The CQL3/Cassandra
Mapping
John Berryman
OpenSource Connections

OpenSource Connections
Outline
•
•
•
•
•
•
•

What Problem does CQL Solve?
The Cassandra Data Model
Pain Points of “Old” Cassandra
Introducing CQL
Understanding the CQL/Cassandra Mapping
CQL for Sets, Lists, and Maps
Putting it All Together

OpenSource Connections
What Problem does CQL Solve?
• The Awesomeness that is Cassandra:
o
o
o
o
o
o

Distributed columnar data store
No single point of failure
Optimized for availability (though “Tunably” consistent)
Optimized for writes
Easily maintainable
Almost infinitely scalable

.

OpenSource Connections
What Problem does CQL Solve?
• The Awesomeness that is Cassandra:
o
o
o
o
o
o

Distributed columnar data store
No single point of failure
Optimized for availability (though “Tunably” consistent)
Optimized for writes
Easily maintainable
Almost infinitely scalable

• Cassandra’s usability challenges
o NoSQL – “Where are my JOINS? No Schema? De-normalize!?”
o BigTable – “Tables with millions of columns!?”

.

OpenSource Connections
What Problem does CQL Solve?
• The Awesomeness that is Cassandra:
o
o
o
o
o
o

Distributed columnar data store
No single point of failure
Optimized for availability (though “Tunably” consistent)
Optimized for writes
Easily maintainable
Almost infinitely scalable

• Cassandra’s usability challenges
o NoSQL – “Where are my JOINS? No Schema? De-normalize!?”
o BigTable – “Tables with millions of columns!?”

• CQL saves the day!
o A best-practices interface to Cassandra
o Uses familiar SQL-like language
OpenSource Connections
C* Data Model
Keyspace

OpenSource Connections
C* Data Model
Keyspace
Column Family

Column Family

OpenSource Connections
C* Data Model
Keyspace
Column Family

Column Family

OpenSource Connections
C* Data Model
Keyspace
Column Family

Column Family

OpenSource Connections
C* Data Model
Row Key

OpenSource Connections
C* Data Model
Row Key

Column
Column Name

Column Value
(or Tombstone)
Timestamp
Time-to-live

OpenSource Connections
C* Data Model
Row Key

Column
Column Name

Column Value
(or Tombstone)
Timestamp
Time-to-live

● Row Key, Column Name, Column
Value have types
● Column Name has comparator
● RowKey has partitioner
● Rows can have any number of
columns - even in same column family
● Rows can have many columns
● Column Values can be omitted
● Time-to-live is useful!
● Tombstones
OpenSource Connections
C* Data Model: Writes

Mem
Table

CommitLog
Row
Cache

Bloom
Filter

● Insert into
MemTable
● Dump to
CommitLog
● No read
● Very Fast!
● Blocks on CPU
before O/I!
Key
Cache
Key
Cache
Key
Cache
Key
Cache

SSTable
SSTable
SSTable
SSTable

OpenSource Connections
C* Data Model: Writes

Mem
Table

CommitLog
Row
Cache

Bloom
Filter

● Insert into
MemTable
● Dump to
CommitLog
● No read
● Very Fast!
● Blocks on CPU
before O/I!
Key
Cache
Key
Cache
Key
Cache
Key
Cache

SSTable
SSTable
SSTable
SSTable

OpenSource Connections
C* Data Model: Writes

Mem
Table

CommitLog
Row
Cache

Bloom
Filter

● Insert into
MemTable
● Dump to
CommitLog
● No read
● Very Fast!
● Blocks on CPU
before O/I!
Key
Cache
Key
Cache
Key
Cache
Key
Cache

SSTable
SSTable
SSTable
SSTable

OpenSource Connections
C* Data Model:
Reads
Mem
Table

CommitLog
Row
Cache

Bloom
Filter

● Get values from Memtable
● Get values from row
cache if present
● Otherwise check bloom
filter to find appropriate
SSTables
● Check Key Cache for fast
SSTable Search
● Get values from SSTables
● Repopulate Row Cache
● Super Fast Col. retrieval
● Fast row slicing
Key
Cache
Key
Cache
Key
Cache
Key
Cache

SSTable
SSTable
SSTable
SSTable

OpenSource Connections
C* Data Model:
Reads
Mem
Table

CommitLog
Row
Cache

Bloom
Filter

● Get values from Memtable
● Get values from row
cache if present
● Otherwise check bloom
filter to find appropriate
SSTables
● Check Key Cache for fast
SSTable Search
● Get values from SSTables
● Repopulate Row Cache
● Super Fast Col. retrieval
● Fast row slicing
Key
Cache
Key
Cache
Key
Cache
Key
Cache

SSTable
SSTable
SSTable
SSTable

OpenSource Connections
C* Data Model:
Reads
Mem
Table

CommitLog
Row
Cache

Bloom
Filter

● Get values from Memtable
● Get values from row
cache if present
● Otherwise check bloom
filter to find appropriate
SSTables
● Check Key Cache for fast
SSTable Search
● Get values from SSTables
● Repopulate Row Cache
● Super Fast Col. retrieval
● Fast row slicing
Key
Cache
Key
Cache
Key
Cache
Key
Cache

SSTable
SSTable
SSTable
SSTable

OpenSource Connections
C* Data Model:
Reads
Mem
Table

CommitLog
Row
Cache

Bloom
Filter

● Get values from Memtable
● Get values from row
cache if present
● Otherwise check bloom
filter to find appropriate
SSTables
● Check Key Cache for fast
SSTable Search
● Get values from SSTables
● Repopulate Row Cache
● Super Fast Col. retrieval
● Fast row slicing
Key
Cache
Key
Cache
Key
Cache
Key
Cache

SSTable
SSTable
SSTable
SSTable

OpenSource Connections
C* Data Model:
Reads
Mem
Table

CommitLog
Row
Cache

Bloom
Filter

● Get values from Memtable
● Get values from row
cache if present
● Otherwise check bloom
filter to find appropriate
SSTables
● Check Key Cache for fast
SSTable Search
● Get values from SSTables
● Repopulate Row Cache
● Super Fast Col. retrieval
● Fast row slicing
Key
Cache
Key
Cache
Key
Cache
Key
Cache

SSTable
SSTable
SSTable
SSTable

OpenSource Connections
C* Data Model:
Reads
Mem
Table

CommitLog
Row
Cache

Bloom
Filter

● Get values from Memtable
● Get values from row
cache if present
● Otherwise check bloom
filter to find appropriate
SSTables
● Check Key Cache for fast
SSTable Search
● Get values from SSTables
● Repopulate Row Cache
● Super Fast Col. retrieval
● Fast row slicing
Key
Cache
Key
Cache
Key
Cache
Key
Cache

