝜃 𝑑𝑟 𝑑𝜃 𝑎 𝑟=𝑟 𝜋 2 𝜃=0 𝐼 𝑥 = 𝜎 ∫ 1 4 𝑟4] 𝑟 𝑎 𝑠𝑖𝑛2 𝜃 𝑑𝜃 𝜋 2 𝜃=0 𝐼 𝑥 = 𝜎 ∫ ( 1 4 𝑎4 − 1 4 𝑟4) 𝑠𝑖𝑛2 𝜃 𝑑𝜃 𝜋 2 𝜃=0
10.
𝐼 𝑥 =
𝜎 [( 1 4 𝑎4 − 1 4 𝑟4)( 1 2 𝜃 − 1 4 sin 2𝜃)] 𝜃=0 𝜋 2 𝐼 𝑥 = 𝜎 ( 1 4 𝑎4 − 1 4 𝑟4)( 1 2 𝜋 2 − 1 4 sin 2 𝜋 2 − 1 2 0 − 1 4 sin 2𝑜) 𝐼 𝑥 = 𝜎 ( 1 4 𝑎4 − 1 4 𝑟4)( 1 2 𝜋 2 − 1 4 sin 2 𝜋 2 − 0 − 0) 𝐼 𝑥 = 𝜎 ( 1 4 𝑎4 − 1 4 𝑟4)( 1 2 𝜋 2 − 1 4 sin 2 𝜋 2 ) 𝐼 𝑥 = 𝜎 ( 1 4 𝑎4 − 1 4 𝑟4)( 𝜋 4 − sin 𝜋 4 ) 𝐼 𝑥 = 𝜎 ( 1 4 𝑎4 − 1 4 𝑟4)( 𝜋 4 − 0,5 4 ) 𝐼 𝑥 = 𝜎 1 4 ( 𝑎4 − 𝑟4) 1 4 ( 𝜋 − 0,5) 𝐼 𝑥 = 𝜎 1 16 ( 𝑎4 − 𝑟4)( 𝜋 − 0,5) d. The circumference of the circle r=a 𝑆 = ∫ 𝑟 𝑑𝜃 2𝜋 𝜃=0 𝑆 = ∫ 𝑎 𝑑𝜃 2𝜋 𝜃=0 𝑆 = 𝑎𝜃] 𝜃=0 2𝜋 𝑆 = 𝑎2𝜋 − 0 𝑆 = 2𝜋𝑎 e. The centoroidof a quarter circle  𝑥̅ = ∫ ∫ 𝑥 𝑑𝑥 𝑑𝑦 𝑎 𝑟 𝑎 0 𝑥̅ = ∫ 1 2 𝑥2] 𝑟 𝑎 𝑑𝑦 𝑎 0 𝑥̅ = ∫ 1 2 𝑎2 − 1 2 𝑟2 𝑑𝑦 𝑎 0 𝑥̅ = [ 1 2 𝑎2 𝑦 − 1 2 𝑟2 𝑦] 0 𝑎 𝑥̅ = 1 2 𝑎2(𝑎) − 1 2 𝑟2(𝑎) 𝑥̅ = 1 2 𝑎3 − 1 2 𝑎𝑟2
11.
 𝑦̅ =
∫ ∫ 𝑥 𝑑𝑥 𝑑𝑦 𝑎 𝑟 𝑎 0 𝑦̅ = ∫ 1 2 𝑥2] 𝑟 𝑎 𝑑𝑦 𝑎 0 𝑦̅ = ∫ 1 2 𝑎2 − 1 2 𝑟2 𝑑𝑦 𝑎 0 𝑦̅ = [ 1 2 𝑎2 𝑦 − 1 2 𝑟2 𝑦] 0 𝑎 𝑦̅ = 1 2 𝑎2(𝑎) − 1 2 𝑟2(𝑎) 𝑦̅ = 1 2 𝑎3 − 1 2 𝑎𝑟2 Section5 5.5 𝑧2 = 3( 𝑥2 + 𝑦2) 𝑧2 3 = 𝑥2 + 𝑦2 𝑧2 3 + 𝑧2 = 16 𝑧2 + 3𝑧2 = 48 4𝑧2 = 48 𝑧2 = 12 𝑧 = 2√3 𝑟⃗ = 𝑧 √3 cos∅ 𝑖̂ + 𝑧 √3 sin ∅ 𝑗̂ + 𝑧𝑘 ( 𝑧, ∅) ∈ (0,2√3) × (0,2𝜋) 𝜕𝑟⃗ 𝜕𝑧 = [ cos∅ √3 sin∅ √3 1] ; 𝜕𝑟⃗ 𝜕∅ = [ −zsin∅ √3 zcos∅ √3 0] | 𝜕𝑟⃗ 𝜕𝑧 × 𝜕𝑟⃗ 𝜕∅ | = √3 3 𝑧 ∫ ∫ √3 3 𝑧𝑑∅𝑑𝑧 = ∫ √3 3 𝑧2𝜋 = [ √3 6 𝑧22𝜋]2√3 0 = √3 6 . 12.2𝜋 2√3 0 = 4√3𝜋 2𝜋 0 2√3 0
12.
-2 -1 0 1 2 0 100 200
300 400 sin sudut sin sudut 6.10 y = sinx mencari titikpuncak 𝑦′ = 0 Cos x = 0 X = 900 Dimasukkanke persamaany= sinx maa didapatkany = sin(900 ) = 1 Maka koordinattitikpuncakadalah( 1,𝜋/2) a. b. Untuk Volume yangdiputarpadasumbux maka ∫ 𝑦21 −1 = 1 3 𝑦3 −1 1 ⌋ = 1 3 (1)3 - 1 3 (−1)3 1 3 - (- 1 3 ) = 2 3 c. Ix = ∫ 𝑦21 0 dm ∫ 𝑦21 0 σ dx dy 2 3 ∫ ∫ 𝑦2 𝜋 2 0 1 0 dx dy 2 3 ∫ 𝑦2 𝑑𝑦 1 0 ∫ 𝑑𝑥 𝜋 2 0 2 3 1 3 𝑦3 0 1 ⌋ 𝑥0 𝜋 2 ⌋ 2 3 1 3 𝜋 2 2𝜋 18
Download