Wind and Solar Energy Resources
Modeling and Analysis
Technical Presentation
By
Mohamed Abuella
The University of North Carolina at Charlotte
August 9th, 2019
2
Presentation
Outline
Wind Energy Resources
Modeling
Solar Energy Resources
Modeling
8/9/2019
Four U.S. Locations for Comparison of Renewable Energy Modeling and Analysis
Charlotte NC, Boston MA, Boulder CO, Tucson AZ.
3
For Different Locations in the U.S.
Data are retrieved from NREL’s Developer Network: https://developer.nrel.gov/
Wind and Solar Energy Resources Modeling and Analysis
8/9/2019
Charlotte, NC
4
Boston, MA
Boulder, CO Tucson, AZ
Time series of wind speed at height 100m (m/s)
𝑃𝑤 =
1
2
𝜌𝐴𝒗 𝟑
Wind Energy Resources Modeling
8/9/2019
Charlotte, NC
5
Boston, MA
Boulder, CO Tucson, AZ
Boxplots of monthly distribution of wind speed
Wind Energy Resources Modeling
8/9/2019
Charlotte, NC
6
Boston, MA
Boulder, CO Tucson, AZ
Wind Roses of Wind Speed
Distribution of wind direction and speed
Wind Energy Resources Modeling
8/9/2019
Charlotte, NC
7
Boston, MA
Boulder, CO Tucson, AZ
Probability density distribution of wind speed
Wind Energy Resources Modeling
8/9/2019
Charlotte, NC
8
Boston, MA
Boulder, CO Tucson, AZ
Wind turbine GE 1.5SLE 77m is utilized for modeling
The wind power curve for GE 1.5SLE 77m
to covert the wind speed to wind power
http://www.wind-power-program.com/Downloads/Databasepowercurves(May2017).zip
𝑃𝑤 =
1
2
𝜌𝐴𝑣3
Wind Energy Resources Modeling
8/9/2019
Charlotte, NC
9
Boston, MA
Boulder, CO Tucson, AZ
Probability density distribution of wind power
𝑃𝑤 =
1
2
𝜌𝐴𝑣3Considering other parameters such as air pressure,
temperature and density at the given height=100m
Wind Energy Resources Modeling
8/9/2019
Charlotte, NC
10
Boston, MA
Boulder, CO Tucson, AZ
Month0 MWh NCF
1 467.945 41.90%
2 584.361 58.00%
3 510.499 45.70%
4 512.191 47.40%
5 420.662 37.70%
6 239.808 22.20%
7 354.663 31.80%
8 285.923 25.60%
9 396.328 36.70%
10 504.488 45.20%
11 471.683 43.70%
12 691.553 62.00%
Month MWh NCF
1 387.574 34.70%
2 455.725 45.20%
3 410.236 36.80%
4 456.256 42.20%
5 381.352 34.20%
6 193.475 17.90%
7 230.690 20.70%
8 141.379 12.70%
9 197.738 18.30%
10 310.630 27.80%
11 355.663 32.90%
12 298.279 26.70%
Month MWh NCF
1 413.396 37.00%
2 288.217 28.60%
3 382.094 34.20%
4 339.568 31.40%
5 222.077 19.90%
6 187.928 17.40%
7 216.100 19.40%
8 215.737 19.30%
9 268.648 24.90%
10 206.966 18.50%
11 224.898 20.80%
12 312.770 28.00%
Month0 MWh NCF
1 262.764 23.50%
2 247.664 24.60%
3 259.804 23.30%
4 378.228 35.00%
5 184.679 16.50%
6 188.630 17.50%
7 111.523 10.00%
8 143.448 12.90%
9 223.078 20.70%
10 258.261 23.10%
11 236.885 21.90%
12 274.958 24.60%
Wind Energy Modeling
in 2009
Calculating the net capacity factor (NCF)
for each month, then over the entire year
NCF=
𝑇ℎ𝑒 𝑎𝑐𝑡𝑢𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑
𝑇ℎ𝑒 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑒𝑛𝑒𝑟𝑔𝑦 𝑡ℎ𝑎𝑡
𝑐𝑜𝑢𝑙𝑑 ℎ𝑎𝑣𝑒 𝑏𝑒𝑒𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑
NCF=
𝑇ℎ𝑒 𝑎𝑐𝑡𝑢𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 (𝑀𝑊ℎ)
𝑇ℎ𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ∗𝑡𝑖𝑚𝑒 (𝑀𝑊ℎ)