SSTable
SSTable
SSTable
SSTable

OpenSource Connections
Cassandra Pain Points
• Twitter Example
• My tweets
o SET tweets[JnBrymn][2013-07-19 T 09:20] = “Wonderful
morning. This coffee is great.”
o SET tweets[JnBrymn][2013-07-19 T 09:21] = “Oops, smoke is
coming out of the SQL server!”
o SET tweets[JnBrymn][2013-07-19 T 09:51] = “Now my coffee is
cold :-(”

• Get John’s tweets
o GET tweets[JnBrymn]

(output is as expected)

OpenSource Connections
Cassandra Pain Points
• Twitter Example
• My tweets
o SET tweets[JnBrymn][2013-07-19 T 09:20] = “Wonderful
morning. This coffee is great.”
o SET tweets[JnBrymn][2013-07-19 T 09:21] = “Oops, smoke is
coming out of the SQL server!”
o SET tweets[JnBrymn][2013-07-19 T 09:51] = “Now my coffee is
cold :-(”

• Get John’s tweets
o GET tweets[JnBrymn]

(output is as expected)

• Pain-point: schema-less means that you have to
read code to understand data model
OpenSource Connections
Cassandra Pain Points
• My timeline (other’s tweets)
• More complicated – must store corresponding user
names
• Bad Option 1: keep multiple column families
o SET timeline_from[JnBrymn][2013-07-19 T 09:20] =
“softwaredoug”
o SET timeline_text[JnBrymn][2013-07-19 T 09:20] = “Hey John I
posted on reddit, upvote me!”

• Get John’s timeline
o GET timeline_from[JnBrymn]
o GET timeline_text[JnBrymn]

OpenSource Connections
Cassandra Pain Points
• My timeline (other’s tweets)
• More complicated – must store corresponding user
names
• Bad Option 1: keep multiple column families
o SET timeline_from[JnBrymn][2013-07-19 T 09:20] =
“softwaredoug”
o SET timeline_text[JnBrymn][2013-07-19 T 09:20] = “Hey John I
posted on reddit, upvote me!”

• Get John’s timeline
o GET timeline_from[JnBrymn]
o GET timeline_text[JnBrymn]

• Pain-point: Multiple queries required.
OpenSource Connections
Cassandra Pain Points
• My timeline
• Bad Option 2: shove into single column value
o SET timeline[JnBrymn][2013-07-19 T 09:20] =
{from:”softwaredoug”, text: “Hey John I posted on reddit, upvote
me!”

• Get John’s timeline
o GET timeline[JnBrymn] (…not too bad.)

OpenSource Connections
Cassandra Pain Points
• My timeline
• Bad Option 2: shove into single column value
o SET timeline[JnBrymn][2013-07-19 T 09:20] =
{from:”softwaredoug”, text: “Hey John I posted on reddit, upvote
me!”

• Get John’s timeline
o GET timeline[JnBrymn] (…not too bad.)

• Pain-point: Updates require a read-then-modify

OpenSource Connections
Cassandra Pain Points
• My timeline
• Best Option: composite column names
o SET timeline[JnBrymn][2013-07-19 T 09:20|from] =
”softwaredoug”
o SET timeline[JnBrymn][2013-07-19 T 09:20|text] = “Hey John, I
posted on reddit, upvote me!”

• Get John’s timeline
o GET timeline[JnBrymn] (extract from and text in client)

• Resolves prior pain points! Scales well!

OpenSource Connections
Cassandra Pain Points
• My timeline
• Best Option: composite column names
o SET timeline[JnBrymn][2013-07-19 T 09:20|from] =
”softwaredoug”
o SET timeline[JnBrymn][2013-07-19 T 09:20|text] = “Hey John, I
posted on reddit, upvote me!”

• Get John’s timeline
o GET timeline[JnBrymn] (extract from and text in client)

• Resolves prior pain points! Scales well!
• Pain-point: Even more code reading to understand
data model!

OpenSource Connections
Cassandra Pain Points
• Justin Bieber’s timeline (e.g. many tweets)
• Previous solution fails if number of columns > 2Billion
• Best Option: composite row names
o SET timeline[bieber|2013-07][19 T 09:20|from] = ”softwaredoug”
o SET timeline[bieber|2013-07][19 T 09:20|text] = “Justin Bieber,
you complete me.”

• Get Justin’s timeline
o GET timeline[bieber|2013-07] (get other months too)

OpenSource Connections
Cassandra Pain Points
• Justin Bieber’s timeline (e.g. many tweets)
• Previous solution fails if number of columns > 2Billion
• Best Option: composite row names
o SET timeline[bieber|2013-07][19 T 09:20|from] = ”softwaredoug”
o SET timeline[bieber|2013-07][19 T 09:20|text] = “Justin Bieber,
you complete me.”

• Get Justin’s timeline
o GET timeline[bieber|2013-07] (get other months too)

• Pain-point: Even more code reading to understand
data model!

OpenSource Connections
Introducing CQL
• CQL is a reintroduction of schema so that you don’t
have to read code to understand the data model.
• CQL creates a common language so that details of
the data model can be easily communicated.
• CQL is a best-practices Cassandra interface and
hides the messy details.

OpenSource Connections
Introducing CQL
• CQL is a reintroduction of schema so that you don’t
have to read code to understand the data model.
• CQL creates a common language so that details of
the data model can be easily communicated.
• CQL is a best-practices Cassandra interface and
hides the messy details.

