1.5 Factoring Polynomials
Chapter 1 Prerequisites
Concepts and Objectives
⚫ Objectives for this section:
⚫ Factor the greatest common factor of a polynomial.
⚫ Factor a trinomial.
⚫ Factor by grouping.
⚫ Factor a perfect square trinomial.
⚫ Factor a difference of squares.
⚫ Factor the sum and difference of cubes.
⚫ Factor expressions using fractional or negative
exponents.
Factoring Polynomials
⚫ The process of finding polynomials whose product
equals a given polynomial is called factoring.
⚫ For example, since 4x + 12 = 4(x + 3), both 4 and x + 3 are
called factors of 4x + 12.
⚫ A polynomial that cannot be written as a product of two
polynomials of lower degree is a prime polynomial.
⚫ One nice aspect of this process is that it has a built-in
check: whatever factors you come up with, you should
be able to multiply them and get your starting
expression.
Factoring Out the GCF
Factor out the greatest common factor from each
polynomial:
⚫
⚫
⚫
5 2
9y y
+
2
6 8 12
x t xt t
+ +
( ) ( ) ( )
3 2
14 1 28 1 7 1
m m m
+ − + − +
Factoring Out the GCF
Factor out the greatest common factor from each
polynomial:
⚫ GCF: y2
⚫ GCF: 2t
⚫
GCF: 7m + 1
5 2
9y y
+
2
6 8 12
x t xt t
+ +
( ) ( ) ( )
3 2
14 1 28 1 7 1
m m m
+ − + − +
( )
3
2
9 1
y y +
( )
2
6
2 3 4
x
t x
+ +
( ) ( ) ( )
2
4
7 1 2 1 1 1
m m
m  
+ −
+ − +
 
Factoring Out the GCF (cont.)
We can clean up that last problem just a little more:
( ) ( ) ( )
( ) ( ) ( )
( )
( )( )
 