Wind Energy Resources Modeling
8/9/2019
11
Wind Energy Modeling
in 2009 and 2010
2009 MWh NCF
Charlotte 3818.9 29.1%
Boulder 3278.4 24.9%
Boston 5440.1 41.4%
Tucson 2769.9 21.1%
2010 MWh NCF
Charlotte 3544.6 27.0%
Boulder 2676.9 20.4%
Boston 6107.7 46.5%
Tucson 2969.9 22.6%
0%
5%
10%
15%
20%
25%
30%
35%
40%
45%
50%
Charlotte Boulder Boston Tucson
NCF
Yearly Net Capacity Factor 2009
2010
0
1000
2000
3000
4000
5000
6000
7000
Charlotte Boulder Boston Tucson
MWh
Yearly Yeild of Wind Energy 2009
2010
Wind Energy Resources Modeling
8/9/2019
128/9/2019
Solar Energy Resources Modeling
Charlotte, NC Boston, MA
Boulder, CO Tucson, AZ
Time series of Global Horizontal Solar Irradiance data (W/m2)
138/9/2019
Solar Energy Resources Modeling
Charlotte, NC Boston, MA
Boulder, CO Tucson, AZ
Boxplots of monthly distribution of Global Horizontal
Solar Irradiance (GHI)
14
Time series of components of solar irradiance, GHI, DNI, DHI (W/m2)
Solar Energy Resources Modeling
8/9/2019
15
Global Horizontal Irradiance (GHI) at the plane of array (POA)
Solar Energy Resources Modeling
8/9/2019
16
Pvlib Toolbox from Sandia and NREL’s SAM package and Weather Data from GFS Global Model
https://pvlib-python.readthedocs.io/en/latest/introexamples.html
https://pvlib-python.readthedocs.io/en/latest/forecasts.htm
To convert the solar irradiance to solar PV power,
besides the cloud cover and radiative transfer
model, other parameters are considered, such as
air temperature at the plane of array, module
orientation and efficiency 𝜂 𝑚𝑝𝑝.
𝑃 𝑠𝑜𝑙 ≅ 𝜂 𝑚𝑝𝑝 𝐺𝐻𝐼 𝑃𝑂𝐴 , 𝑇𝑚 𝐺𝐻𝐼 𝑃𝑂𝐴 ∗ 𝐴
Convert GHI at the POA to Solar PV Power
PV Module CS5P-220M
Manufacturer: Canadian Solar
Type: Polycrystalline Cells
Power: 220 W (Maximum)
Length: 63.1in (1,602mm)
Width: 41.8in (1,061mm)
Depth: 1.6in (40mm)
https://www.solarover.com/panels/cs5p.pdf
Solar Energy Resources Modeling
8/9/2019
17
Time series of Solar Power (W), for a solar plant with 15*300 PV modules (220W for each)
Solar Energy Resources Modeling
8/9/2019
Charlotte, NC
18
Boston, MA
Boulder, CO Tucson, AZ
Month0 Wh NCF
1 20036.95 12.24%
2 24185.77 16.36%
3 28973.17 17.70%
4 30208.65 19.07%
5 34770.35 21.24%
6 32713.24 20.65%
7 35418.34 21.64%
8 33992.69 20.77%
9 29731.42 18.77%
10 25504.76 15.58%
11 19138.34 12.08%
12 17866.74 10.93%
Month Wh NCF
1 24215.85 14.79%
2 23356.93 15.80%
3 32597.21 19.92%
4 34440.42 21.74%
5 34155.32 20.87%
6 34034.79 21.49%
7 33878.82 20.70%
8 32241.97 19.70%
9 29538.82 18.65%
10 32026.31 19.57%
11 24730.09 15.61%
12 23873.06 14.60%
Month Wh NCF
1 26432.06 16.15%
2 26847.92 18.16%
3 34451.63 21.05%
4 36840.41 23.26%
5 38157.38 23.31%
6 35819.85 22.61%
7 35061.05 21.42%
8 34979.76 21.37%
9 33776.53 21.32%
10 31482.96 19.23%
11 25915.03 16.36%
12 25576.46 15.65%
Month0 Wh NCF
1 32631.67 19.94%
2 31464.61 21.28%
3 38343.02 23.43%
4 41304.64 26.08%
5 41329.6 25.25%
6 38467.5 24.29%
7 35637.61 21.77%
8 36685.47 22.41%
9 36643.06 23.13%
10 38215.38 23.35%
11 35144.2 22.19%
12 32264.5 19.74%
Solar Energy Modeling
Typical Meteorological Year (TMY)
Calculating the net capacity factor (NCF)
for each month, then over the entire year
NCF=