Let’s see it!
OpenSource Connections
Introducing CQL
CREATE TABLE users (
id timeuuid PRIMARY KEY,
lastname varchar,
firstname varchar,
dateOfBirth timestamp );

OpenSource Connections
Introducing CQL
CREATE TABLE users (
id timeuuid PRIMARY KEY,
lastname varchar,
firstname varchar,
dateOfBirth timestamp );
INSERT INTO users (id,lastname, firstname, dateofbirth)
VALUES (now(),'Berryman',’John','1975-09-15');

OpenSource Connections
Introducing CQL
CREATE TABLE users (
id timeuuid PRIMARY KEY,
lastname varchar,
firstname varchar,
dateOfBirth timestamp );
INSERT INTO users (id,lastname, firstname, dateofbirth)
VALUES (now(),’Berryman’,’John’,’1975-09-15’);
UPDATE users SET firstname = ’John’
WHERE id = f74c0b20-0862-11e3-8cf6-b74c10b01fc6;

OpenSource Connections
Introducing CQL
CREATE TABLE users (
id timeuuid PRIMARY KEY,
lastname varchar,
firstname varchar,
dateOfBirth timestamp );
INSERT INTO users (id,lastname, firstname, dateofbirth)
VALUES (now(),'Berryman',’John','1975-09-15');
UPDATE users SET firstname = 'John’
WHERE id = f74c0b20-0862-11e3-8cf6-b74c10b01fc6;
SELECT dateofbirth,firstname,lastname FROM users ;
dateofbirth
| firstname | lastname
--------------------------+-----------+---------1975-09-15 00:00:00-0400 |
John | Berryman
OpenSource Connections
Introducing CQL
“Hey sweet! It’s exactly the same as MySQL!”

OpenSource Connections
Introducing CQL
“Hey sweet! It’s exactly the same as MySQL!”
Hold your horses. There are some
important differences.

OpenSource Connections
Introducing CQL
“Hey sweet! It’s exactly the same as MySQL!”
Hold your horses. There are some
important differences.
“Wait? What happened to the
Cassandra’s wide rows?”

OpenSource Connections
Introducing CQL
“Hey sweet! It’s exactly the same as MySQL!”
Hold your horses. There are some
important differences.
“Wait? What happened to the
Cassandra’s wide rows?”
There’s still there. Understanding
the mapping is crucial!

OpenSource Connections
Introducing CQL
“Hey sweet! It’s exactly the same as MySQL!”
Hold your horses. There are some
important differences.
“Wait? What happened to the
Cassandra’s wide rows?”
There’s still there. Understanding
the mapping is crucial!

Remember this:

•Cassandra finds rows fast
•Cassandra scans columns fast
•Cassandra does not scan rows
OpenSource Connections
The CQL/Cassandra Mapping
CREATE TABLE employees (
name text PRIMARY KEY,
age int,
role text
);

OpenSource Connections
The CQL/Cassandra Mapping
CREATE TABLE employees (
name text PRIMARY KEY,
age int,
role text
);

name | age | role
-----+-----+----john | 37 | dev
eric | 38 | ceo

OpenSource Connections
The CQL/Cassandra Mapping
CREATE TABLE employees (
name text PRIMARY KEY,
age int,
role text
);

age
john

role

37

dev

name | age | role
-----+-----+----john | 37 | dev
eric | 38 | ceo

age
eric

role

38

ceo

OpenSource Connections
The CQL/Cassandra Mapping
CREATE TABLE employees (
company text,
name text,
age int,
role text,
PRIMARY KEY (company,name)
);

OpenSource Connections
The CQL/Cassandra Mapping
CREATE TABLE employees (
company text,
name text,
age int,
role text,
PRIMARY KEY (company,name)
);

company | name | age | role
--------+------+-----+----OSC | eric | 38 | ceo
OSC | john | 37 | dev
RKG | anya | 29 | lead
RKG | ben | 27 | dev
RKG | chad | 35 | ops

OpenSource Connections
The CQL/Cassandra Mapping
company | name | age | role
--------+------+-----+----OSC | eric | 38 | ceo
OSC | john | 37 | dev
RKG | anya | 29 | lead
RKG | ben | 27 | dev
RKG | chad | 35 | ops

CREATE TABLE employees (
company text,
name text,
age int,
role text,
PRIMARY KEY (company,name)
);
eric:age
OS
C

eric:role

john:age

john:role

38

dev

37

dev

anya:age
RK
G

anya:role

ben:age

ben:role

chad:age

chad:role

29

lead

27

dev

35

ops

OpenSource Connections
The CQL/Cassandra Mapping
CREATE TABLE example (
A text,
B text,
C text,
D text,
E text,
F text,
PRIMARY KEY ((A,B),C,D)
);

OpenSource Connections
The CQL/Cassandra Mapping
CREATE TABLE example (
A text,
B text,
C text,
D text,
E text,
F text,
PRIMARY KEY ((A,B),C,D)
);

A|B|C| D|E|F
--+---+---+---+---+--a|b|c|d|e|f
a|b|c|g|h|i
a|b|j|k|l|m
a|n|o|p|q|r
s|t|u|v|w|x

OpenSource Connections
The CQL/Cassandra Mapping
CREATE TABLE example (
A text,
B text,
C text,
D text,
E text,
F text,
PRIMARY KEY ((A,B),C,D)
);
c:d:E
c:d:F
a:b

f

o:p:E
a:n

e

r

c:g:E

c:g:F

j:k:E

j:k:F

h

i

l

m

u:v:E

u:v:F

w

x

o:p:F

q

A|B|C| D|E|F
--+---+---+---+---+--a|b|c|d|e|f
a|b|c|g|h|i
a|b|j|k|l|m
a|n|o|p|q|r
s|t|u|v|w|x

s:t

OpenSource Connections
CQL for Sets, Lists, and Maps
• Collection Semantics
o Sets hold list of unique elements
o Lists hold ordered, possibly repeating elements
o Maps hold a list of key-value pairs

• Uses same old Cassandra data structure

OpenSource Connections
CQL for Sets, Lists, and Maps
• Collection Semantics
o Sets hold list of unique elements
o Lists hold ordered, possibly repeating elements
o Maps hold a list of key-value pairs

• Uses same old Cassandra data structure
• Declaring
CREATE TABLE mytable(
X text,
Y text,
myset set<text>,
mylist list<int>,
mymap map<text, text>,
PRIMARY KEY (X,Y)
);
OpenSource Connections
CQL for Sets, Lists, and Maps
• Collection Semantics
o Sets hold list of unique elements
o Lists hold ordered, possibly repeating elements
o Maps hold a list of key-value pairs

• Uses same old Cassandra data structure
• Declaring
CREATE TABLE mytable(
X text,
Y text,
myset set<text>,
mylist list<int>,
mymap map<text, text>,
PRIMARY KEY (X,Y)
);

Collection fields
can not be used
in primary keys
OpenSource Connections
CQL for Sets, Lists, and Maps
• Inserting
INSERT INTO mytable (row, myset)
VALUES (123, { ‘apple’, ‘banana’});

OpenSource Connections
CQL for Sets, Lists, and Maps
• Inserting
INSERT INTO mytable (row, myset)
VALUES (123, { ‘apple’, ‘banana’});
INSERT INTO mytable (row, mylist)
VALUES (123, [‘apple’,’banana’,’apple’]);

