ME 6604 – GAS DYNAMICS AND JET PROPULSION
UNIT – III SHOCK WAVES
Mrs. N. PREMALATHA
ASSOCIATE PROFESSOR
DEPARTMENT OF MECHANICAL ENGG
Significance of Compressible Flows
• Isentropic Flow
a. Entropy remains constant
b. All the stagnation parameters remain constant
• Fanno Flow
a. Entropy changes (Non-isentropic process)
b. Stagnation temperature remains constant
• Rayleigh Flow
a. Entropy changes (Non-isentropic process)
b. Stagnation temperature changes
• Flow Through Shock Waves
a. Entropy increases (Non-isentropic process)
b. Stagnation temperature constant
Note: Isentropic flow tables are used for
All the flows. How?
Difference between Normal and Oblique Shock Waves
Normal Shock Wave Oblique Shock Wave
Occurs in supersonic flow
(M1 >1)
Occurs in supersonic flow
(M1 >1, No difference)
Normal to the Flow direction Inclined at some other angle
Flow direction does not
change (Flow Deflection
angle = 0)
Flow direction changes (Flow
Deflection angle  0)
The downstream of the shock
wave flow is always subsonic
(M2 <1)
The downstream of the shock
wave flow may be subsonic
or supersonic (M2 <1 or M2
> 1)
Shock strength is high Shock strength is low
Applications of Shock Waves
– Supersonic flow over aerodynamic bodies-
Supersonic airfoils, wings, fuselage and other
parts of airplanes
• Supersonic flow through engine components-
Engine intake, Compressors, combustion chambers,
Nozzle
• Propellers running at high speeds
Supersonic Flow Turning
• For normal shocks, flow is perpendicular to shock
– no change in flow direction
• How does supersonic flow change direction,
i.e., make a turn
– either slow to subsonic ahead of turn (can
then make gradual turn) =bow shock
M1 M2
M1>1
M1>1
– go through non-normal wave with sudden
angle change , i.e., oblique shock (also
expansions: see later)
• Can have straight/curved, 2-d/3-d oblique shocks
– will examine straight, 2-d oblique shocks
Oblique Shock Waves
• Mach wave
– consider infinitely thin body M1>1

• Oblique shock
– consider finite-sized wedge,
half-angle, 
M1>1

– no flow turn required

 1
1
M/1sin 
– infinitessimal wave

– flow must undergo compression
– if attached shock
 oblique shock at angle 
– similar for concave corner

M1>1

Equations of Motion
• Governing equations
– same approach as for normal shocks
– use conservation equations and state equations
• Conservation Equations
– mass, energy and momentum
– this time 2 momentum equations - 2 velocity
components for a 2-d oblique shock
• Assumptions
– steady flow (stationary shock), inviscid except
inside shock, adiabatic, no work but flow work
Control Volume
• Pick control volume along
shock
p1, h1,
T1, 1
v1
 
p2, h2,
T2, 2
v2

-
• Divide velocity into two
components
– one tangent to shock, vt
– one normal to shock, vn
• Angles from geometry
v1n
v2n
v1n
v2nAn
At
p1
p2
1 2
v1t v2t
v1t v2t
v1t
v2t
– v1n= v1sin; v1t=v1cos
– v2n= v2sin(-); v2t=v2cos(-)
– M1n= M1sin; M1t=M1cos
– M2n= M2sin(-); M2t=M2cos(-)
Conservation Equations
• Mass
v1n
v2nAn
At
p1
p2
1 2
v1t v2t
v1t
v2t
  Adnv0 rel
CS

 
2
A
v
2
A
vAv
2
A
v
2
A
vAv
t
t22
t
t11nn22
t
t22
t
t11nn11


• Momentum   
CS
rel
CS
AdnvvAdnp

tangent        nn22t2nn11t1
t
21
t
21 AvvAvv
2
A
pp
2
A
pp 
t2t1 vv 
normal    nn22n2nn11n1n2n1 AvvAvvApAp 
n22n11 vv  (1)
2
n22
2
n1121 vvpp  (2)
Conservation Equations (con’t)
• Energy
v1n
v2nAn
At
p1
p2
1 2
v1t v2t
v1t
v2t


