+ + − + −
 
 
+ + + − + −
 
 
+ + + − − −
 
+ −
2
2
2
2
7 1 2 1 4 1 1
7 1 2 2 1 4 1 1
7 1 2 4 2 4 4 1
7 1 2 3
m m m
m m m m
m m m m
m m
Factoring by Grouping
⚫ When a polynomial has more than three terms, it can
sometimes be factored using factoring by grouping.
⚫ For example, to factor
ax + ay + 6x + 6y,
group the terms so that each group has a common factor.
( ) ( )
( ) ( )
( )( )
6 6 6 6
6
6
ax ay x y ax ay x y
a x y x y
x y a
+ + + = + + +
= + + +
= + +
x + y is the GCF
of the expression
above.
Factoring by Grouping (cont.)
Examples: Factor each polynomial by grouping.
⚫
⚫
2 2
7 3 21
mp m p
+ + +
2 2
2 2
y az z ay
+ − −
Factoring by Grouping (cont.)
Examples: Factor each polynomial by grouping.
⚫
⚫
( ) ( )
( )( )
2 2 2 2
2
7 3 21 7 3 7
7 3
mp m p m p p
p m
+ + + = + + +
= + +
2 2
2 2
y az z ay
+ − −
Factoring by Grouping (cont.)
Examples: Factor each polynomial by grouping.
⚫
⚫
( ) ( )
( )( )
2 2 2 2
2
7 3 21 7 3 7
7 3
mp m p m p p
p m
+ + + = + + +
= + +
( ) ( )
( ) ( )
( )( )
+ − − = − − +
= − + − +
= − − −
= − −
2 2 2 2
2 2
2 2
2
2 2 2 2
2 2
2
2
y az z ay y z ay az
y z ay az
y z a y z
y z a
You can rearrange
the terms to make
grouping easier.
Factoring by Grouping (cont.)
Examples: Factor each polynomial by grouping.
⚫ 3 2
4 2 2 1
x x x
+ − −
Factoring by Grouping (cont.)
Examples: Factor each polynomial by grouping.
⚫ ( ) ( )
( ) ( )
( )( )
3 2 3 2
2
2
4 2 2 1 4 2 2 1
2 2 1 1 2 1
2 1 2 1
x x x x x x
x x x
x x
−
+
+ − − = +
= −
= +
+
+
−
Factoring Trinomials
If you have an expression of the form ax2 +bx + c, you can
use one of the following methods to factor it:
⚫ X-method (a = 1): If a = 1, this is the simplest method to
use. Find two numbers that multiply to c and add up
to b. These two numbers will create your factors.
⚫ Example: Factor x2 ‒ 5x ‒ 14.
‒14
‒7 2
‒5
( )( )
2
5 14 7 2
x x x x
− − = − +
c
b
Factoring Trinomials (cont.)
⚫ Reverse box: If a is greater than 1, you can use the
previous X method to split the middle term (ac goes on
top) and use either grouping or the box method, and
then find the GCF of each column and row.
⚫ Example: Factor
Now, find the GCF of each line.
− −
2
4 5 6
y y
‒24
‒8 3
5
4y2 ‒8y
3y ‒6
ac
b
Factoring Trinomials (cont.)
⚫ Reverse box: If a is greater than 1, you can use the
previous X method to split the middle term (ac goes on
top) and use either grouping or the box method, and
then find the GCF of each column and row.
⚫ Example: Factor − −
2
4 5 6
y y
‒24
‒8 3
5
y ‒2
4y 4y2 ‒8y
3 3y ‒6
( )( )
− − = + −
2
4 5 6 4 3 2
y y y y
Factoring Trinomials (cont.)
⚫ Grouping: This method is about the same as the Reverse
Box, except that it is not in a graphic format.
⚫ Example: Factor 2
2 6
x x
− −
‒12
‒4 3
‒1
( ) ( )
( ) ( )
( )( )
2 2
2
2 6 2 6
2 4 3 6
2 2 3 2
2 2 3
4 3
x x x
x x x
x x
x
x
x
x x
− − = −
= − + −
=
=
+
−
−
− + −
+
Factoring Trinomials (cont.)
⚫ Mustang: This method is named after the mnemonic
“My Father Drives A Red Mustang”, where the letters
stand for:
M Multiply a and c.
F Find factors using the X method. Set up ( ).
DA Divide the factors by a if necessary.
R Reduce any fractions.
M Move any denominators to the front of the variable.
Factoring Trinomials (cont.)
⚫ Example: Factor 2
5 7 6
x x
+ −
M Multiply (5)(‒6) = ‒30
F Find factors:
DA Divide by a
R Reduce fractions
M Move the denominator
‒30
10 ‒3
7
( )( )
10 3
x x
+ −
10 3
5 5
x x
  
+ −
  
  
( )
3
2
5
x x
 
+ −
 
 
( )( )
2 5 3
x x
+ −
Perfect Square Trinomials
⚫ We can use the reverse of the special patterns we saw
last class to quickly factor perfect square trinomials if
we can recognize the pattern.
⚫ If you encounter a trinomial which fits this pattern, you
can quickly factor it by taking the square roots of the
first and last term.
⚫ Make sure to verify that the middle term is !
( )
2
2 2
2
a ab b a b
 + = 
2ab