OpenSource Connections
CQL for Sets, Lists, and Maps
• Inserting
INSERT INTO mytable (row, myset)
VALUES (123, { ‘apple’, ‘banana’});
INSERT INTO mytable (row, mylist)
VALUES (123, [‘apple’,’banana’,’apple’]);
INSERT INTO mytable (row, mymap)
VALUES (123, {1:’apple’,2:’banana’})

OpenSource Connections
CQL for Sets, Lists, and Maps
• Updating
UPDATE mytable SET myset = myset + {‘apple’,‘banana’}
WHERE row = 123;
UPDATE mytable SET myset = myset - { ‘apple’ }
WHERE row = 123;

OpenSource Connections
CQL for Sets, Lists, and Maps
• Updating
UPDATE mytable SET myset = myset + {‘apple’,‘banana’}
WHERE row = 123;
UPDATE mytable SET myset = myset - { ‘apple’ }
WHERE row = 123;
UPDATE mytable SET mylist = mylist + [‘apple’,‘banana’]
WHERE row = 123;
UPDATE mytable SET mylist = [‘banana’] + mylist
WHERE row = 123;

OpenSource Connections
CQL for Sets, Lists, and Maps
• Updating
UPDATE mytable SET myset = myset + {‘apple’,‘banana’}
WHERE row = 123;
UPDATE mytable SET myset = myset - { ‘apple’ }
WHERE row = 123;
UPDATE mytable SET mylist = mylist + [‘apple’,‘banana’]
WHERE row = 123;
UPDATE mytable SET mylist = [‘banana’] + mylist
WHERE row = 123;
UPDATE mytable SET mymap[‘fruit’] = ‘apple’
WHERE row = 123
UPDATE mytable SET mymap = mymap + { ‘fruit’:‘apple’}
WHERE row = 123
OpenSource Connections
CQL for Sets, Lists, and Maps
SETS
CREATE TABLE mytable(
X text,
Y text,
myset set<int>,
PRIMARY KEY (X,Y)
);

OpenSource Connections
CQL for Sets, Lists, and Maps
SETS
CREATE TABLE mytable(
X text,
Y text,
myset set<int>,
PRIMARY KEY (X,Y)
);

X | Y | myset
---+---+-----------a | b | {1,2}
a | c | {3,4,5}

OpenSource Connections
CQL for Sets, Lists, and Maps
SETS
CREATE TABLE mytable(
X text,
Y text,
myset set<int>,
PRIMARY KEY (X,Y)
);

b:myset:1

b:myset:2

X | Y | myset
---+---+-----------a | b | {1,2}
a | c | {3,4,5}

c:myset:3

c:myset:4

c:myset:5

a

OpenSource Connections
CQL for Sets, Lists, and Maps
LISTS
CREATE TABLE mytable(
X text,
Y text,
mylist list<int>,
PRIMARY KEY (X,Y)
);

OpenSource Connections
CQL for Sets, Lists, and Maps
LISTS
CREATE TABLE mytable(
X text,
Y text,
mylist list<int>,
PRIMARY KEY (X,Y)
);

X | Y | mylist
---+---+-----------a | b | [1,2]

OpenSource Connections
CQL for Sets, Lists, and Maps
LISTS
CREATE TABLE mytable(
X text,
Y text,
mylist list<int>,
PRIMARY KEY (X,Y)
);

X | Y | mylist
---+---+-----------a | b | [1,2]

b:mylist:f7e5450039..8d
a

b:mylist:f7e5450139..8d

1

2

OpenSource Connections
CQL for Sets, Lists, and Maps
LISTS
CREATE TABLE mytable(
X text,
Y text,
mylist list<int>,
PRIMARY KEY (X,Y)
);

X | Y | mylist
---+---+-----------a | b | [1,2]

b:mylist:f7e5450039..8d
a

b:mylist:f7e5450139..8d

1

2

OpenSource Connections
CQL for Sets, Lists, and Maps
MAPS
CREATE TABLE mytable(
X text,
Y text,
mymap map<text,int>,
PRIMARY KEY (X,Y)
);

OpenSource Connections
CQL for Sets, Lists, and Maps
MAPS
CREATE TABLE mytable(
X text,
Y text,
mymap map<text,int>,
PRIMARY KEY (X,Y)
);

X | Y | mymap
---+---+-----------a | b | {m:1,n:2}
a | c |{n:3,p:4,q:5}

OpenSource Connections
CQL for Sets, Lists, and Maps
MAPS
X | Y | mymap
---+---+-----------a | b | {m:1,n:2}
a | c |{n:3,p:4,q:5}

CREATE TABLE mytable(
X text,
Y text,
mymap map<text,int>,
PRIMARY KEY (X,Y)
);

b:mymap:m
a

b:mymap:n

c:mymap:n

c:mymap:p

c:mymap:q

1

2

3

4

5

OpenSource Connections
Peek Behind the Scenes! Do it!
(in cqlsh)
CREATE KEYSPACE test WITH replication =
{'class': 'SimpleStrategy', 'replication_factor': 1};
USE test;
CREATE TABLE stuff ( a int, b int, myset set<int>,
mylist list<int>, mymap map<int,int>, PRIMARY KEY (a,b));
UPDATE stuff SET myset = {1,2}, mylist = [3,4,5], mymap = {6:7,8:9} WHERE a = 0
AND b = 1;
SELECT * FROM stuff;
(in cassandra-cli)
use test;
list stuff ;
(in cqlsh)
SELECT key_aliases,column_aliases from system.schema_columnfamilies WHERE
keyspace_name = 'test' AND columnfamily_name = 'stuff';
OpenSource Connections
Putting it All Together
…you already know
• CQL is a reintroduction of schema
• CQL creates a common data modeling language
• CQL is a best-practices Cassandra interface

.
OpenSource Connections
Putting it All Together
…you already know
• CQL is a reintroduction of schema
• CQL creates a common data modeling language
• CQL is a best-practices Cassandra interface
…now you know
• CQL let’s you take advantage of the C* Data structure

.
OpenSource Connections
Putting it All Together
…you already know
• CQL is a reintroduction of schema
• CQL creates a common data modeling language
• CQL is a best-practices Cassandra interface
…now you know
• CQL let’s you take advantage of the C* Data structure
…but also
• CQL protocol is binary and therefore interoperable with
any language
• CQL is asynchronous and fast (Thrift transport layer is
synchronous)
• CQL allows the possibility for prepared statements
OpenSource Connections
Thanks!
Follow me on Twitter @JnBrymn
Check out the OpenSource Connection Blog
http://www.opensourceconnections.com/blog/