2
v
hAv
2
v
hAv
2
2
2nn22
2
1
1nn11
2
v
2
v
h
2
v
2
v
h
2
t2
2
n2
2
2
t1
2
n1
1 
2
v
h
2
v
h
2
n2
2
2
n1
1  (3)
• Eq’s. (1)-(3) are same equations used to characterize
normal shocks ( with vnv)
• So oblique shock acts like normal shock in direction
normal to wave
– vt constant, but Mt1Mt2 
11t
22t
1t
2t
av
av
M
M
(4)2
1
1t
2t
T
T
M
M

1
Oblique Shock Relations
• To find conditions across
shock, use M relations from
normal shocks,
• but replace
M1  M1 sin
M2  M2 sin(-)
• Mach Number
  1sinM
1
2
1
2
sinMsinM 22
1
22
1
22
2 
















1M
1
2
1
2
MM 2
1
2
1
2
2 















from
p1, h1,
T1, 1
v1
 
p2, h2,
T2, 2
v2

-
v1n
v2n
v1t v2t
(5)
Oblique Shock Relations (con’t)
• Static Properties
p1, h1,
T1, 1
v1
 
p2, h2,
T2, 2
v2

-
v1n
v2n
v1t v2t
(6)1
1
sinM
1
2
p
p 22
1
1
2






(from pressure ratio of NS wave)
(7)
 
  2sinM1
sinM1
v
v
22
1
22
1
1
2
n2
n1






(from density ratio of NS wave)
   121sinM
1sinM
1
2
sinM
2
1
1
T
T
222
1
22
1
22
1
1
2




















(8)
(from temperature ratio of NS wave)
Oblique Shock Relations (con’t)
• Stagnation Properties
1o2o TT 
To (from energy conservation)
   12
1
211o2o ppTTpp 































1
1
22
1
1
22
1
22
1
1o
2o
1
1
sinM
1
2
sinM
2
1
1
sinM
2
1
p
p
(9)
Use of Shock Tables
• Since just replacing
M1  M1sin
M2  M2sin(-)
– can also use normal
shock tables
– use M1'=M1sin to look up property ratios
– M2= M2'/sin(-), with M2' from normal shock tables
• Warning
– do not use p1/po2 from tables
– only gives po2 associated with v2n, not v2t
p1, h1,
T1, 1
v1
 
p2, h2,
T2, 2
v2

-
v1n
v2n
v1t v2t
Example #1
• Given: Uniform Mach 1.5 air
flow (p=50 kPa, T=345K)
approaching sharp concave
corner. Oblique shock produced
with shock angle of 60°
• Find:
1. To2
2. p2
3.  (turning angle)
• Assume: =1.4, steady, adiabatic, no work, inviscid except
for shock,….
=60°
M1=1.5
T1=345K
p1=50kPa

M2
Example #1 (con’t)• Analysis:
Determination of To
30.160sin5.1sinMM 1n1  
191.1
805.1
786.0)(
12
12
2



TT
pp
MTableNS n
– calculate normal component
   K5005.12.01K345
M
2
1
1TTT
2
2
111o2o






 

Determination of p2
    kPa3.90kPa50805.1pppp 1122 
Determination of 



2.11
191.160cos5.1
786.0
tan60 5.0
1







 

  t2n2 MMtan     211n221t1n2 TTcosMMTTMM 

v1t
v1
v1n
-
v2
v2n
v2t
  104.1sinMM n22 NOTE: Supersonic flow okay after oblique shock
=60°
M1=1.5
T1=345K
p1=50kPa

M2
Wave/Shock Angle
• Generally, wave angle  is not
given, rather know turning
angle 
• Find relationship between M1,
, and 
  
  22cosM
1sinMtan2
tan 2
1
22
1



 
v2
-
v2n
v1

v1nv1t
v2t
 
  2sinM1
sinM1
v
v
22
1
22
1
n2
n1



(from relation between V1n and V2n and Vel triangle)
 


tanv
tanv
t2
t1
1
(10)
Oblique Solution Summary
• If given M1 and turning angle, 
1. Find  from (iteration) or use oblique shock charts
2. Calculate M1n=M1sin
3. Use normal shock tables or Mach relations
4. Get M2 from M2=M2n/sin(-)
M1

