Give the coordinates of the points 
labeled in the Cartesian plane 
(-3, 4) 
(2, 5) 
(4, -1) 
(0, -3) 
(-6, -2)
Plot the following 
pairs of points 
1.A (0, 1) & B(-6, 7) 
2.C(-2,-1) & D(-5,-7) 
3.E(4, 0) & F(2, -6)
Find the slope of the line 
passing through each pair of 
points 
1.A (0, 1) & B(-6, 7) 
2.C(-2,-1) & D(-5,- 
7) 
3.E(4, 0) & F(2, -6)
Obtaining Equation of the 
line Using Two-Point-Form 
Slope – The slope of a line represented by m 
is the ratio of the change in y to the change in 
x which is defined by the equation 
y  
y 
2 1 
x x 
2 1 
m 
 
 
A linear equation in x and y can be written 
in the form of 
  1 
y  
y 
2 1 
y y  
1 x x 
x  
x 
2 1 
 
Find the equation of the line passing 
through the given points 
1. (-2, 4) & (5, -3) 
  
Let (x1, y1); (-2, 4) 
(x2, y2); (5, -3) 
y  
y 
2 1 
  
3 4 
y x 
  
   
7 
  
  
y x 
y x 
    
4 1 2 
y x 
    
4 2 
x y 
    
2 
2 4 
2 
7 
4 
2 
5 2 
4 
1 
2 1 
1 
  
 
 
  
  
  
  
 
 
  
x y 
x x 
x x 
y y 
2. (2, 1) & (5, 2) 
Let (x1, y1); (2, 1) 
(x2, y2); (5, 2) 
  
y  
y 
2 1 
  
2  
1 
y x 
  
1 
y x 
   
 y   x 
 
3  1  1  
2 
y x 
3  3    
2 
x y 
    
3 2 3 
3 1 
2 
3 
1 
2 
5 2 
1 
1 
2 1 
1 
  
 
 
  
 
 
  
x y 
x x 
x x 
y y
Group 
Activity
Find the equation of the line 
passing through the given points 
1. (2, 1) & (3, 3) 
2. (1, 3) & (-2, 5) 
3. (-3, 3) & (6, 0) 
4. (4, -2) & (0, 6) 
2x – y = 3 
2x + 3y = 11 
x + 3y = 6 
2x + y = 6
  1 
y  
y 
2 1 
y y  
1 x x 
x  
x 
2 1 
  
How do we 
obtain the 
equation of a line 
passing through 
By using Two two points? 
Point Form
Find the equation of a line 
passing through points. 
1. (3, 0) & (0, 1) 
2. (2, 1) & (5, 2) 
3. (-4, 3) & (3, -3) 
x + 3y = 3 
x – 3y = - 1 
6x + 7y = - 3
Do you know 
the Band After 
Image?
AGREEMENT 
Solve the following: 
1. Find the equation of a 
line passes through (-½ 
, 10 ) and (7/2, 10) 
2. Find the equation of a 
line passes through 
(5/3, 5/6) and (2/3, 11/6)
Two point form Equation of a line

Two point form Equation of a line

  • 1.
    Give the coordinatesof the points labeled in the Cartesian plane (-3, 4) (2, 5) (4, -1) (0, -3) (-6, -2)
  • 2.
    Plot the following pairs of points 1.A (0, 1) & B(-6, 7) 2.C(-2,-1) & D(-5,-7) 3.E(4, 0) & F(2, -6)
  • 3.
    Find the slopeof the line passing through each pair of points 1.A (0, 1) & B(-6, 7) 2.C(-2,-1) & D(-5,- 7) 3.E(4, 0) & F(2, -6)
  • 4.
    Obtaining Equation ofthe line Using Two-Point-Form Slope – The slope of a line represented by m is the ratio of the change in y to the change in x which is defined by the equation y  y 2 1 x x 2 1 m   A linear equation in x and y can be written in the form of   1 y  y 2 1 y y  1 x x x  x 2 1  
  • 5.
    Find the equationof the line passing through the given points 1. (-2, 4) & (5, -3)   Let (x1, y1); (-2, 4) (x2, y2); (5, -3) y  y 2 1   3 4 y x      7     y x y x     4 1 2 y x     4 2 x y     2 2 4 2 7 4 2 5 2 4 1 2 1 1                 x y x x x x y y 2. (2, 1) & (5, 2) Let (x1, y1); (2, 1) (x2, y2); (5, 2)   y  y 2 1   2  1 y x   1 y x     y   x  3  1  1  2 y x 3  3    2 x y     3 2 3 3 1 2 3 1 2 5 2 1 1 2 1 1           x y x x x x y y
  • 6.
  • 7.
    Find the equationof the line passing through the given points 1. (2, 1) & (3, 3) 2. (1, 3) & (-2, 5) 3. (-3, 3) & (6, 0) 4. (4, -2) & (0, 6) 2x – y = 3 2x + 3y = 11 x + 3y = 6 2x + y = 6
  • 8.
      1 y  y 2 1 y y  1 x x x  x 2 1   How do we obtain the equation of a line passing through By using Two two points? Point Form
  • 9.
    Find the equationof a line passing through points. 1. (3, 0) & (0, 1) 2. (2, 1) & (5, 2) 3. (-4, 3) & (3, -3) x + 3y = 3 x – 3y = - 1 6x + 7y = - 3
  • 10.
    Do you know the Band After Image?
  • 11.
    AGREEMENT Solve thefollowing: 1. Find the equation of a line passes through (-½ , 10 ) and (7/2, 10) 2. Find the equation of a line passes through (5/3, 5/6) and (2/3, 11/6)