𝑇ℎ𝑒 𝑎𝑐𝑡𝑢𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑
𝑇ℎ𝑒 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑒𝑛𝑒𝑟𝑔𝑦 𝑡ℎ𝑎𝑡
𝑐𝑜𝑢𝑙𝑑 ℎ𝑎𝑣𝑒 𝑏𝑒𝑒𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑
NCF=
𝑇ℎ𝑒 𝑎𝑐𝑡𝑢𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 (𝑊ℎ)
𝑇ℎ𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ∗𝑡𝑖𝑚𝑒 (𝑊ℎ)
Solar Energy Resources Modeling
For 1 PV module (220W, PV Module CS5P-220M)
8/9/2019
19
TMY KWh NCF
Charlotte 359.0896 18.63%
Boulder 385.341 19.99%
Boston 332.5404 17.26%
Tucson 438.1313 22.73%
Solar Energy Resources Modeling
For 1 PV module (220W, PV Module CS5P-220M)
Calculating the total energy and net capacity factor, as it is done in the wind energy modeling
0
50
100
150
200
250
300
350
400
450
500
Charlotte Boulder Boston Tucson
KWh
Yearly Yeild of Solar Energy
TMY
TMY: Typical Meteorological Year, which means it
assumes the same variability of solar output for
other years.
0.00%
5.00%
10.00%
15.00%
20.00%
25.00%
Charlotte Boulder Boston Tucson
Yearly Net Capacity Factor
TMY
8/9/2019
20
2009
NCF
Wind
Energy
Solar
Energy
Charlotte 29.10% 18.63%
Boulder 24.90% 19.99%
Boston 41.40% 17.26%
Tucson 21.10% 22.73%
2010
NCF
Wind
Energy
Solar
Energy
Charlotte 27.00% 18.63%
Boulder 20.40% 19.99%
Boston 46.50% 17.26%
Tucson 22.60% 22.73%
Comparison of NCF for Resources of Wind & Solar Energy
Wind and Solar Energy Resources Modeling
0.00%
5.00%
10.00%
15.00%
20.00%
25.00%
30.00%
35.00%
40.00%
45.00%
Charlotte Boulder Boston Tucson
NCF
2009 Net Capacity Factor Wind Energy
Solar Energy
0.00%
5.00%
10.00%
15.00%
20.00%
25.00%
30.00%
35.00%
40.00%
45.00%
50.00%
Charlotte Boulder Boston Tucson
NCF
2010 Net Capacity Factor Wind Energy
Solar Energy
8/9/2019
Wind and Solar Energy Resources Modeling
21
Conclusion
The performance of wind and solar energy resources depends significantly on their location and
weather conditions.
Further Work
Modeling and evaluate the wind and solar resources backed up by energy storage systems.
References
1.https://www.r-bloggers.com/time-series-analysis-with-wind-resource- assessment-in-r/
2.https://github.com/mhdella/AWEA_WRA_Working_Group/blob/master/Example_Wind_Resource_Assess
ment_Using_R.md
3.https://pvlib-python.readthedocs.io/en/latest/introexamples.html
4.Stein, J. S., Holmgren, W. F., Forbess, J., & Hansen, C. W. (2016, June). PVLIB: Open source photovoltaic
performance modeling functions for Matlab and Python. In 2016 ieee 43rd photovoltaic specialists
conference (pvsc) (pp. 3425-3430). IEEE.
5.Blair, N., Dobos, A. P., Freeman, J., Neises, T., Wagner, M., Ferguson, T., ... & Janzou, S. (2014). System
advisor model, sam 2014.1. 14: General description (No. NREL/TP-6A20-61019). National Renewable
Energy Lab.(NREL), Golden, CO (United States).
8/9/2019
Thanks for Listening
Any Question?
http://epic.uncc.edu/
Mohamed Abuella
https://mohamedabuella.github.io
Energy Production and Infrastructure Center
University of North Carolina at Charlotte

More Related Content

PDF
Decarbonising EU Power: Trends and Challenges
PDF
Impacts of Czech brown coal mines enlargement: assessment by energy model TIM...
