6.6 
De Moivre’s 
Theorem and 
nth Roots 
Copyright © 2011 Pearson, Inc.
What you’ll learn about 
 The Complex Plane 
 Trigonometric Form of Complex Numbers 
 Multiplication and Division of Complex Numbers 
 Powers of Complex Numbers 
 Roots of Complex Numbers 
… and why 
The material extends your equation-solving technique 
to include equations of the form zn = c, n is an integer 
and c is a complex number. 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 2
Complex Plane 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 3
Absolute Value (Modulus) of a 
Complex Number 
The absolute value or modulus 
of a complex number 
z  a  bi z  a  bi  a  
b 
is | | | | . 
2 2 
a bi a bi 
In the complex plane, | | is the distance of 
from the origin. 
  
Copyright © 2011 Pearson, Inc. Slide 6.1 - 4
Graph of z = a + bi 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 5
Trigonometric Form of a Complex 
Number 
The trigonometric form of the complex number 
z  a  bi is 
z  rcos  isin  
where a  r cos , b  r sin , r  a2  b2 , 
and tan  b / a. The number r is the absolute 
value or modulus of z, and  is an argument of z. 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 6
Example Finding Trigonometric 
Form 
Find the trigonometric form with 0    2 for the 
complex number 1 3i. 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 7
Example Finding Trigonometric 
Form 
Find the trigonometric form with 0    2 for the 
complex number 1 3i. 
Find r: r |1 3i | 12  32 
 2. 
Find  : tan  
3 
1 
so   
 
3 
. 
 
Therefore, 1 3i  2 cos 
 
3 
 isin 
 
 
3 
  
  
. 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 8
Product and Quotient of Complex 
Numbers 
Let z1  r1 cos1  isin1   and z2  r2 cos 2  isin 2  . 
Then 
1. z1  z2  r1r2 cos 1  2   isin 1  2    
 
. 
2. 
z1 
z2 
 
r1 
r2 
cos 1  2   isin 1  2     
, r2  0. 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 9
Example Multiplying Complex 
Numbers 
Express the product of z1 and z2 in standard form. 
 
z1  4 cos 
 
4 
 isin 
 
 
4 
  
  
 
, z2  2 cos 
 
6 
 isin 
 
 
6 
  
  
Copyright © 2011 Pearson, Inc. Slide 6.1 - 10
Example Multiplying Complex 
Numbers 
Express the product of z1 and z2 in standard form. 
 
z1  4 cos 
 
4 
 isin 
 
 
4 
  
  
 
, z2  2 cos 
 
6 
 isin 
  
z1  z2  r1r2 cos 1  2   isin 1  2    
 
 
 4 2 cos 
 
4 
 
 
 
6 
 
  
  
 isin 
 
4 
 
 
 
6 
 
  
  
  
 
 
6 
 
  
 
 4 2 cos 
 
5 
12 
 
  
  
 isin 
 
5 
12 
 
  
  
  
 
  
  
 4 20.259  i0.966 1.464  5.464i 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 11
A Geometric Interpretation of z2 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 12
De Moivre’s Theorem 
Let z  rcos  isin  and let n be a positive integer. 
Then 
zn  r cos  isin    
 
 
 
n 
 r n cosn  isin n . 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 13
Example Using De Moivre’s Theorem 
 
Find  
3 
2 
 i 
1 
2 
  
 
  
4 
using De Moivre's theorem. 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 14
Example Using De Moivre’s Theorem 
 
Find  
3 
2 
 i 
1 
2 
  
 
  
4 
using De Moivre's theorem. 
The argument of z   
3 
2 
 i 
1 
2 
is   
7 
6 
, 
and its modulus  
3 
2 
 i 
1 
2 
 
3 
4 
 
1 
4 
 1. 
Hence, 
z  2cos 
7 
6 
 isin 
7 
6 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 15
Example Using De Moivre’s Theorem 
4 
using De Moivre's theorem. 
 