Perfect Square Trinomials
⚫ Example: Factor 9x2 ‒ 12x + 4
Perfect Square Trinomials
⚫ Example: Factor 9x2 ‒ 12x + 4
The first thing to notice is that the first and last terms
are perfect squares, and that the middle term is two
times the product of the square roots.
To factor this, put the two square roots together, along
with whatever the sign is between the first and second
term.
2
9 3 and 4 2
x x
= = ( )( )
2 3 4 12
x x
=
( )
2
2
9 12 4 3 2
x x x
+ =
− −
Perfect Square Trinomials
Examples: Factor the following
⚫
⚫
⚫
2 2
16 40 25
p pq q
− +
2 2
36 84 49
x y xy
+ +
2
81 90 25
a a
− +
Perfect Square Trinomials
Examples: Factor the following
⚫
⚫
⚫
( ) ( )( ) ( )
( )
2 2
2 2
2
16 40 25 4 2 4 5 5
4 5
p pq q p p q q
p q
− + = − +
= −
( ) ( )( )
( )
2
2 2 2
2
36 84 49 6 2 6 7 7
6 7
x y xy xy xy
xy
+ + = + +
= +
( ) ( )( )
( )
2
2 2
2
81 90 25 9 2 9 5 5
9 5
a a a a
a
− + = − +
= −
Factoring Binomials
⚫ If you are asked to factor a binomial (2 terms), check
first for common factors, then check to see if it fits one of
the following patterns:
⚫ Note: There is no factoring pattern for a sum of
squares (a2 + b2) in the real number system.
Difference of Squares a2 ‒ b2 = a + ba ‒ b
Sum/Diff. of Cubes ( )( )
3 3 2 2
a b a b a ab b
 =  +
Factoring Binomials (cont.)
Examples
⚫ Factor
⚫ Factor
⚫ Factor
2
4 81
x −
3
27
x −
3
3 24
x +
( )
( )( )
2 2
2 9
2 9 2 9
x
x x
= −
= − +
( )( )
3 3
2
3
3 3 9
x
x x x
=
+
−
= − +
( ) ( )
( )( )
3 3 3
2
3 8 3 2
3 2 2 4
x x
x x x
= + = +
= + − +
Factoring Binomials (cont.)
EVERY TIME YOU DO THIS:
A KITTEN DIES
( )
2 2 2
x y x y
+ = +
Remember:
Factoring Rational Exponents
⚫ When factoring expressions with negative or rational
exponents, factor out the smallest power of the variable
or variable expression.
⚫ Example:
⚫
⚫
2 3
12 8
x x
− −
−
1/2 3/2
4 3
m m
+
Factoring Rational Exponents
⚫ When factoring expressions with negative or rational
exponents, just as before, factor out the least power of
the variable or variable expression.
⚫ Example:
⚫
⚫
2 3
12 8
x x
− −
−
1/2 3/2
4 3
m m
+
( ) ( )
( )
2 3 3 3
3
4 3 2
x x x
− − − − − −
−
= − ( )
3
4 3 2
x x
−
= −
Factoring Rational Exponents
⚫ When factoring expressions with negative or rational
exponents, factor out the smallest power of the variable
or variable expression.
⚫ Examples:
⚫
⚫
2 3
12 8
x x
− −
−
1/2 3/2
4 3
m m
+
( ) ( )
( )
2 3 3 3
3
4 3 2
x x x
− − − − − −
−
= − ( )
3
4 3 2
x x
−
= −
( )
1/2 1/2 1/2 3/2 1/2
4 3
m m m
− −
= + ( )
1/2
4 3
m m
= +
Classwork
⚫ College Algebra 2e
⚫ 1.5: 4-14 (even); 1.4: 18-36 (even); 1.3: 52-66 (even)
⚫ 1.5 Classwork Check
⚫ Quiz 1.4

More Related Content

PPT
6.7 quadratic inequalities
PPTX
Geometric sequences
PPT
Completing the Square
PPT
Multiplying polynomials
PPT
Factoring by grouping ppt
PPT
POLYNOMIALS
PPTX
First Quarter - Chapter 2 - Quadratic Equation
PPT
one step equations
6.7 quadratic inequalities
Geometric sequences
Completing the Square
Multiplying polynomials
Factoring by grouping ppt
POLYNOMIALS
First Quarter - Chapter 2 - Quadratic Equation
one step equations

What's hot (20)

PPTX
3 2 solving systems of equations (elimination method)
PDF
2.4 Linear Functions
PPTX
Graphing quadratic equations
PPT
Solving Systems of Linear Inequalities
PPTX
1 2 solving multi-step equations
PDF
Algebraic Expression
PPTX
Geometric Sequence
PPTX
Multiplying-and-dividing-polynomials.pptx
PPTX
Addition and subtraction of rational expression
PPTX
7.7 Solving Radical Equations
PPTX
Factoring GCF and Grouping
ODP
Simplifying exponents
PPTX
5 4 function notation
PPT
Systems of Equations by Elimination
PDF
Multiplying polynomials
PPTX
Quadratic equations
PPTX
Exponential Functions
PPTX
Multiplication of polynomials
PPT
Finding Slope Given A Graph And Two Points
PPT
Solve Systems By Elimination
3 2 solving systems of equations (elimination method)
2.4 Linear Functions
Graphing quadratic equations
Solving Systems of Linear Inequalities
1 2 solving multi-step equations
Algebraic Expression
Geometric Sequence
Multiplying-and-dividing-polynomials.pptx
Addition and subtraction of rational expression
7.7 Solving Radical Equations
Factoring GCF and Grouping
Simplifying exponents
5 4 function notation
Systems of Equations by Elimination
Multiplying polynomials
Quadratic equations
Exponential Functions
Multiplication of polynomials
Finding Slope Given A Graph And Two Points
Solve Systems By Elimination
Ad