OpenSource Connections

Understanding How CQL3 Maps to Cassandra's Internal Data Structure

  • 1.
    The CQL3/Cassandra Mapping John Berryman OpenSourceConnections OpenSource Connections
  • 2.
    Outline • • • • • • • What Problem doesCQL Solve? The Cassandra Data Model Pain Points of “Old” Cassandra Introducing CQL Understanding the CQL/Cassandra Mapping CQL for Sets, Lists, and Maps Putting it All Together OpenSource Connections
  • 3.
    What Problem doesCQL Solve? • The Awesomeness that is Cassandra: o o o o o o Distributed columnar data store No single point of failure Optimized for availability (though “Tunably” consistent) Optimized for writes Easily maintainable Almost infinitely scalable . OpenSource Connections
  • 4.
    What Problem doesCQL Solve? • The Awesomeness that is Cassandra: o o o o o o Distributed columnar data store No single point of failure Optimized for availability (though “Tunably” consistent) Optimized for writes Easily maintainable Almost infinitely scalable • Cassandra’s usability challenges o NoSQL – “Where are my JOINS? No Schema? De-normalize!?” o BigTable – “Tables with millions of columns!?” . OpenSource Connections
  • 5.
    What Problem doesCQL Solve? • The Awesomeness that is Cassandra: o o o o o o Distributed columnar data store No single point of failure Optimized for availability (though “Tunably” consistent) Optimized for writes Easily maintainable Almost infinitely scalable • Cassandra’s usability challenges o NoSQL – “Where are my JOINS? No Schema? De-normalize!?” o BigTable – “Tables with millions of columns!?” • CQL saves the day! o A best-practices interface to Cassandra o Uses familiar SQL-like language OpenSource Connections
  • 6.
  • 7.
    C* Data Model Keyspace ColumnFamily Column Family OpenSource Connections
  • 8.
    C* Data Model Keyspace ColumnFamily Column Family OpenSource Connections
  • 9.
    C* Data Model Keyspace ColumnFamily Column Family OpenSource Connections
  • 10.
    C* Data Model RowKey OpenSource Connections
  • 11.
    C* Data Model RowKey Column Column Name Column Value (or Tombstone) Timestamp Time-to-live OpenSource Connections
  • 12.
    C* Data Model RowKey Column Column Name Column Value (or Tombstone) Timestamp Time-to-live ● Row Key, Column Name, Column Value have types ● Column Name has comparator ● RowKey has partitioner ● Rows can have any number of columns - even in same column family ● Rows can have many columns ● Column Values can be omitted ● Time-to-live is useful! ● Tombstones OpenSource Connections
  • 13.
    C* Data Model:Writes Mem Table CommitLog Row Cache Bloom Filter ● Insert into MemTable ● Dump to CommitLog ● No read ● Very Fast! ● Blocks on CPU before O/I! Key Cache Key Cache Key Cache Key Cache SSTable SSTable SSTable SSTable OpenSource Connections
  • 14.
    C* Data Model:Writes Mem Table CommitLog Row Cache Bloom Filter ● Insert into MemTable ● Dump to CommitLog ● No read ● Very Fast! ● Blocks on CPU before O/I! Key Cache Key Cache Key Cache Key Cache SSTable SSTable SSTable SSTable OpenSource Connections
  • 15.
    C* Data Model:Writes Mem Table CommitLog Row Cache Bloom Filter ● Insert into MemTable ● Dump to CommitLog ● No read ● Very Fast! ● Blocks on CPU before O/I! Key Cache Key Cache Key Cache Key Cache SSTable SSTable SSTable SSTable OpenSource Connections
  • 16.
    C* Data Model: Reads Mem Table CommitLog Row Cache Bloom Filter ●Get values from Memtable ● Get values from row cache if present ● Otherwise check bloom filter to find appropriate SSTables ● Check Key Cache for fast SSTable Search ● Get values from SSTables ● Repopulate Row Cache ● Super Fast Col. retrieval ● Fast row slicing Key Cache Key Cache Key Cache Key Cache SSTable SSTable SSTable SSTable OpenSource Connections
  • 17.
    C* Data Model: Reads Mem Table CommitLog Row Cache Bloom Filter ●Get values from Memtable ● Get values from row cache if present ● Otherwise check bloom filter to find appropriate SSTables ● Check Key Cache for fast SSTable Search ● Get values from SSTables ● Repopulate Row Cache ● Super Fast Col. retrieval ● Fast row slicing Key Cache Key Cache Key Cache Key Cache SSTable SSTable SSTable SSTable OpenSource Connections
  • 18.
    C* Data Model: Reads Mem Table CommitLog Row Cache Bloom Filter ●Get values from Memtable ● Get values from row cache if present ● Otherwise check bloom filter to find appropriate SSTables ● Check Key Cache for fast SSTable Search ● Get values from SSTables ● Repopulate Row Cache ● Super Fast Col. retrieval ● Fast row slicing Key Cache Key Cache Key Cache Key Cache SSTable SSTable SSTable SSTable OpenSource Connections
  • 19.
    C* Data Model: Reads Mem Table CommitLog Row Cache Bloom Filter ●Get values from Memtable ● Get values from row cache if present ● Otherwise check bloom filter to find appropriate SSTables ● Check Key Cache for fast SSTable Search ● Get values from SSTables ● Repopulate Row Cache ● Super Fast Col. retrieval ● Fast row slicing Key Cache Key Cache Key Cache Key Cache SSTable SSTable SSTable SSTable OpenSource Connections
  • 20.
    C* Data Model: Reads Mem Table CommitLog Row Cache Bloom Filter ●Get values from Memtable ● Get values from row cache if present ● Otherwise check bloom filter to find appropriate SSTables ● Check Key Cache for fast SSTable Search ● Get values from SSTables ● Repopulate Row Cache ● Super Fast Col. retrieval ● Fast row slicing Key Cache Key Cache Key Cache Key Cache SSTable SSTable SSTable SSTable OpenSource Connections
  • 21.