PPT
Should Bulgaria Concentrate On Nuclear Power As Its
PPT
Introduction and Present Status of Renewable Energies.ppt
PPS
Renewable Energy
PPS
Renewable Energy - Intro ppt
PDF
Reviewing the factors of the Renewable Energy systems for Improving the Energ...
PDF
Investigating the Feasibility of Solar Wind Hybrid Systems for Off-Grid Rural...
Decarbonising EU Power: Trends and Challenges
Impacts of Czech brown coal mines enlargement: assessment by energy model TIM...
Should Bulgaria Concentrate On Nuclear Power As Its
Introduction and Present Status of Renewable Energies.ppt
Renewable Energy
Renewable Energy - Intro ppt
Reviewing the factors of the Renewable Energy systems for Improving the Energ...
Investigating the Feasibility of Solar Wind Hybrid Systems for Off-Grid Rural...

Similar to Wind solar energy_modeling_analysis (20)

PPTX
Renewable energy technologies and their potential
PDF
Hybrid Power Generation System – A Review
PDF
Wind-Solar Hybrid Power Project Investigation for Theme Parks - A Case Study
PDF
Wind Solar Hybrid Power Project Investigation For Theme Parks A Case Study
PDF
renewable energy sources and their applicatiion.pdf
PDF
India Wind Storage Opportunities Walawalkar Final
PPT
Wind Energy Project Analysis
PDF
The role of energy storage with renewable electricity generation
PDF
Zweibel National Academies Talk
PPTX
Hybrid street light
PDF
Eng vi encontro - cpfl renováveis - miguel
PDF
Solar Energy India Sample
PDF
Webinar - A Plan for Powering the World for all Purposes With Wind, Water, an...
PDF
PV-solar / Wind Hybrid Energy System for GSM/CDMA Type Mobile Telephony Base ...
PDF
PV-solar / Wind Hybrid Energy System for GSM/CDMA Type Mobile Telephony Base ...
PDF
Wind_and_Solar_Power_Systems.pdf
PPTX
MCS 501 – CLIMATE CHANGE AND ENERGY_Module 1.pptx
PPTX
RENEWABLE ENERGY
PDF
xcel energy 6MSRenewable_Energy_Strat_Xcel_Energy_12052007
Renewable energy technologies and their potential
Hybrid Power Generation System – A Review
Wind-Solar Hybrid Power Project Investigation for Theme Parks - A Case Study
Wind Solar Hybrid Power Project Investigation For Theme Parks A Case Study
renewable energy sources and their applicatiion.pdf
India Wind Storage Opportunities Walawalkar Final
Wind Energy Project Analysis
The role of energy storage with renewable electricity generation
Zweibel National Academies Talk
Hybrid street light
Eng vi encontro - cpfl renováveis - miguel
Solar Energy India Sample
Webinar - A Plan for Powering the World for all Purposes With Wind, Water, an...
PV-solar / Wind Hybrid Energy System for GSM/CDMA Type Mobile Telephony Base ...
PV-solar / Wind Hybrid Energy System for GSM/CDMA Type Mobile Telephony Base ...
Wind_and_Solar_Power_Systems.pdf
MCS 501 – CLIMATE CHANGE AND ENERGY_Module 1.pptx
RENEWABLE ENERGY
xcel energy 6MSRenewable_Energy_Strat_Xcel_Energy_12052007
Ad

More from Mohamed Abuella (20)

PDF
Mohamed Abuella_Presentation_2023.pdf
PPTX
Mohamed Abuella_Presentation_2023.pptx
PPTX
Vessel Path Identification in Short-Sea Shipping
PDF
Data Analytics for Improving Energy Efficiency in Short-Sea Shipping
PDF
Wind energy analysis for some locations in libya
PDF
Planning and Analysis for Solar Energy in Libya
PPTX
Adjusting post processing approach for very short-term solar power forecasts
PPTX
Short Presentation: Mohamed abuella's Research Highlights
PPTX
Hourly probabilistic solar power forecasts 3v
PDF
Study of NEPLAN Software for Load Flow and Short Faults Analysis تصميم شبكة ت...