M2
Example #2
• Given: Uniform Mach 2.4, cool,
nitrogen flow passing over 2-d
wedge with 16° half-angle.
• Find:
, p2/p1 , T2/T1 , po2/po1 , M2
• Assume: =1.4, steady, adiabatic, no work, inviscid except
for shock,….
M1=2.4 
M2
Example #2 (con’t)
• Analysis:
Determination of 
52.14.39sin4.2sinMM 1n1  
9227.0;335.1;535.2;6935.0)1.( 1212122  oon ppTTppMNSTable
– use shock relations calculate normal component
  75.1sinMM n22  Supersonic after shock
  
  22cos4.14.2
1sin4.2tan2
16tan 2
22



=16°M1=2.4 
M2
iterate 
4.39
Example #2 (con’t)
• Analysis (con’t):
38.21.82sin4.2sinMM 1n1  
5499.0;018.2;425.6;5256.0)( 1212122  oon ppTTppMNStable
– use shock relations calculate normal component
  575.0sinMM n22 
=16°M1=2.4 
M2
– a second solution for 
  
  22cos4.14.2
1sin4.2tan2
16tan 2
22



in addition to 39.4 
1.82
• Eqn generally has 2 solutions for : Strong and Weak oblique shocks
Now subsonic after shock
previous solution 2.535 1.335 0.9227
1.75
Strong and Weak Oblique Shocks
• As we have seen, it is possible to get two
solutions to equation (10)
– 2 possible values of  for given (,M1)
– e.g.,
      22cosM1sinMtan2tan 2
1
22
1 
M1=2.4 39.4°
M2=1.75
=16°
M1=2.4 82.1°
M2=0.575
=16°
• Examine graphical solution
Graphical Solution
• Weak shocks
–smaller 
–min=
0
10
20
30
40
50
60
70
80
90
0 10 20 30 40 50
 (deg)
(deg)
0
10
20
30
40
50
60
70
80
90
M1=
1.25
1.5
2 2.5 3
5
10
100
=1.4M2<1
M2>1
Strong
Weak
=sin-1(1/M1)
– usually
M2>1
• Strong shocks
– max=90°
(normal shock)
– always M2<1
• Both for =0
– no turn for
normal shock or
Mach wave
Which Solution Will Occur?
• Depends on upstream versus downstream
pressure
– e.g., back pressure
– p2/p1 large for strong shock
small for weak shock
• Internal Flow
– can have p2 much higher
or close to p1
M>1
p1
pb,high
M>1
p1
pb,low
• External Flow
– downstream pressure
usually close to upstream
p (both near patm)
M>1
patm
patm
Maximum Turning Angle
• Given M1,
no straight oblique
shock solution for
>max(M)
0
10
20
30
40
50
60
70
80
90
0 10 20 30 40 50
 (deg)
(deg)
0
10
20
30
40
50
60
70
80
90
M1=
1.25
1.5
2 2.5 3
5
10
100
=1.4
max(M=3)~34°
• Given ,
no solution for
M1<M1,min
• Given fluid (),
no solution for any
M1 beyond max
e.g., ~45.5° (=1.4)
max()
Detached Shock
• What does flow look like when no straight
oblique shock solution exists?
– detached shock/bow shock, sits ahead of
body/turn
M1>1
>max
bow shock can
cover whole
range of
oblique shocks
(normal to
Mach wave)
– normal shock at centerline (flow subsonic to negotiate
turn); curves away to weaker shock
asymptotes to Mach wave
M2<1
M2>1
M1>1 >ma
x
CRITICAL FLOW AND SHOCK WAVES
0.1 DivergenceDragCR MM
MCR
• Sharp increase in cd is combined effect of shock waves and flow separation
• Freestream Mach number at which cd begins to increase rapidly called Drag-
Divergence Mach number

More Related Content

PPTX
Equation of continuity
PPTX
Brahmos cruise missile by kuldeep
PPTX
GAS DYNAMICS AND JET PROPULSION
PDF
Residual stress measurement techniques
PPTX
Productivity
PDF
Highway notes (planning, alignment, & geometric design )
PPT
Rapid Prototyping
PPTX
Με βάρκα και σωσίβιο 1. Φύλλα εργασίας και εποπτικό υλικό για την α΄ δημοτικο...
Equation of continuity
Brahmos cruise missile by kuldeep
GAS DYNAMICS AND JET PROPULSION
Residual stress measurement techniques
Productivity
Highway notes (planning, alignment, & geometric design )
Rapid Prototyping
Με βάρκα και σωσίβιο 1. Φύλλα εργασίας και εποπτικό υλικό για την α΄ δημοτικο...