    C* Data Model: Reads Mem Table CommitLog Row Cache Bloom Filter ●Get values from Memtable ● Get values from row cache if present ● Otherwise check bloom filter to find appropriate SSTables ● Check Key Cache for fast SSTable Search ● Get values from SSTables ● Repopulate Row Cache ● Super Fast Col. retrieval ● Fast row slicing Key Cache Key Cache Key Cache Key Cache SSTable SSTable SSTable SSTable OpenSource Connections
  • 22.
    Cassandra Pain Points •Twitter Example • My tweets o SET tweets[JnBrymn][2013-07-19 T 09:20] = “Wonderful morning. This coffee is great.” o SET tweets[JnBrymn][2013-07-19 T 09:21] = “Oops, smoke is coming out of the SQL server!” o SET tweets[JnBrymn][2013-07-19 T 09:51] = “Now my coffee is cold :-(” • Get John’s tweets o GET tweets[JnBrymn] (output is as expected) OpenSource Connections
  • 23.
    Cassandra Pain Points •Twitter Example • My tweets o SET tweets[JnBrymn][2013-07-19 T 09:20] = “Wonderful morning. This coffee is great.” o SET tweets[JnBrymn][2013-07-19 T 09:21] = “Oops, smoke is coming out of the SQL server!” o SET tweets[JnBrymn][2013-07-19 T 09:51] = “Now my coffee is cold :-(” • Get John’s tweets o GET tweets[JnBrymn] (output is as expected) • Pain-point: schema-less means that you have to read code to understand data model OpenSource Connections
  • 24.
    Cassandra Pain Points •My timeline (other’s tweets) • More complicated – must store corresponding user names • Bad Option 1: keep multiple column families o SET timeline_from[JnBrymn][2013-07-19 T 09:20] = “softwaredoug” o SET timeline_text[JnBrymn][2013-07-19 T 09:20] = “Hey John I posted on reddit, upvote me!” • Get John’s timeline o GET timeline_from[JnBrymn] o GET timeline_text[JnBrymn] OpenSource Connections
  • 25.
    Cassandra Pain Points •My timeline (other’s tweets) • More complicated – must store corresponding user names • Bad Option 1: keep multiple column families o SET timeline_from[JnBrymn][2013-07-19 T 09:20] = “softwaredoug” o SET timeline_text[JnBrymn][2013-07-19 T 09:20] = “Hey John I posted on reddit, upvote me!” • Get John’s timeline o GET timeline_from[JnBrymn] o GET timeline_text[JnBrymn] • Pain-point: Multiple queries required. OpenSource Connections
  • 26.
    Cassandra Pain Points •My timeline • Bad Option 2: shove into single column value o SET timeline[JnBrymn][2013-07-19 T 09:20] = {from:”softwaredoug”, text: “Hey John I posted on reddit, upvote me!” • Get John’s timeline o GET timeline[JnBrymn] (…not too bad.) OpenSource Connections
  • 27.
    Cassandra Pain Points •My timeline • Bad Option 2: shove into single column value o SET timeline[JnBrymn][2013-07-19 T 09:20] = {from:”softwaredoug”, text: “Hey John I posted on reddit, upvote me!” • Get John’s timeline o GET timeline[JnBrymn] (…not too bad.) • Pain-point: Updates require a read-then-modify OpenSource Connections
  • 28.
    Cassandra Pain Points •My timeline • Best Option: composite column names o SET timeline[JnBrymn][2013-07-19 T 09:20|from] = ”softwaredoug” o SET timeline[JnBrymn][2013-07-19 T 09:20|text] = “Hey John, I posted on reddit, upvote me!” • Get John’s timeline o GET timeline[JnBrymn] (extract from and text in client) • Resolves prior pain points! Scales well! OpenSource Connections
  • 29.
    Cassandra Pain Points •My timeline • Best Option: composite column names o SET timeline[JnBrymn][2013-07-19 T 09:20|from] = ”softwaredoug” o SET timeline[JnBrymn][2013-07-19 T 09:20|text] = “Hey John, I posted on reddit, upvote me!” • Get John’s timeline o GET timeline[JnBrymn] (extract from and text in client) • Resolves prior pain points! Scales well! • Pain-point: Even more code reading to understand data model! OpenSource Connections
  • 30.
    Cassandra Pain Points •Justin Bieber’s timeline (e.g. many tweets) • Previous solution fails if number of columns > 2Billion • Best Option: composite row names o SET timeline[bieber|2013-07][19 T 09:20|from] = ”softwaredoug” o SET timeline[bieber|2013-07][19 T 09:20|text] = “Justin Bieber, you complete me.” • Get Justin’s timeline o GET timeline[bieber|2013-07] (get other months too) OpenSource Connections
  • 31.
    Cassandra Pain Points •Justin Bieber’s timeline (e.g. many tweets) • Previous solution fails if number of columns > 2Billion • Best Option: composite row names o SET timeline[bieber|2013-07][19 T 09:20|from] = ”softwaredoug” o SET timeline[bieber|2013-07][19 T 09:20|text] = “Justin Bieber, you complete me.” • Get Justin’s timeline o GET timeline[bieber|2013-07] (get other months too) • Pain-point: Even more code reading to understand data model! OpenSource Connections
  • 32.
    Introducing CQL • CQLis a reintroduction of schema so that you don’t have to read code to understand the data model. • CQL creates a common language so that details of the data model can be easily communicated. • CQL is a best-practices Cassandra interface and hides the messy details. OpenSource Connections
  • 33.
    Introducing CQL • CQLis a reintroduction of schema so that you don’t have to read code to understand the data model. • CQL creates a common language so that details of the data model can be easily communicated. • CQL is a best-practices Cassandra interface and hides the messy details. Let’s see it! OpenSource Connections
  • 34.
    Introducing CQL CREATE TABLEusers ( id timeuuid PRIMARY KEY, lastname varchar, firstname varchar, dateOfBirth timestamp ); OpenSource Connections
  • 35.
    Introducing CQL CREATE TABLEusers ( id timeuuid PRIMARY KEY, lastname varchar, firstname varchar, dateOfBirth timestamp ); INSERT INTO users (id,lastname, firstname, dateofbirth) VALUES (now(),'Berryman',’John','1975-09-15'); OpenSource Connections