PPTX
Mohamed abuella's cloud of key skills & interests
PDF
ISES infographic of Renewables in the Grid
PPTX
A Post-processing Approach for Solar Power Combined Forecasts of Ramp Events
PPTX
Qualifying combined solar power forecasts in ramp events' perspective
PPTX
PV Solar Power Forecasting
PPTX
Forecasting Solar Power Ramp Events Using Machine Learning Classification Tec...
PPTX
Study the Effects of Renewable Resources on Electric Grid Frequency
PPTX
Hourly probabilistic solar power forecasts
PPTX
Random Forest Ensemble of Support Vector Regression for Solar Power Forecasting
PPTX
Study of using particle swarm for optimal power flow
Mohamed Abuella_Presentation_2023.pdf
Mohamed Abuella_Presentation_2023.pptx
Vessel Path Identification in Short-Sea Shipping
Data Analytics for Improving Energy Efficiency in Short-Sea Shipping
Wind energy analysis for some locations in libya
Planning and Analysis for Solar Energy in Libya
Adjusting post processing approach for very short-term solar power forecasts
Short Presentation: Mohamed abuella's Research Highlights
Hourly probabilistic solar power forecasts 3v
Study of NEPLAN Software for Load Flow and Short Faults Analysis تصميم شبكة ت...
Mohamed abuella's cloud of key skills & interests
ISES infographic of Renewables in the Grid
A Post-processing Approach for Solar Power Combined Forecasts of Ramp Events
Qualifying combined solar power forecasts in ramp events' perspective
PV Solar Power Forecasting
Forecasting Solar Power Ramp Events Using Machine Learning Classification Tec...
Study the Effects of Renewable Resources on Electric Grid Frequency
Hourly probabilistic solar power forecasts
Random Forest Ensemble of Support Vector Regression for Solar Power Forecasting
Study of using particle swarm for optimal power flow
Ad

Recently uploaded (20)

PDF
electrical machines course file-anna university
PPT
Programmable Logic Controller PLC and Industrial Automation
PPTX
Micro1New.ppt.pptx the mai themes of micfrobiology
PDF
AIGA 012_04 Cleaning of equipment for oxygen service_reformat Jan 12.pdf
PDF
[jvmmeetup] next-gen integration with apache camel and quarkus.pdf
PDF
UEFA_Embodied_Carbon_Emissions_Football_Infrastructure.pdf
PPTX
Solar energy pdf of gitam songa hemant k
PDF
VTU IOT LAB MANUAL (BCS701) Computer science and Engineering
PPTX
AI-Reporting for Emerging Technologies(BS Computer Engineering)
PDF
Unit1 - AIML Chapter 1 concept and ethics
PDF
MLpara ingenieira CIVIL, meca Y AMBIENTAL
PPTX
Design ,Art Across Digital Realities and eXtended Reality
PDF
Project_Mgmt_Institute_-Marc Marc Marc .pdf
PPTX
Unit IImachinemachinetoolopeartions.pptx
PDF
MACCAFERRY GUIA GAVIONES TERRAPLENES EN ESPAÑOL
PDF
Lesson 3 .pdf
PPTX
BBOC407 BIOLOGY FOR ENGINEERS (CS) - MODULE 1 PART 1.pptx
PPTX
Wireless sensor networks (WSN) SRM unit 2
PDF
Principles of operation, construction, theory, advantages and disadvantages, ...
PDF
Unit I -OPERATING SYSTEMS_SRM_KATTANKULATHUR.pptx.pdf
electrical machines course file-anna university
Programmable Logic Controller PLC and Industrial Automation
Micro1New.ppt.pptx the mai themes of micfrobiology
AIGA 012_04 Cleaning of equipment for oxygen service_reformat Jan 12.pdf
[jvmmeetup] next-gen integration with apache camel and quarkus.pdf
UEFA_Embodied_Carbon_Emissions_Football_Infrastructure.pdf
Solar energy pdf of gitam songa hemant k
VTU IOT LAB MANUAL (BCS701) Computer science and Engineering
AI-Reporting for Emerging Technologies(BS Computer Engineering)
Unit1 - AIML Chapter 1 concept and ethics
MLpara ingenieira CIVIL, meca Y AMBIENTAL
Design ,Art Across Digital Realities and eXtended Reality
Project_Mgmt_Institute_-Marc Marc Marc .pdf
Unit IImachinemachinetoolopeartions.pptx
MACCAFERRY GUIA GAVIONES TERRAPLENES EN ESPAÑOL
Lesson 3 .pdf
BBOC407 BIOLOGY FOR ENGINEERS (CS) - MODULE 1 PART 1.pptx
Wireless sensor networks (WSN) SRM unit 2
Principles of operation, construction, theory, advantages and disadvantages, ...