 i 
1 
2 
 
  
z4  cos 4  
 
7 
6 
  
  
 
 isin 4  
 
7 
6 
  
  
 cos 
 
14 
3 
 
  
  
 isin 
 
14 
3 
 
  
  
 cos 
 
2 
3 
 
  
  
 isin 
 
2 
3 
 
  
  
  
1 
2 
 i 
3 
2 
 
Find  
3 
2 
  
Copyright © 2011 Pearson, Inc. Slide 6.1 - 16
nth Root of a Complex Number 
A complex number v  a  bi is an nth root of z if 
vn  z. 
If z  1, the v is an nth root of unity. 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 17
Finding nth Roots of a Complex 
Number 
If z  rcos  isin , then the n distinct 
complex numbers 
 
r n cos 
  2 k 
n 
 isin 
  2 k 
n 
  
 
 , 
where k  0,1,2,..,n 1, 
are the nth roots of the complex number z. 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 18
Example Finding Cube Roots 
Find the cube roots of 1. 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 19
Example Finding Cube Roots 
Find the cube roots of 1. 
Write 1 in complex form: z  1 0i  cos0  isin0 
The third roots of 1 are the complex numbers 
cos 
0  2 k 
3 
 isin 
0  2 k 
3 
for k  0,1,2. 
z1  cos0  isin0  1 
z2  cos 
2 
3 
 isin 
2 
3 
  
1 
2 
 
3 
2 
i 
z3  cos 
4 
3 
 isin 
4 
3 
  
1 
2 
 
3 
2 
i 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 20
Quick Review 
1. Write the roots of the equation x2 12  6x in a  bi form. 
2. Write the complex number 1 i3 
in standard form a  bi. 
3. Find all real solutions to x3  27  0. 
Find an angle  in 0    2 which satisfies both equations. 
4. sin  
1 
2 
and cos   
3 
2 
5. sin   
2 
2 
and cos   
2 
2 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 21
Quick Review Solutions 
1. Write the roots of the equation x2 12  6x in a  bi form. 
3 3i, 3 3i 
2. Write the complex number 1 i3 
in standard form a  bi. 
2  2i 
3. Find all real solutions to x3  27  0. x  3 
Find an angle  in 0    2 which satisfies both equations. 
4. sin  
1 
2 
and cos   
3 
2 
  5 / 6 
5. sin   
2 
2 
and cos   
2 
2 
  5 / 4 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 22
Chapter Test 
1. Let u  2, 1 and v  4,2 . Find u v. 
2. Let A  (2, 1),B  (3,1),C  (4,2), and D  (1, 5). 
Find the component form and magnitude of the vector 
uuur 
uuur 
AC 
+BD 
3. Given A  (4,0) and B  (2,1), find (a) a unit vector in 
uuur 
the direction of AB 
and (b) a vector of magnitude 3 in 
the opposite direction. 
4. Given u  4,3 and v  2,5 , find (a) the direction 
angles of u and v and (b) the angle between u and v. 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 23
Chapter Test 
5. Convert the polar coordinate (  2.5,25o) to a rectangular 
coordinate. 
6. Eliminate the parameter t. x  4  t, y  8  5t,  3  t  5. 
7. Find a parameterization for the line through the points 
( 1, 2) and (3,4). 
 
 
8. Use De Moivre's theorem to evaluate 3 cos 
 
4 
 isin 
 
 
4 
  
  
  
 
  