  • 36.
    Introducing CQL CREATE TABLEusers ( id timeuuid PRIMARY KEY, lastname varchar, firstname varchar, dateOfBirth timestamp ); INSERT INTO users (id,lastname, firstname, dateofbirth) VALUES (now(),’Berryman’,’John’,’1975-09-15’); UPDATE users SET firstname = ’John’ WHERE id = f74c0b20-0862-11e3-8cf6-b74c10b01fc6; OpenSource Connections
  • 37.
    Introducing CQL CREATE TABLEusers ( id timeuuid PRIMARY KEY, lastname varchar, firstname varchar, dateOfBirth timestamp ); INSERT INTO users (id,lastname, firstname, dateofbirth) VALUES (now(),'Berryman',’John','1975-09-15'); UPDATE users SET firstname = 'John’ WHERE id = f74c0b20-0862-11e3-8cf6-b74c10b01fc6; SELECT dateofbirth,firstname,lastname FROM users ; dateofbirth | firstname | lastname --------------------------+-----------+---------1975-09-15 00:00:00-0400 | John | Berryman OpenSource Connections
  • 38.
    Introducing CQL “Hey sweet!It’s exactly the same as MySQL!” OpenSource Connections
  • 39.
    Introducing CQL “Hey sweet!It’s exactly the same as MySQL!” Hold your horses. There are some important differences. OpenSource Connections
  • 40.
    Introducing CQL “Hey sweet!It’s exactly the same as MySQL!” Hold your horses. There are some important differences. “Wait? What happened to the Cassandra’s wide rows?” OpenSource Connections
  • 41.
    Introducing CQL “Hey sweet!It’s exactly the same as MySQL!” Hold your horses. There are some important differences. “Wait? What happened to the Cassandra’s wide rows?” There’s still there. Understanding the mapping is crucial! OpenSource Connections
  • 42.
    Introducing CQL “Hey sweet!It’s exactly the same as MySQL!” Hold your horses. There are some important differences. “Wait? What happened to the Cassandra’s wide rows?” There’s still there. Understanding the mapping is crucial! Remember this: •Cassandra finds rows fast •Cassandra scans columns fast •Cassandra does not scan rows OpenSource Connections
  • 43.
    The CQL/Cassandra Mapping CREATETABLE employees ( name text PRIMARY KEY, age int, role text ); OpenSource Connections
  • 44.
    The CQL/Cassandra Mapping CREATETABLE employees ( name text PRIMARY KEY, age int, role text ); name | age | role -----+-----+----john | 37 | dev eric | 38 | ceo OpenSource Connections
  • 45.
    The CQL/Cassandra Mapping CREATETABLE employees ( name text PRIMARY KEY, age int, role text ); age john role 37 dev name | age | role -----+-----+----john | 37 | dev eric | 38 | ceo age eric role 38 ceo OpenSource Connections
  • 46.
    The CQL/Cassandra Mapping CREATETABLE employees ( company text, name text, age int, role text, PRIMARY KEY (company,name) ); OpenSource Connections
  • 47.
    The CQL/Cassandra Mapping CREATETABLE employees ( company text, name text, age int, role text, PRIMARY KEY (company,name) ); company | name | age | role --------+------+-----+----OSC | eric | 38 | ceo OSC | john | 37 | dev RKG | anya | 29 | lead RKG | ben | 27 | dev RKG | chad | 35 | ops OpenSource Connections
  • 48.
    The CQL/Cassandra Mapping company| name | age | role --------+------+-----+----OSC | eric | 38 | ceo OSC | john | 37 | dev RKG | anya | 29 | lead RKG | ben | 27 | dev RKG | chad | 35 | ops CREATE TABLE employees ( company text, name text, age int, role text, PRIMARY KEY (company,name) ); eric:age OS C eric:role john:age john:role 38 dev 37 dev anya:age RK G anya:role ben:age ben:role chad:age chad:role 29 lead 27 dev 35 ops OpenSource Connections
  • 49.
    The CQL/Cassandra Mapping CREATETABLE example ( A text, B text, C text, D text, E text, F text, PRIMARY KEY ((A,B),C,D) ); OpenSource Connections
  • 50.
    The CQL/Cassandra Mapping CREATETABLE example ( A text, B text, C text, D text, E text, F text, PRIMARY KEY ((A,B),C,D) ); A|B|C| D|E|F --+---+---+---+---+--a|b|c|d|e|f a|b|c|g|h|i a|b|j|k|l|m a|n|o|p|q|r s|t|u|v|w|x OpenSource Connections
  • 51.
    The CQL/Cassandra Mapping CREATETABLE example ( A text, B text, C text, D text, E text, F text, PRIMARY KEY ((A,B),C,D) ); c:d:E c:d:F a:b f o:p:E a:n e r c:g:E c:g:F j:k:E j:k:F h i l m u:v:E u:v:F w x o:p:F q A|B|C| D|E|F --+---+---+---+---+--a|b|c|d|e|f a|b|c|g|h|i a|b|j|k|l|m a|n|o|p|q|r s|t|u|v|w|x s:t OpenSource Connections
  • 52.
    CQL for Sets,Lists, and Maps • Collection Semantics o Sets hold list of unique elements o Lists hold ordered, possibly repeating elements o Maps hold a list of key-value pairs • Uses same old Cassandra data structure OpenSource Connections
  • 53.
    CQL for Sets,Lists, and Maps • Collection Semantics o Sets hold list of unique elements o Lists hold ordered, possibly repeating elements o Maps hold a list of key-value pairs • Uses same old Cassandra data structure • Declaring CREATE TABLE mytable( X text, Y text, myset set<text>, mylist list<int>, mymap map<text, text>, PRIMARY KEY (X,Y) ); OpenSource Connections
  • 54.
    CQL for Sets,Lists, and Maps • Collection Semantics o Sets hold list of unique elements o Lists hold ordered, possibly repeating elements o Maps hold a list of key-value pairs • Uses same old Cassandra data structure • Declaring CREATE TABLE mytable( X text, Y text, myset set<text>, mylist list<int>, mymap map<text, text>, PRIMARY KEY (X,Y) ); Collection fields can not be used in primary keys OpenSource Connections
  • 55.
    CQL for Sets,Lists, and Maps • Inserting INSERT INTO mytable (row, myset) VALUES (123, { ‘apple’, ‘banana’}); OpenSource Connections
  • 56.
    CQL for Sets,Lists, and Maps • Inserting INSERT INTO mytable (row, myset) VALUES (123, { ‘apple’, ‘banana’}); INSERT INTO mytable (row, mylist) VALUES (123, [‘apple’,’banana’,’apple’]); OpenSource Connections