Similar to 1.5 Factoring Polynomials (20)

PDF
0.4 Factoring Polynomials
PDF
1.5 Quadratic Equations (Review)
PDF
1.5 Quadratic Equations.pdf
PDF
9.6 Binomial Theorem
PDF
0.3 Factoring Polynomials
PDF
0.2 Exponents and Polynomials
PDF
0.3 Polynomials
PDF
1.6 Other Types of Equations
PDF
3.2 Synthetic Division
PDF
1.6 Rational Expressions
PDF
Factoring
PDF
0.6 Rational Exponents
PDF
5.4 Dividing Polynomials
PDF
1.6 Other Types of Equations
PDF
5.5 Zeros of Polynomial Functions
PDF
2.6 Other Types of Equations
PDF
0.5 Rational Expressions
PDF
1.4 Quadratic Equations
PDF
1.6 Rational and Radical Equations
PDF
0.7 Radical Expressions
0.4 Factoring Polynomials
1.5 Quadratic Equations (Review)
1.5 Quadratic Equations.pdf
9.6 Binomial Theorem
0.3 Factoring Polynomials
0.2 Exponents and Polynomials
0.3 Polynomials
1.6 Other Types of Equations
3.2 Synthetic Division
1.6 Rational Expressions
Factoring
0.6 Rational Exponents
5.4 Dividing Polynomials
1.6 Other Types of Equations
5.5 Zeros of Polynomial Functions
2.6 Other Types of Equations
0.5 Rational Expressions
1.4 Quadratic Equations
1.6 Rational and Radical Equations
0.7 Radical Expressions
Ad

More from smiller5 (20)

PDF
T7.3 The Unit Circle and Angles Presentation
PDF
T7.2 Right Triangle Trigonometry Presentation
PDF
1.3 Factoring Quadratics (Presentation).pdf
PPTX
1.3 Factoring Polynomial and Quadratic Expressions
PDF
Trigonometry 7.1 Angles (Degrees and Radians)
PDF
6.7 Exponential and Logarithmic Models
PDF
4.5 Special Segments in Triangles
PDF
1.4 Conditional Statements
PDF
1.3 Distance and Midpoint Formulas
PDF
3.2 Graphs of Functions
PDF
3.2 Graphs of Functions
PDF
3.1 Functions
PDF
2.5 Transformations of Functions
PDF
2.2 More on Functions and Their Graphs
PDF
2.1 Basics of Functions and Their Graphs
PDF
13.3 Venn Diagrams & Two-Way Tables
PDF
13.2 Independent & Dependent Events
PDF
9.5 Counting Principles
PDF
13.1 Geometric Probability
PDF
9.4 Series and Their Notations
T7.3 The Unit Circle and Angles Presentation
T7.2 Right Triangle Trigonometry Presentation
1.3 Factoring Quadratics (Presentation).pdf
1.3 Factoring Polynomial and Quadratic Expressions
Trigonometry 7.1 Angles (Degrees and Radians)
6.7 Exponential and Logarithmic Models
4.5 Special Segments in Triangles
1.4 Conditional Statements
1.3 Distance and Midpoint Formulas
3.2 Graphs of Functions
3.2 Graphs of Functions
3.1 Functions
2.5 Transformations of Functions
2.2 More on Functions and Their Graphs
2.1 Basics of Functions and Their Graphs
13.3 Venn Diagrams & Two-Way Tables
13.2 Independent & Dependent Events
9.5 Counting Principles
13.1 Geometric Probability
9.4 Series and Their Notations

Recently uploaded (20)