5 
. 
Write your answer in (a) trigonometric form and (b) standard 
form. 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 24
Chapter Test 
9. Convert the polar equation r  3cos  2sin to 
rectangular form. 
10. A 3000 pound car is parked on a street that makes 
an angle of 16o with the horizontal. 
(a) Find the force required to keep the car from rolling 
down the hill. 
(b) Find the component of the force perpendicular to 
the street. 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 25
Chapter Test Solutions 
1. Let u  2, 1 and v  4,2 . Find u v. 6 
2. Let A  (2, 1),B  (3,1),C  (4,2), and D  (1, 5). 
Find the component form and magnitude of the vector 
uuur 
uuur 
AC 
+BD 
8, 3 ; 73 
3. Given A  (4,0) and B  (2,1), find (a) a unit vector in 
uuur 
the direction of AB 
and (b) a vector of magnitude 3 in 
the opposite direction. (a)  
2 
5 
, 
1 
5 
(b) 
6 
5 
,  
3 
5 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 26
Chapter Test Solutions 
4. Given u  4,3 and v  2,5 , find (a) the direction 
angles of u and v and (b) the angle between u and v. 
 
(a) tan1 3 
4 
  
 
 
  0.64 tan1 5 
2 
  
 
  1.19 (b)  0.55 
5. Convert the polar coordinate (  2.5,25o) to a 
rectangular coordinate.  (  2.27, 1.06) 
6. Eliminate the parameter t. x  4  t, y  8  5t, 
 3  t  5. y  5x 12 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 27
Chapter Test 
7. Find a parameterization for the line through the points 
( 1, 2) and (3,4). x  2t  3, y  3t  4 
 
 
8. Use De Moivre's theorem to evaluate 3 cos 
 
4 
 isin 
 
 
4 
  
  
 
 
 
 
 
5 
. 
Write your answer in (a) trigonometric form and (b) standard 
form. 
 
(a) 243 cos 
5 
4 
 isin 
 
5 
4 
  
  (b) 
243 2 
2 
 
243 2 
2 
i 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 28
Chapter Test 
9. Convert the polar equation r  3cos  2sin to 
 
rectangular form. x  
3 
2 
  
 
  
2 
 y 12 
 
13 
4 
10. A 3000 pound car is parked on a street that makes 
an angle of 16o with the horizontal. 
(a) Find the force required to keep the car from rolling 
down the hill.  826.91 pounds 
(b) Find the component of the force perpendicular to 
the street. 2883.79 pounds 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 29