What's hot (20)

PPTX
PPTX
Gas dynamics and jet propulsion – presentationof problemsanswers
PPTX
Critical speed of shaft
PDF
Chapter 3. velocity analysis (IC,GRAPHICAL AND RELATIVE VELOCITY METHOD)
PPTX
Ramjet engines
PPTX
Aircraft refrigeration system (air cooling system)
PPT
Dynamometers by abhil ash
PPTX
Gas turbine 1
PPTX
Gear design
PPTX
Axial Flow Compressor.
PPTX
Velocity Triangle for Moving Blade of an impulse Turbine
PPTX
Types of Gears
PDF
DYNAMICS OF MACHINES UNIT-1 BY Mr.P.RAMACHANDRAN/AP/MECH/KIT/CBE
PPTX
Ram jet propulsive engine
PPTX
Spur gear and design of spur gear
PPTX
Boot strap air cooling system
PPTX
Accumulators
PPTX
Steam turbine
PPTX
Hydraulic Turbines
PPTX
Flywheel
Gas dynamics and jet propulsion – presentationof problemsanswers
Critical speed of shaft
Chapter 3. velocity analysis (IC,GRAPHICAL AND RELATIVE VELOCITY METHOD)
Ramjet engines
Aircraft refrigeration system (air cooling system)
Dynamometers by abhil ash
Gas turbine 1
Gear design
Axial Flow Compressor.
Velocity Triangle for Moving Blade of an impulse Turbine
Types of Gears
DYNAMICS OF MACHINES UNIT-1 BY Mr.P.RAMACHANDRAN/AP/MECH/KIT/CBE
Ram jet propulsive engine
Spur gear and design of spur gear
Boot strap air cooling system
Accumulators
Steam turbine
Hydraulic Turbines
Flywheel
Ad

Viewers also liked (20)

PPT
Physics of shock waves
PPTX
shock wave
PPT
High Speed Aerodynamics
PPT
Aerodynamics part ii
PDF
Shock-Induced Ignition of a Hydrogen-Air Supersonic Mixing Layer
PPT
Effects of shock waves
PPT
Wind Tunnel Ex
PPT
2 aircraft flight instruments
PPT
Aerodynamics part i
PPTX
Polymer composites
PPT
Smart Goal Setting
DOCX
Master of Ceremony Script- Informal Style
PPT
Polymer matrix composites
PDF
How Gas Turbines Work
PDF
Wind tunnels
PDF
Gas dynamics and_jet_propulsion- questions & answes
ODP
How To Write SMART Goals
PPTX
Banana fiber reinforced composite material
PDF
Setting SMART Goals
PPTX
Goal Setting PowerPoint
Physics of shock waves
shock wave
High Speed Aerodynamics
Aerodynamics part ii
Shock-Induced Ignition of a Hydrogen-Air Supersonic Mixing Layer
Effects of shock waves
Wind Tunnel Ex
2 aircraft flight instruments
Aerodynamics part i
Polymer composites
Smart Goal Setting
Master of Ceremony Script- Informal Style
Polymer matrix composites
How Gas Turbines Work
Wind tunnels
Gas dynamics and_jet_propulsion- questions & answes
How To Write SMART Goals
Banana fiber reinforced composite material
Setting SMART Goals
Goal Setting PowerPoint
Ad

Similar to UNIT - III NORMAL & OBLIQUE SHOCKS (20)