Unit I -OPERATING SYSTEMS_SRM_KATTANKULATHUR.pptx.pdf

Wind solar energy_modeling_analysis

  • 1. Wind and Solar Energy Resources Modeling and Analysis Technical Presentation By Mohamed Abuella The University of North Carolina at Charlotte August 9th, 2019
  • 3. Four U.S. Locations for Comparison of Renewable Energy Modeling and Analysis Charlotte NC, Boston MA, Boulder CO, Tucson AZ. 3 For Different Locations in the U.S. Data are retrieved from NREL’s Developer Network: https://developer.nrel.gov/ Wind and Solar Energy Resources Modeling and Analysis 8/9/2019
  • 4. Charlotte, NC 4 Boston, MA Boulder, CO Tucson, AZ Time series of wind speed at height 100m (m/s) 𝑃𝑤 = 1 2 𝜌𝐴𝒗 𝟑 Wind Energy Resources Modeling 8/9/2019
  • 5. Charlotte, NC 5 Boston, MA Boulder, CO Tucson, AZ Boxplots of monthly distribution of wind speed Wind Energy Resources Modeling 8/9/2019
  • 6. Charlotte, NC 6 Boston, MA Boulder, CO Tucson, AZ Wind Roses of Wind Speed Distribution of wind direction and speed Wind Energy Resources Modeling 8/9/2019
  • 7. Charlotte, NC 7 Boston, MA Boulder, CO Tucson, AZ Probability density distribution of wind speed Wind Energy Resources Modeling 8/9/2019
  • 8. Charlotte, NC 8 Boston, MA Boulder, CO Tucson, AZ Wind turbine GE 1.5SLE 77m is utilized for modeling The wind power curve for GE 1.5SLE 77m to covert the wind speed to wind power http://www.wind-power-program.com/Downloads/Databasepowercurves(May2017).zip 𝑃𝑤 = 1 2 𝜌𝐴𝑣3 Wind Energy Resources Modeling 8/9/2019
  • 9. Charlotte, NC 9 Boston, MA Boulder, CO Tucson, AZ Probability density distribution of wind power 𝑃𝑤 = 1 2 𝜌𝐴𝑣3Considering other parameters such as air pressure, temperature and density at the given height=100m Wind Energy Resources Modeling 8/9/2019
  • 10. Charlotte, NC 10 Boston, MA Boulder, CO Tucson, AZ Month0 MWh NCF 1 467.945 41.90% 2 584.361 58.00% 3 510.499 45.70% 4 512.191 47.40% 5 420.662 37.70% 6 239.808 22.20% 7 354.663 31.80% 8 285.923 25.60% 9 396.328 36.70% 10 504.488 45.20% 11 471.683 43.70% 12 691.553 62.00% Month MWh NCF 1 387.574 34.70% 2 455.725 45.20% 3 410.236 36.80% 4 456.256 42.20% 5 381.352 34.20% 6 193.475 17.90% 7 230.690 20.70% 8 141.379 12.70% 9 197.738 18.30% 10 310.630 27.80% 11 355.663 32.90% 12 298.279 26.70% Month MWh NCF 1 413.396 37.00% 2 288.217 28.60% 3 382.094 34.20% 4 339.568 31.40% 5 222.077 19.90% 6 187.928 17.40% 7 216.100 19.40% 8 215.737 19.30% 9 268.648 24.90% 10 206.966 18.50% 11 224.898 20.80% 12 312.770 28.00% Month0 MWh NCF 1 262.764 23.50% 2 247.664 24.60% 3 259.804 23.30% 4 378.228 35.00% 5 184.679 16.50% 6 188.630 17.50% 7 111.523 10.00% 8 143.448 12.90% 9 223.078 20.70% 10 258.261 23.10% 11 236.885 21.90% 12 274.958 24.60% Wind Energy Modeling in 2009 Calculating the net capacity factor (NCF) for each month, then over the entire year NCF= 𝑇ℎ𝑒 𝑎𝑐𝑡𝑢𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑇ℎ𝑒 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑒𝑛𝑒𝑟𝑔𝑦 𝑡ℎ𝑎𝑡 𝑐𝑜𝑢𝑙𝑑 ℎ𝑎𝑣𝑒 𝑏𝑒𝑒𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 NCF= 𝑇ℎ𝑒 𝑎𝑐𝑡𝑢𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 (𝑀𝑊ℎ) 𝑇ℎ𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ∗𝑡𝑖𝑚𝑒 (𝑀𝑊ℎ) Wind Energy Resources Modeling 8/9/2019