Unit 6.6

  • 1.
    6.6 De Moivre’s Theorem and nth Roots Copyright © 2011 Pearson, Inc.
  • 2.
    What you’ll learnabout  The Complex Plane  Trigonometric Form of Complex Numbers  Multiplication and Division of Complex Numbers  Powers of Complex Numbers  Roots of Complex Numbers … and why The material extends your equation-solving technique to include equations of the form zn = c, n is an integer and c is a complex number. Copyright © 2011 Pearson, Inc. Slide 6.1 - 2
  • 3.
    Complex Plane Copyright© 2011 Pearson, Inc. Slide 6.1 - 3
  • 4.
    Absolute Value (Modulus)of a Complex Number The absolute value or modulus of a complex number z  a  bi z  a  bi  a  b is | | | | . 2 2 a bi a bi In the complex plane, | | is the distance of from the origin.   Copyright © 2011 Pearson, Inc. Slide 6.1 - 4
  • 5.
    Graph of z= a + bi Copyright © 2011 Pearson, Inc. Slide 6.1 - 5
  • 6.
    Trigonometric Form ofa Complex Number The trigonometric form of the complex number z  a  bi is z  rcos  isin  where a  r cos , b  r sin , r  a2  b2 , and tan  b / a. The number r is the absolute value or modulus of z, and  is an argument of z. Copyright © 2011 Pearson, Inc. Slide 6.1 - 6
  • 7.
    Example Finding Trigonometric Form Find the trigonometric form with 0    2 for the complex number 1 3i. Copyright © 2011 Pearson, Inc. Slide 6.1 - 7
  • 8.
    Example Finding Trigonometric Form Find the trigonometric form with 0    2 for the complex number 1 3i. Find r: r |1 3i | 12  32  2. Find  : tan  3 1 so    3 .  Therefore, 1 3i  2 cos  3  isin   3     . Copyright © 2011 Pearson, Inc. Slide 6.1 - 8
  • 9.
    Product and Quotientof Complex Numbers Let z1  r1 cos1  isin1   and z2  r2 cos 2  isin 2  . Then 1. z1  z2  r1r2 cos 1  2   isin 1  2     . 2. z1 z2  r1 r2 cos 1  2   isin 1  2     , r2  0. Copyright © 2011 Pearson, Inc. Slide 6.1 - 9
  • 10.
    Example Multiplying Complex Numbers Express the product of z1 and z2 in standard form.  z1  4 cos  4  isin   4      , z2  2 cos  6  isin   6     Copyright © 2011 Pearson, Inc. Slide 6.1 - 10
  • 11.
    Example Multiplying Complex Numbers Express the product of z1 and z2 in standard form.  z1  4 cos  4  isin   4      , z2  2 cos  6  isin   z1  z2  r1r2 cos 1  2   isin 1  2       4 2 cos  4    6       isin  4    6          6      4 2 cos  5 12       isin  5 12              4 20.259  i0.966 1.464  5.464i Copyright © 2011 Pearson, Inc. Slide 6.1 - 11
  • 12.
    A Geometric Interpretationof z2 Copyright © 2011 Pearson, Inc. Slide 6.1 - 12
  • 13.
    De Moivre’s Theorem Let z  rcos  isin  and let n be a positive integer. Then zn  r cos  isin       n  r n cosn  isin n . Copyright © 2011 Pearson, Inc. Slide 6.1 - 13
  • 14.
    Example Using DeMoivre’s Theorem  Find  3 2  i 1 2      4 using De Moivre's theorem. Copyright © 2011 Pearson, Inc. Slide 6.1 - 14
  • 15.
    Example Using DeMoivre’s Theorem  Find  3 2  i 1 2      4 using De Moivre's theorem. The argument of z   3 2  i 1 2 is   7 6 , and its modulus  3 2  i 1 2  3 4  1 4  1. Hence, z  2cos 7 6  isin 7 6 Copyright © 2011 Pearson, Inc. Slide 6.1 - 15
  • 16.
    Example Using DeMoivre’s Theorem 4 using De Moivre's theorem.   i 1 2    z4  cos 4   7 6       isin 4   7 6      cos  14 3       isin  14 3       cos  2 3       isin  2 3        1 2  i 3 2  Find  3 2   Copyright © 2011 Pearson, Inc. Slide 6.1 - 16
  • 17.
    nth Root ofa Complex Number A complex number v  a  bi is an nth root of z if vn  z. If z  1, the v is an nth root of unity. Copyright © 2011 Pearson, Inc. Slide 6.1 - 17
  • 18.
    Finding nth Rootsof a Complex Number If z  rcos  isin , then the n distinct complex numbers  r n cos   2 k n  isin   2 k n     , where k  0,1,2,..,n 1, are the nth roots of the complex number z. Copyright © 2011 Pearson, Inc. Slide 6.1 - 18
  • 19.
    Example Finding CubeRoots Find the cube roots of 1. Copyright © 2011 Pearson, Inc. Slide 6.1 - 19
  • 20.