PPTX
Unit iii normal &amp; oblique shocks
PPTX
compressible flows, Supersonic and hypersonic h
PPTX
Mechanical_vibration_basics_and_single_d.pptx
PDF
Lecture_12_-_Vibrations.pdfj jjjjjjjjjjjjjj
PDF
Wilson T, Wan Wu, and Jesus H Project ME404
PPTX
4. chap4 bekg1123_sesi_1415_s3 (1)
PPT
13200777.ppt
PPT
13200777.ppt
PDF
Ising.ppt.pdf
PPTX
Lecture 5 chapter 3.pptx.........................
PPTX
Lattice dynamics
PDF
unit4.pdf
PDF
AC-SINUSOID electrical circuits chapter 0
PPTX
JjjjjjjjjLecture_9_-_Plane_Motion_of_Rigid_Bodies_Energry_and_Momentum_-_Part...
PDF
slidesWaveTransformation.pdf
PPTX
Topic 2 damped oscillation
PDF
Ece4760 hw4
PDF
2nd order ode applications
Unit iii normal &amp; oblique shocks
compressible flows, Supersonic and hypersonic h
Mechanical_vibration_basics_and_single_d.pptx
Lecture_12_-_Vibrations.pdfj jjjjjjjjjjjjjj
Wilson T, Wan Wu, and Jesus H Project ME404
4. chap4 bekg1123_sesi_1415_s3 (1)
13200777.ppt
13200777.ppt
Ising.ppt.pdf
Lecture 5 chapter 3.pptx.........................
Lattice dynamics
unit4.pdf
AC-SINUSOID electrical circuits chapter 0
JjjjjjjjjLecture_9_-_Plane_Motion_of_Rigid_Bodies_Energry_and_Momentum_-_Part...
slidesWaveTransformation.pdf
Topic 2 damped oscillation
Ece4760 hw4
2nd order ode applications

More from sureshkcet (13)

PPTX
Powerplant Engg Unit - II
PPTX
powerplant Engg Unit 1
PPT
Unit v rocket propulsion
PPTX
Unit i basic concept of isentropic flow
PPT
Air compressor
PPTX
THERMODYNAMICS - UNIT - V
PPT
THERMODYNAMICS UNIT - I
PPT
Thermodynamics - Unit - II
PPT
THERMODYNAMICS UNIT - IV
PPT
THERMODYNAMICS Unit III
PPT
UNIT - V ROCKET PROPULSION
PPT
UNIT - IV JET ENGINE PROPULSION
PPTX
Unit - I BASIC CONCEPTS AND ISENTROPIC FLOW IN VARIABLE AREA DUCTS
Powerplant Engg Unit - II
powerplant Engg Unit 1
Unit v rocket propulsion
Unit i basic concept of isentropic flow
Air compressor
THERMODYNAMICS - UNIT - V
THERMODYNAMICS UNIT - I
Thermodynamics - Unit - II
THERMODYNAMICS UNIT - IV
THERMODYNAMICS Unit III
UNIT - V ROCKET PROPULSION
UNIT - IV JET ENGINE PROPULSION
Unit - I BASIC CONCEPTS AND ISENTROPIC FLOW IN VARIABLE AREA DUCTS

Recently uploaded (20)

PPTX
INTERNET OF THINGS - EMBEDDED SYSTEMS AND INTERNET OF THINGS
PPTX
ARCHITECTURE AND PROGRAMMING OF EMBEDDED SYSTEMS
PPTX
Design ,Art Across Digital Realities and eXtended Reality
PDF
Research on ultrasonic sensor for TTU.pdf
PDF
ASPEN PLUS USER GUIDE - PROCESS SIMULATIONS
PPTX
Solar energy pdf of gitam songa hemant k
PDF
B461227.pdf American Journal of Multidisciplinary Research and Review
PPTX
Wireless sensor networks (WSN) SRM unit 2
PPTX
Unit IImachinemachinetoolopeartions.pptx
PPT
Unit - I.lathemachnespct=ificationsand ppt
PPTX
Module1.pptxrjkeieuekwkwoowkemehehehrjrjrj
PDF
AIGA 012_04 Cleaning of equipment for oxygen service_reformat Jan 12.pdf
PPT
UNIT-I Machine Learning Essentials for 2nd years
PDF
Performance, energy consumption and costs: a comparative analysis of automati...
PPTX
SE unit 1.pptx aaahshdhajdviwhsiehebeiwheiebeiev
PDF
BBC NW_Tech Facilities_30 Odd Yrs Ago [J].pdf
PDF
Artificial Intelligence_ Basics .Artificial Intelligence_ Basics .
PDF
THE PEDAGOGICAL NEXUS IN TEACHING ELECTRICITY CONCEPTS IN THE GRADE 9 NATURAL...
PDF
Using Technology to Foster Innovative Teaching Practices (www.kiu.ac.ug)
PPT
Basics Of Pump types, Details, and working principles.
INTERNET OF THINGS - EMBEDDED SYSTEMS AND INTERNET OF THINGS
ARCHITECTURE AND PROGRAMMING OF EMBEDDED SYSTEMS
Design ,Art Across Digital Realities and eXtended Reality
Research on ultrasonic sensor for TTU.pdf
ASPEN PLUS USER GUIDE - PROCESS SIMULATIONS
Solar energy pdf of gitam songa hemant k
B461227.pdf American Journal of Multidisciplinary Research and Review
Wireless sensor networks (WSN) SRM unit 2
Unit IImachinemachinetoolopeartions.pptx
Unit - I.lathemachnespct=ificationsand ppt
Module1.pptxrjkeieuekwkwoowkemehehehrjrjrj
AIGA 012_04 Cleaning of equipment for oxygen service_reformat Jan 12.pdf
UNIT-I Machine Learning Essentials for 2nd years
Performance, energy consumption and costs: a comparative analysis of automati...
SE unit 1.pptx aaahshdhajdviwhsiehebeiwheiebeiev
BBC NW_Tech Facilities_30 Odd Yrs Ago [J].pdf
Artificial Intelligence_ Basics .Artificial Intelligence_ Basics .
THE PEDAGOGICAL NEXUS IN TEACHING ELECTRICITY CONCEPTS IN THE GRADE 9 NATURAL...
Using Technology to Foster Innovative Teaching Practices (www.kiu.ac.ug)
Basics Of Pump types, Details, and working principles.