  • 57.
    CQL for Sets,Lists, and Maps • Inserting INSERT INTO mytable (row, myset) VALUES (123, { ‘apple’, ‘banana’}); INSERT INTO mytable (row, mylist) VALUES (123, [‘apple’,’banana’,’apple’]); INSERT INTO mytable (row, mymap) VALUES (123, {1:’apple’,2:’banana’}) OpenSource Connections
  • 58.
    CQL for Sets,Lists, and Maps • Updating UPDATE mytable SET myset = myset + {‘apple’,‘banana’} WHERE row = 123; UPDATE mytable SET myset = myset - { ‘apple’ } WHERE row = 123; OpenSource Connections
  • 59.
    CQL for Sets,Lists, and Maps • Updating UPDATE mytable SET myset = myset + {‘apple’,‘banana’} WHERE row = 123; UPDATE mytable SET myset = myset - { ‘apple’ } WHERE row = 123; UPDATE mytable SET mylist = mylist + [‘apple’,‘banana’] WHERE row = 123; UPDATE mytable SET mylist = [‘banana’] + mylist WHERE row = 123; OpenSource Connections
  • 60.
    CQL for Sets,Lists, and Maps • Updating UPDATE mytable SET myset = myset + {‘apple’,‘banana’} WHERE row = 123; UPDATE mytable SET myset = myset - { ‘apple’ } WHERE row = 123; UPDATE mytable SET mylist = mylist + [‘apple’,‘banana’] WHERE row = 123; UPDATE mytable SET mylist = [‘banana’] + mylist WHERE row = 123; UPDATE mytable SET mymap[‘fruit’] = ‘apple’ WHERE row = 123 UPDATE mytable SET mymap = mymap + { ‘fruit’:‘apple’} WHERE row = 123 OpenSource Connections
  • 61.
    CQL for Sets,Lists, and Maps SETS CREATE TABLE mytable( X text, Y text, myset set<int>, PRIMARY KEY (X,Y) ); OpenSource Connections
  • 62.
    CQL for Sets,Lists, and Maps SETS CREATE TABLE mytable( X text, Y text, myset set<int>, PRIMARY KEY (X,Y) ); X | Y | myset ---+---+-----------a | b | {1,2} a | c | {3,4,5} OpenSource Connections
  • 63.
    CQL for Sets,Lists, and Maps SETS CREATE TABLE mytable( X text, Y text, myset set<int>, PRIMARY KEY (X,Y) ); b:myset:1 b:myset:2 X | Y | myset ---+---+-----------a | b | {1,2} a | c | {3,4,5} c:myset:3 c:myset:4 c:myset:5 a OpenSource Connections
  • 64.
    CQL for Sets,Lists, and Maps LISTS CREATE TABLE mytable( X text, Y text, mylist list<int>, PRIMARY KEY (X,Y) ); OpenSource Connections
  • 65.
    CQL for Sets,Lists, and Maps LISTS CREATE TABLE mytable( X text, Y text, mylist list<int>, PRIMARY KEY (X,Y) ); X | Y | mylist ---+---+-----------a | b | [1,2] OpenSource Connections
  • 66.
    CQL for Sets,Lists, and Maps LISTS CREATE TABLE mytable( X text, Y text, mylist list<int>, PRIMARY KEY (X,Y) ); X | Y | mylist ---+---+-----------a | b | [1,2] b:mylist:f7e5450039..8d a b:mylist:f7e5450139..8d 1 2 OpenSource Connections
  • 67.
    CQL for Sets,Lists, and Maps LISTS CREATE TABLE mytable( X text, Y text, mylist list<int>, PRIMARY KEY (X,Y) ); X | Y | mylist ---+---+-----------a | b | [1,2] b:mylist:f7e5450039..8d a b:mylist:f7e5450139..8d 1 2 OpenSource Connections
  • 68.
    CQL for Sets,Lists, and Maps MAPS CREATE TABLE mytable( X text, Y text, mymap map<text,int>, PRIMARY KEY (X,Y) ); OpenSource Connections
  • 69.
    CQL for Sets,Lists, and Maps MAPS CREATE TABLE mytable( X text, Y text, mymap map<text,int>, PRIMARY KEY (X,Y) ); X | Y | mymap ---+---+-----------a | b | {m:1,n:2} a | c |{n:3,p:4,q:5} OpenSource Connections
  • 70.
    CQL for Sets,Lists, and Maps MAPS X | Y | mymap ---+---+-----------a | b | {m:1,n:2} a | c |{n:3,p:4,q:5} CREATE TABLE mytable( X text, Y text, mymap map<text,int>, PRIMARY KEY (X,Y) ); b:mymap:m a b:mymap:n c:mymap:n c:mymap:p c:mymap:q 1 2 3 4 5 OpenSource Connections
  • 71.
    Peek Behind theScenes! Do it! (in cqlsh) CREATE KEYSPACE test WITH replication = {'class': 'SimpleStrategy', 'replication_factor': 1}; USE test; CREATE TABLE stuff ( a int, b int, myset set<int>, mylist list<int>, mymap map<int,int>, PRIMARY KEY (a,b)); UPDATE stuff SET myset = {1,2}, mylist = [3,4,5], mymap = {6:7,8:9} WHERE a = 0 AND b = 1; SELECT * FROM stuff; (in cassandra-cli) use test; list stuff ; (in cqlsh) SELECT key_aliases,column_aliases from system.schema_columnfamilies WHERE keyspace_name = 'test' AND columnfamily_name = 'stuff'; OpenSource Connections
  • 72.
    Putting it AllTogether …you already know • CQL is a reintroduction of schema • CQL creates a common data modeling language • CQL is a best-practices Cassandra interface . OpenSource Connections
  • 73.
    Putting it AllTogether …you already know • CQL is a reintroduction of schema • CQL creates a common data modeling language • CQL is a best-practices Cassandra interface …now you know • CQL let’s you take advantage of the C* Data structure . OpenSource Connections
  • 74.
    Putting it AllTogether …you already know • CQL is a reintroduction of schema • CQL creates a common data modeling language • CQL is a best-practices Cassandra interface …now you know • CQL let’s you take advantage of the C* Data structure …but also • CQL protocol is binary and therefore interoperable with any language • CQL is asynchronous and fast (Thrift transport layer is synchronous) • CQL allows the possibility for prepared statements OpenSource Connections
  • 75.
    Thanks! Follow me onTwitter @JnBrymn Check out the OpenSource Connection Blog http://www.opensourceconnections.com/blog/ OpenSource Connections

Editor's Notes

  • #73 No need to bother with composite column names or row keys.Grouping fields into SQL-like rows.Easy-to-use collections.
  • #74 No need to bother with composite column names or row keys.Grouping fields into SQL-like rows.Easy-to-use collections.
  • #75 No need to bother with composite column names or row keys.Grouping fields into SQL-like rows.Easy-to-use collections.