PPTX
Computer Architecture Input Output Memory.pptx
PDF
Complications of Minimal Access-Surgery.pdf
PDF
Hazard Identification & Risk Assessment .pdf
PDF
semiconductor packaging in vlsi design fab
PDF
CRP102_SAGALASSOS_Final_Projects_2025.pdf
DOCX
Cambridge-Practice-Tests-for-IELTS-12.docx
PPTX
What’s under the hood: Parsing standardized learning content for AI
PPTX
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
PPTX
Core Concepts of Personalized Learning and Virtual Learning Environments
PDF
Journal of Dental Science - UDMY (2020).pdf
PDF
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
PDF
LIFE & LIVING TRILOGY - PART - (2) THE PURPOSE OF LIFE.pdf
PPTX
Unit 4 Computer Architecture Multicore Processor.pptx
PPTX
A powerpoint presentation on the Revised K-10 Science Shaping Paper
PPTX
Share_Module_2_Power_conflict_and_negotiation.pptx
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
PDF
FORM 1 BIOLOGY MIND MAPS and their schemes
PDF
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
PDF
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
Computer Architecture Input Output Memory.pptx
Complications of Minimal Access-Surgery.pdf
Hazard Identification & Risk Assessment .pdf
semiconductor packaging in vlsi design fab
CRP102_SAGALASSOS_Final_Projects_2025.pdf
Cambridge-Practice-Tests-for-IELTS-12.docx
What’s under the hood: Parsing standardized learning content for AI
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
Core Concepts of Personalized Learning and Virtual Learning Environments
Journal of Dental Science - UDMY (2020).pdf
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
LIFE & LIVING TRILOGY - PART - (2) THE PURPOSE OF LIFE.pdf
Unit 4 Computer Architecture Multicore Processor.pptx
A powerpoint presentation on the Revised K-10 Science Shaping Paper
Share_Module_2_Power_conflict_and_negotiation.pptx
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
FORM 1 BIOLOGY MIND MAPS and their schemes
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
MBA _Common_ 2nd year Syllabus _2021-22_.pdf