UNIT - III NORMAL & OBLIQUE SHOCKS

  • 1. ME 6604 – GAS DYNAMICS AND JET PROPULSION UNIT – III SHOCK WAVES Mrs. N. PREMALATHA ASSOCIATE PROFESSOR DEPARTMENT OF MECHANICAL ENGG
  • 2. Significance of Compressible Flows • Isentropic Flow a. Entropy remains constant b. All the stagnation parameters remain constant • Fanno Flow a. Entropy changes (Non-isentropic process) b. Stagnation temperature remains constant • Rayleigh Flow a. Entropy changes (Non-isentropic process) b. Stagnation temperature changes • Flow Through Shock Waves a. Entropy increases (Non-isentropic process) b. Stagnation temperature constant Note: Isentropic flow tables are used for All the flows. How?
  • 3. Difference between Normal and Oblique Shock Waves Normal Shock Wave Oblique Shock Wave Occurs in supersonic flow (M1 >1) Occurs in supersonic flow (M1 >1, No difference) Normal to the Flow direction Inclined at some other angle Flow direction does not change (Flow Deflection angle = 0) Flow direction changes (Flow Deflection angle  0) The downstream of the shock wave flow is always subsonic (M2 <1) The downstream of the shock wave flow may be subsonic or supersonic (M2 <1 or M2 > 1) Shock strength is high Shock strength is low
  • 4. Applications of Shock Waves – Supersonic flow over aerodynamic bodies- Supersonic airfoils, wings, fuselage and other parts of airplanes • Supersonic flow through engine components- Engine intake, Compressors, combustion chambers, Nozzle • Propellers running at high speeds
  • 5. Supersonic Flow Turning • For normal shocks, flow is perpendicular to shock – no change in flow direction • How does supersonic flow change direction, i.e., make a turn – either slow to subsonic ahead of turn (can then make gradual turn) =bow shock M1 M2 M1>1 M1>1 – go through non-normal wave with sudden angle change , i.e., oblique shock (also expansions: see later) • Can have straight/curved, 2-d/3-d oblique shocks – will examine straight, 2-d oblique shocks
  • 6. Oblique Shock Waves • Mach wave – consider infinitely thin body M1>1  • Oblique shock – consider finite-sized wedge, half-angle,  M1>1  – no flow turn required   1 1 M/1sin  – infinitessimal wave  – flow must undergo compression – if attached shock  oblique shock at angle  – similar for concave corner  M1>1 
  • 7. Equations of Motion • Governing equations – same approach as for normal shocks – use conservation equations and state equations • Conservation Equations – mass, energy and momentum – this time 2 momentum equations - 2 velocity components for a 2-d oblique shock • Assumptions – steady flow (stationary shock), inviscid except inside shock, adiabatic, no work but flow work
  • 8. Control Volume • Pick control volume along shock p1, h1, T1, 1 v1   p2, h2, T2, 2 v2  - • Divide velocity into two components – one tangent to shock, vt – one normal to shock, vn • Angles from geometry v1n v2n v1n v2nAn At p1 p2 1 2 v1t v2t v1t v2t v1t v2t – v1n= v1sin; v1t=v1cos – v2n= v2sin(-); v2t=v2cos(-) – M1n= M1sin; M1t=M1cos – M2n= M2sin(-); M2t=M2cos(-)