  • 11. 11 Wind Energy Modeling in 2009 and 2010 2009 MWh NCF Charlotte 3818.9 29.1% Boulder 3278.4 24.9% Boston 5440.1 41.4% Tucson 2769.9 21.1% 2010 MWh NCF Charlotte 3544.6 27.0% Boulder 2676.9 20.4% Boston 6107.7 46.5% Tucson 2969.9 22.6% 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% Charlotte Boulder Boston Tucson NCF Yearly Net Capacity Factor 2009 2010 0 1000 2000 3000 4000 5000 6000 7000 Charlotte Boulder Boston Tucson MWh Yearly Yeild of Wind Energy 2009 2010 Wind Energy Resources Modeling 8/9/2019
  • 12. 128/9/2019 Solar Energy Resources Modeling Charlotte, NC Boston, MA Boulder, CO Tucson, AZ Time series of Global Horizontal Solar Irradiance data (W/m2)
  • 13. 138/9/2019 Solar Energy Resources Modeling Charlotte, NC Boston, MA Boulder, CO Tucson, AZ Boxplots of monthly distribution of Global Horizontal Solar Irradiance (GHI)
  • 14. 14 Time series of components of solar irradiance, GHI, DNI, DHI (W/m2) Solar Energy Resources Modeling 8/9/2019
  • 15. 15 Global Horizontal Irradiance (GHI) at the plane of array (POA) Solar Energy Resources Modeling 8/9/2019
  • 16. 16 Pvlib Toolbox from Sandia and NREL’s SAM package and Weather Data from GFS Global Model https://pvlib-python.readthedocs.io/en/latest/introexamples.html https://pvlib-python.readthedocs.io/en/latest/forecasts.htm To convert the solar irradiance to solar PV power, besides the cloud cover and radiative transfer model, other parameters are considered, such as air temperature at the plane of array, module orientation and efficiency 𝜂 𝑚𝑝𝑝. 𝑃 𝑠𝑜𝑙 ≅ 𝜂 𝑚𝑝𝑝 𝐺𝐻𝐼 𝑃𝑂𝐴 , 𝑇𝑚 𝐺𝐻𝐼 𝑃𝑂𝐴 ∗ 𝐴 Convert GHI at the POA to Solar PV Power PV Module CS5P-220M Manufacturer: Canadian Solar Type: Polycrystalline Cells Power: 220 W (Maximum) Length: 63.1in (1,602mm) Width: 41.8in (1,061mm) Depth: 1.6in (40mm) https://www.solarover.com/panels/cs5p.pdf Solar Energy Resources Modeling 8/9/2019
  • 17. 17 Time series of Solar Power (W), for a solar plant with 15*300 PV modules (220W for each) Solar Energy Resources Modeling 8/9/2019
  • 18. Charlotte, NC 18 Boston, MA Boulder, CO Tucson, AZ Month0 Wh NCF 1 20036.95 12.24% 2 24185.77 16.36% 3 28973.17 17.70% 4 30208.65 19.07% 5 34770.35 21.24% 6 32713.24 20.65% 7 35418.34 21.64% 8 33992.69 20.77% 9 29731.42 18.77% 10 25504.76 15.58% 11 19138.34 12.08% 12 17866.74 10.93% Month Wh NCF 1 24215.85 14.79% 2 23356.93 15.80% 3 32597.21 19.92% 4 34440.42 21.74% 5 34155.32 20.87% 6 34034.79 21.49% 7 33878.82 20.70% 8 32241.97 19.70% 9 29538.82 18.65% 10 32026.31 19.57% 11 24730.09 15.61% 12 23873.06 14.60% Month Wh NCF 1 26432.06 16.15% 2 26847.92 18.16% 3 34451.63 21.05% 4 36840.41 23.26% 5 38157.38 23.31% 6 35819.85 22.61% 7 35061.05 21.42% 8 34979.76 21.37% 9 33776.53 21.32% 10 31482.96 19.23% 11 25915.03 16.36% 12 25576.46 15.65% Month0 Wh NCF 1 32631.67 19.94% 2 31464.61 21.28% 3 38343.02 23.43% 4 41304.64 26.08% 5 41329.6 25.25% 6 38467.5 24.29% 7 35637.61 21.77% 8 36685.47 22.41% 9 36643.06 23.13% 10 38215.38 23.35% 11 35144.2 22.19% 12 32264.5 19.74% Solar Energy Modeling Typical