1.5 Factoring Polynomials

  • 2. Concepts and Objectives ⚫ Objectives for this section: ⚫ Factor the greatest common factor of a polynomial. ⚫ Factor a trinomial. ⚫ Factor by grouping. ⚫ Factor a perfect square trinomial. ⚫ Factor a difference of squares. ⚫ Factor the sum and difference of cubes. ⚫ Factor expressions using fractional or negative exponents.
  • 3. Factoring Polynomials ⚫ The process of finding polynomials whose product equals a given polynomial is called factoring. ⚫ For example, since 4x + 12 = 4(x + 3), both 4 and x + 3 are called factors of 4x + 12. ⚫ A polynomial that cannot be written as a product of two polynomials of lower degree is a prime polynomial. ⚫ One nice aspect of this process is that it has a built-in check: whatever factors you come up with, you should be able to multiply them and get your starting expression.
  • 4. Factoring Out the GCF Factor out the greatest common factor from each polynomial: ⚫ ⚫ ⚫ 5 2 9y y + 2 6 8 12 x t xt t + + ( ) ( ) ( ) 3 2 14 1 28 1 7 1 m m m + − + − +
  • 5. Factoring Out the GCF Factor out the greatest common factor from each polynomial: ⚫ GCF: y2 ⚫ GCF: 2t ⚫ GCF: 7m + 1 5 2 9y y + 2 6 8 12 x t xt t + + ( ) ( ) ( ) 3 2 14 1 28 1 7 1 m m m + − + − + ( ) 3 2 9 1 y y + ( ) 2 6 2 3 4 x t x + + ( ) ( ) ( ) 2 4 7 1 2 1 1 1 m m m   + − + − +  
  • 6. Factoring Out the GCF (cont.) We can clean up that last problem just a little more: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )   + + − + −     + + + − + −     + + + − − −   + − 2 2 2 2 7 1 2 1 4 1 1 7 1 2 2 1 4 1 1 7 1 2 4 2 4 4 1 7 1 2 3 m m m m m m m m m m m m m
  • 7. Factoring by Grouping ⚫ When a polynomial has more than three terms, it can sometimes be factored using factoring by grouping. ⚫ For example, to factor ax + ay + 6x + 6y, group the terms so that each group has a common factor. ( ) ( ) ( ) ( ) ( )( ) 6 6 6 6 6 6 ax ay x y ax ay x y a x y x y x y a + + + = + + + = + + + = + + x + y is the GCF of the expression above.
  • 8. Factoring by Grouping (cont.) Examples: Factor each polynomial by grouping. ⚫ ⚫ 2 2 7 3 21 mp m p + + + 2 2 2 2 y az z ay + − −
  • 9. Factoring by Grouping (cont.) Examples: Factor each polynomial by grouping. ⚫ ⚫ ( ) ( ) ( )( ) 2 2 2 2 2 7 3 21 7 3 7 7 3 mp m p m p p p m + + + = + + + = + + 2 2 2 2 y az z ay + − −
  • 10. Factoring by Grouping (cont.) Examples: Factor each polynomial by grouping. ⚫ ⚫ ( ) ( ) ( )( ) 2 2 2 2 2 7 3 21 7 3 7 7 3 mp m p m p p p m + + + = + + + = + + ( ) ( ) ( ) ( ) ( )( ) + − − = − − + = − + − + = − − − = − − 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 y az z ay y z ay az y z ay az y z a y z y z a You can rearrange the terms to make grouping easier.
  • 11. Factoring by Grouping (cont.) Examples: Factor each polynomial by grouping. ⚫ 3 2 4 2 2 1 x x x + − −
  • 12. Factoring by Grouping (cont.) Examples: Factor each polynomial by grouping. ⚫ ( ) ( ) ( ) ( ) ( )( ) 3 2 3 2 2 2 4 2 2 1 4 2 2 1 2 2 1 1 2 1 2 1 2 1 x x x x x x x x x x x − + + − − = + = − = + + + −
  • 13. Factoring Trinomials If you have an expression of the form ax2 +bx + c, you can use one of the following methods to factor it: ⚫ X-method (a = 1): If a = 1, this is the simplest method to use. Find two numbers that multiply to c and add up to b. These two numbers will create your factors. ⚫ Example: Factor x2 ‒ 5x ‒ 14. ‒14 ‒7 2 ‒5 ( )( ) 2 5 14 7 2 x x x x − − = − + c b
  • 14. Factoring Trinomials (cont.) ⚫ Reverse box: If a is greater than 1, you can use the previous X method to split the middle term (ac goes on top) and use either grouping or the box method, and then find the GCF of each column and row. ⚫ Example: Factor Now, find the GCF of each line. − − 2 4 5 6 y y ‒24 ‒8 3 5 4y2 ‒8y 3y ‒6 ac b
  • 15. Factoring Trinomials (cont.) ⚫ Reverse box: If a is greater than 1, you can use the previous X method to split the middle term (ac goes on top) and use either grouping or the box method, and then find the GCF of each column and row. ⚫ Example: Factor − − 2 4 5 6 y y ‒24 ‒8 3 5 y ‒2 4y 4y2 ‒8y 3 3y ‒6 ( )( ) − − = + − 2 4 5 6 4 3 2 y y y y