  • 9. Conservation Equations • Mass v1n v2nAn At p1 p2 1 2 v1t v2t v1t v2t   Adnv0 rel CS    2 A v 2 A vAv 2 A v 2 A vAv t t22 t t11nn22 t t22 t t11nn11   • Momentum    CS rel CS AdnvvAdnp  tangent        nn22t2nn11t1 t 21 t 21 AvvAvv 2 A pp 2 A pp  t2t1 vv  normal    nn22n2nn11n1n2n1 AvvAvvApAp  n22n11 vv  (1) 2 n22 2 n1121 vvpp  (2)
  • 10. Conservation Equations (con’t) • Energy v1n v2nAn At p1 p2 1 2 v1t v2t v1t v2t                   2 v hAv 2 v hAv 2 2 2nn22 2 1 1nn11 2 v 2 v h 2 v 2 v h 2 t2 2 n2 2 2 t1 2 n1 1  2 v h 2 v h 2 n2 2 2 n1 1  (3) • Eq’s. (1)-(3) are same equations used to characterize normal shocks ( with vnv) • So oblique shock acts like normal shock in direction normal to wave – vt constant, but Mt1Mt2  11t 22t 1t 2t av av M M (4)2 1 1t 2t T T M M  1
  • 11. Oblique Shock Relations • To find conditions across shock, use M relations from normal shocks, • but replace M1  M1 sin M2  M2 sin(-) • Mach Number   1sinM 1 2 1 2 sinMsinM 22 1 22 1 22 2                  1M 1 2 1 2 MM 2 1 2 1 2 2                 from p1, h1, T1, 1 v1   p2, h2, T2, 2 v2  - v1n v2n v1t v2t (5)
  • 12. Oblique Shock Relations (con’t) • Static Properties p1, h1, T1, 1 v1   p2, h2, T2, 2 v2  - v1n v2n v1t v2t (6)1 1 sinM 1 2 p p 22 1 1 2       (from pressure ratio of NS wave) (7)     2sinM1 sinM1 v v 22 1 22 1 1 2 n2 n1       (from density ratio of NS wave)    121sinM 1sinM 1 2 sinM 2 1 1 T T 222 1 22 1 22 1 1 2                     (8) (from temperature ratio of NS wave)
  • 13. Oblique Shock Relations (con’t) • Stagnation Properties 1o2o TT  To (from energy conservation)    12 1 211o2o ppTTpp                                 1 1 22 1 1 22 1 22 1 1o 2o 1 1 sinM 1 2 sinM 2 1 1 sinM 2 1 p p (9)
  • 14. Use of Shock Tables • Since just replacing M1  M1sin M2  M2sin(-) – can also use normal shock tables – use M1'=M1sin to look up property ratios – M2= M2'/sin(-), with M2' from normal shock tables • Warning – do not use p1/po2 from tables – only gives po2 associated with v2n, not v2t p1, h1, T1, 1 v1   p2, h2, T2, 2 v2  - v1n v2n v1t v2t
  • 15. Example #1 • Given: Uniform Mach 1.5 air flow (p=50 kPa, T=345K) approaching sharp concave corner. Oblique shock produced with shock angle of 60° • Find: 1. To2 2. p2 3.  (turning angle) • Assume: =1.4, steady, adiabatic, no work, inviscid except for shock,…. =60° M1=1.5 T1=345K p1=50kPa  M2
  • 16. Example #1 (con’t)• Analysis: Determination of To 30.160sin5.1sinMM 1n1   191.1 805.1 786.0)( 12 12 2    TT pp MTableNS n – calculate normal component    K5005.12.01K345 M 2 1 1TTT 2 2 111o2o          Determination of p2     kPa3.90kPa50805.1pppp 1122  Determination of     2.11 191.160cos5.1 786.0 tan60 5.0 1             t2n2 MMtan     211n221t1n2 TTcosMMTTMM   v1t v1 v1n - v2 v2n v2t   104.1sinMM n22 NOTE: Supersonic flow okay after oblique shock =60° M1=1.5 T1=345K p1=50kPa  M2
  • 17. Wave/Shock Angle • Generally, wave angle  is not given, rather know turning angle  • Find relationship between M1, , and       22cosM 1sinMtan2 tan 2 1 22 1      v2 - v2n v1  v1nv1t v2t     2sinM1 sinM1 v v 22 1 22 1 n2 n1    (from relation between V1n and V2n and Vel triangle)     tanv tanv t2 t1 1 (10)