Meteorological Year (TMY) Calculating the net capacity factor (NCF) for each month, then over the entire year NCF= 𝑇ℎ𝑒 𝑎𝑐𝑡𝑢𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑇ℎ𝑒 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑒𝑛𝑒𝑟𝑔𝑦 𝑡ℎ𝑎𝑡 𝑐𝑜𝑢𝑙𝑑 ℎ𝑎𝑣𝑒 𝑏𝑒𝑒𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 NCF= 𝑇ℎ𝑒 𝑎𝑐𝑡𝑢𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 (𝑊ℎ) 𝑇ℎ𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ∗𝑡𝑖𝑚𝑒 (𝑊ℎ) Solar Energy Resources Modeling For 1 PV module (220W, PV Module CS5P-220M) 8/9/2019
  • 19. 19 TMY KWh NCF Charlotte 359.0896 18.63% Boulder 385.341 19.99% Boston 332.5404 17.26% Tucson 438.1313 22.73% Solar Energy Resources Modeling For 1 PV module (220W, PV Module CS5P-220M) Calculating the total energy and net capacity factor, as it is done in the wind energy modeling 0 50 100 150 200 250 300 350 400 450 500 Charlotte Boulder Boston Tucson KWh Yearly Yeild of Solar Energy TMY TMY: Typical Meteorological Year, which means it assumes the same variability of solar output for other years. 0.00% 5.00% 10.00% 15.00% 20.00% 25.00% Charlotte Boulder Boston Tucson Yearly Net Capacity Factor TMY 8/9/2019
  • 20. 20 2009 NCF Wind Energy Solar Energy Charlotte 29.10% 18.63% Boulder 24.90% 19.99% Boston 41.40% 17.26% Tucson 21.10% 22.73% 2010 NCF Wind Energy Solar Energy Charlotte 27.00% 18.63% Boulder 20.40% 19.99% Boston 46.50% 17.26% Tucson 22.60% 22.73% Comparison of NCF for Resources of Wind & Solar Energy Wind and Solar Energy Resources Modeling 0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00% 35.00% 40.00% 45.00% Charlotte Boulder Boston Tucson NCF 2009 Net Capacity Factor Wind Energy Solar Energy 0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00% 35.00% 40.00% 45.00% 50.00% Charlotte Boulder Boston Tucson NCF 2010 Net Capacity Factor Wind Energy Solar Energy 8/9/2019
  • 21. Wind and Solar Energy Resources Modeling 21 Conclusion The performance of wind and solar energy resources depends significantly on their location and weather conditions. Further Work Modeling and evaluate the wind and solar resources backed up by energy storage systems. References 1.https://www.r-bloggers.com/time-series-analysis-with-wind-resource- assessment-in-r/ 2.https://github.com/mhdella/AWEA_WRA_Working_Group/blob/master/Example_Wind_Resource_Assess ment_Using_R.md 3.https://pvlib-python.readthedocs.io/en/latest/introexamples.html 4.Stein, J. S., Holmgren, W. F., Forbess, J., & Hansen, C. W. (2016, June). PVLIB: Open source photovoltaic performance modeling functions for Matlab and Python. In 2016 ieee 43rd photovoltaic specialists conference (pvsc) (pp. 3425-3430). IEEE. 5.Blair, N., Dobos, A. P., Freeman, J., Neises, T., Wagner, M., Ferguson, T., ... & Janzou, S. (2014). System advisor model, sam 2014.1. 14: General description (No. NREL/TP-6A20-61019). National Renewable Energy Lab.(NREL), Golden, CO (United States). 8/9/2019
  • 22. Thanks for Listening Any Question? http://epic.uncc.edu/ Mohamed Abuella https://mohamedabuella.github.io Energy Production and Infrastructure Center University of North Carolina at Charlotte