  • 16. Factoring Trinomials (cont.) ⚫ Grouping: This method is about the same as the Reverse Box, except that it is not in a graphic format. ⚫ Example: Factor 2 2 6 x x − − ‒12 ‒4 3 ‒1 ( ) ( ) ( ) ( ) ( )( ) 2 2 2 2 6 2 6 2 4 3 6 2 2 3 2 2 2 3 4 3 x x x x x x x x x x x x x − − = − = − + − = = + − − − + − +
  • 17. Factoring Trinomials (cont.) ⚫ Mustang: This method is named after the mnemonic “My Father Drives A Red Mustang”, where the letters stand for: M Multiply a and c. F Find factors using the X method. Set up ( ). DA Divide the factors by a if necessary. R Reduce any fractions. M Move any denominators to the front of the variable.
  • 18. Factoring Trinomials (cont.) ⚫ Example: Factor 2 5 7 6 x x + − M Multiply (5)(‒6) = ‒30 F Find factors: DA Divide by a R Reduce fractions M Move the denominator ‒30 10 ‒3 7 ( )( ) 10 3 x x + − 10 3 5 5 x x    + −       ( ) 3 2 5 x x   + −     ( )( ) 2 5 3 x x + −
  • 19. Perfect Square Trinomials ⚫ We can use the reverse of the special patterns we saw last class to quickly factor perfect square trinomials if we can recognize the pattern. ⚫ If you encounter a trinomial which fits this pattern, you can quickly factor it by taking the square roots of the first and last term. ⚫ Make sure to verify that the middle term is ! ( ) 2 2 2 2 a ab b a b  + =  2ab 
  • 20. Perfect Square Trinomials ⚫ Example: Factor 9x2 ‒ 12x + 4
  • 21. Perfect Square Trinomials ⚫ Example: Factor 9x2 ‒ 12x + 4 The first thing to notice is that the first and last terms are perfect squares, and that the middle term is two times the product of the square roots. To factor this, put the two square roots together, along with whatever the sign is between the first and second term. 2 9 3 and 4 2 x x = = ( )( ) 2 3 4 12 x x = ( ) 2 2 9 12 4 3 2 x x x + = − −
  • 22. Perfect Square Trinomials Examples: Factor the following ⚫ ⚫ ⚫ 2 2 16 40 25 p pq q − + 2 2 36 84 49 x y xy + + 2 81 90 25 a a − +
  • 23. Perfect Square Trinomials Examples: Factor the following ⚫ ⚫ ⚫ ( ) ( )( ) ( ) ( ) 2 2 2 2 2 16 40 25 4 2 4 5 5 4 5 p pq q p p q q p q − + = − + = − ( ) ( )( ) ( ) 2 2 2 2 2 36 84 49 6 2 6 7 7 6 7 x y xy xy xy xy + + = + + = + ( ) ( )( ) ( ) 2 2 2 2 81 90 25 9 2 9 5 5 9 5 a a a a a − + = − + = −
  • 24. Factoring Binomials ⚫ If you are asked to factor a binomial (2 terms), check first for common factors, then check to see if it fits one of the following patterns: ⚫ Note: There is no factoring pattern for a sum of squares (a2 + b2) in the real number system. Difference of Squares a2 ‒ b2 = a + ba ‒ b Sum/Diff. of Cubes ( )( ) 3 3 2 2 a b a b a ab b  =  +
  • 25. Factoring Binomials (cont.) Examples ⚫ Factor ⚫ Factor ⚫ Factor 2 4 81 x − 3 27 x − 3 3 24 x + ( ) ( )( ) 2 2 2 9 2 9 2 9 x x x = − = − + ( )( ) 3 3 2 3 3 3 9 x x x x = + − = − + ( ) ( ) ( )( ) 3 3 3 2 3 8 3 2 3 2 2 4 x x x x x = + = + = + − +
  • 26. Factoring Binomials (cont.) EVERY TIME YOU DO THIS: A KITTEN DIES ( ) 2 2 2 x y x y + = + Remember:
  • 27. Factoring Rational Exponents ⚫ When factoring expressions with negative or rational exponents, factor out the smallest power of the variable or variable expression. ⚫ Example: ⚫ ⚫ 2 3 12 8 x x − − − 1/2 3/2 4 3 m m +
  • 28. Factoring Rational Exponents ⚫ When factoring expressions with negative or rational exponents, just as before, factor out the least power of the variable or variable expression. ⚫ Example: ⚫ ⚫ 2 3 12 8 x x − − − 1/2 3/2 4 3 m m + ( ) ( ) ( ) 2 3 3 3 3 4 3 2 x x x − − − − − − − = − ( ) 3 4 3 2 x x − = −
  • 29. Factoring Rational Exponents ⚫ When factoring expressions with negative or rational exponents, factor out the smallest power of the variable or variable expression. ⚫ Examples: ⚫ ⚫ 2 3 12 8 x x − − − 1/2 3/2 4 3 m m + ( ) ( ) ( ) 2 3 3 3 3 4 3 2 x x x − − − − − − − = − ( ) 3 4 3 2 x x − = − ( ) 1/2 1/2 1/2 3/2 1/2 4 3 m m m − − = + ( ) 1/2 4 3 m m = +
  • 30. Classwork ⚫ College Algebra 2e ⚫ 1.5: 4-14 (even); 1.4: 18-36 (even); 1.3: 52-66 (even) ⚫ 1.5 Classwork Check ⚫ Quiz 1.4