  • 18. Oblique Solution Summary • If given M1 and turning angle,  1. Find  from (iteration) or use oblique shock charts 2. Calculate M1n=M1sin 3. Use normal shock tables or Mach relations 4. Get M2 from M2=M2n/sin(-) M1  M2
  • 19. Example #2 • Given: Uniform Mach 2.4, cool, nitrogen flow passing over 2-d wedge with 16° half-angle. • Find: , p2/p1 , T2/T1 , po2/po1 , M2 • Assume: =1.4, steady, adiabatic, no work, inviscid except for shock,…. M1=2.4  M2
  • 20. Example #2 (con’t) • Analysis: Determination of  52.14.39sin4.2sinMM 1n1   9227.0;335.1;535.2;6935.0)1.( 1212122  oon ppTTppMNSTable – use shock relations calculate normal component   75.1sinMM n22  Supersonic after shock      22cos4.14.2 1sin4.2tan2 16tan 2 22    =16°M1=2.4  M2 iterate  4.39
  • 21. Example #2 (con’t) • Analysis (con’t): 38.21.82sin4.2sinMM 1n1   5499.0;018.2;425.6;5256.0)( 1212122  oon ppTTppMNStable – use shock relations calculate normal component   575.0sinMM n22  =16°M1=2.4  M2 – a second solution for       22cos4.14.2 1sin4.2tan2 16tan 2 22    in addition to 39.4  1.82 • Eqn generally has 2 solutions for : Strong and Weak oblique shocks Now subsonic after shock previous solution 2.535 1.335 0.9227 1.75
  • 22. Strong and Weak Oblique Shocks • As we have seen, it is possible to get two solutions to equation (10) – 2 possible values of  for given (,M1) – e.g.,       22cosM1sinMtan2tan 2 1 22 1  M1=2.4 39.4° M2=1.75 =16° M1=2.4 82.1° M2=0.575 =16° • Examine graphical solution
  • 23. Graphical Solution • Weak shocks –smaller  –min= 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50  (deg) (deg) 0 10 20 30 40 50 60 70 80 90 M1= 1.25 1.5 2 2.5 3 5 10 100 =1.4M2<1 M2>1 Strong Weak =sin-1(1/M1) – usually M2>1 • Strong shocks – max=90° (normal shock) – always M2<1 • Both for =0 – no turn for normal shock or Mach wave
  • 24. Which Solution Will Occur? • Depends on upstream versus downstream pressure – e.g., back pressure – p2/p1 large for strong shock small for weak shock • Internal Flow – can have p2 much higher or close to p1 M>1 p1 pb,high M>1 p1 pb,low • External Flow – downstream pressure usually close to upstream p (both near patm) M>1 patm patm
  • 25. Maximum Turning Angle • Given M1, no straight oblique shock solution for >max(M) 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50  (deg) (deg) 0 10 20 30 40 50 60 70 80 90 M1= 1.25 1.5 2 2.5 3 5 10 100 =1.4 max(M=3)~34° • Given , no solution for M1<M1,min • Given fluid (), no solution for any M1 beyond max e.g., ~45.5° (=1.4) max()
  • 26. Detached Shock • What does flow look like when no straight oblique shock solution exists? – detached shock/bow shock, sits ahead of body/turn M1>1 >max bow shock can cover whole range of oblique shocks (normal to Mach wave) – normal shock at centerline (flow subsonic to negotiate turn); curves away to weaker shock asymptotes to Mach wave M2<1 M2>1 M1>1 >ma x
  • 27. CRITICAL FLOW AND SHOCK WAVES 0.1 DivergenceDragCR MM MCR • Sharp increase in cd is combined effect of shock waves and flow separation • Freestream Mach number at which cd begins to increase rapidly called Drag- Divergence Mach number