    Example Finding CubeRoots Find the cube roots of 1. Write 1 in complex form: z  1 0i  cos0  isin0 The third roots of 1 are the complex numbers cos 0  2 k 3  isin 0  2 k 3 for k  0,1,2. z1  cos0  isin0  1 z2  cos 2 3  isin 2 3   1 2  3 2 i z3  cos 4 3  isin 4 3   1 2  3 2 i Copyright © 2011 Pearson, Inc. Slide 6.1 - 20
  • 21.
    Quick Review 1.Write the roots of the equation x2 12  6x in a  bi form. 2. Write the complex number 1 i3 in standard form a  bi. 3. Find all real solutions to x3  27  0. Find an angle  in 0    2 which satisfies both equations. 4. sin  1 2 and cos   3 2 5. sin   2 2 and cos   2 2 Copyright © 2011 Pearson, Inc. Slide 6.1 - 21
  • 22.
    Quick Review Solutions 1. Write the roots of the equation x2 12  6x in a  bi form. 3 3i, 3 3i 2. Write the complex number 1 i3 in standard form a  bi. 2  2i 3. Find all real solutions to x3  27  0. x  3 Find an angle  in 0    2 which satisfies both equations. 4. sin  1 2 and cos   3 2   5 / 6 5. sin   2 2 and cos   2 2   5 / 4 Copyright © 2011 Pearson, Inc. Slide 6.1 - 22
  • 23.
    Chapter Test 1.Let u  2, 1 and v  4,2 . Find u v. 2. Let A  (2, 1),B  (3,1),C  (4,2), and D  (1, 5). Find the component form and magnitude of the vector uuur uuur AC +BD 3. Given A  (4,0) and B  (2,1), find (a) a unit vector in uuur the direction of AB and (b) a vector of magnitude 3 in the opposite direction. 4. Given u  4,3 and v  2,5 , find (a) the direction angles of u and v and (b) the angle between u and v. Copyright © 2011 Pearson, Inc. Slide 6.1 - 23
  • 24.
    Chapter Test 5.Convert the polar coordinate (  2.5,25o) to a rectangular coordinate. 6. Eliminate the parameter t. x  4  t, y  8  5t,  3  t  5. 7. Find a parameterization for the line through the points ( 1, 2) and (3,4).   8. Use De Moivre's theorem to evaluate 3 cos  4  isin   4          5 . Write your answer in (a) trigonometric form and (b) standard form. Copyright © 2011 Pearson, Inc. Slide 6.1 - 24
  • 25.
    Chapter Test 9.Convert the polar equation r  3cos  2sin to rectangular form. 10. A 3000 pound car is parked on a street that makes an angle of 16o with the horizontal. (a) Find the force required to keep the car from rolling down the hill. (b) Find the component of the force perpendicular to the street. Copyright © 2011 Pearson, Inc. Slide 6.1 - 25
  • 26.
    Chapter Test Solutions 1. Let u  2, 1 and v  4,2 . Find u v. 6 2. Let A  (2, 1),B  (3,1),C  (4,2), and D  (1, 5). Find the component form and magnitude of the vector uuur uuur AC +BD 8, 3 ; 73 3. Given A  (4,0) and B  (2,1), find (a) a unit vector in uuur the direction of AB and (b) a vector of magnitude 3 in the opposite direction. (a)  2 5 , 1 5 (b) 6 5 ,  3 5 Copyright © 2011 Pearson, Inc. Slide 6.1 - 26
  • 27.
    Chapter Test Solutions 4. Given u  4,3 and v  2,5 , find (a) the direction angles of u and v and (b) the angle between u and v.  (a) tan1 3 4       0.64 tan1 5 2      1.19 (b)  0.55 5. Convert the polar coordinate (  2.5,25o) to a rectangular coordinate.  (  2.27, 1.06) 6. Eliminate the parameter t. x  4  t, y  8  5t,  3  t  5. y  5x 12 Copyright © 2011 Pearson, Inc. Slide 6.1 - 27
  • 28.
    Chapter Test 7.Find a parameterization for the line through the points ( 1, 2) and (3,4). x  2t  3, y  3t  4   8. Use De Moivre's theorem to evaluate 3 cos  4  isin   4          5 . Write your answer in (a) trigonometric form and (b) standard form.  (a) 243 cos 5 4  isin  5 4     (b) 243 2 2  243 2 2 i Copyright © 2011 Pearson, Inc. Slide 6.1 - 28
  • 29.
    Chapter Test 9.Convert the polar equation r  3cos  2sin to  rectangular form. x  3 2      2  y 12  13 4 10. A 3000 pound car is parked on a street that makes an angle of 16o with the horizontal. (a) Find the force required to keep the car from rolling down the hill.  826.91 pounds (b) Find the component of the force perpendicular to the street. 2883.79 pounds Copyright © 2011 Pearson, Inc. Slide 6.1 - 29