
Application Note
A Basic Guide to I2C

Joseph Wu

ABSTRACT

Communication between microcontrollers and different peripheral devices require some sort of digital protocol.
I2C is a common communication protocol that is used in a variety of devices from many different product families
produced by TI. This application note begins with a basic overview of the I2C protocol, describing the history
of the protocol, different I2C speed modes, the physical layer of the digital communication, and the structure of
the data. Several examples of the communication protocol are shown with different data converters. Finally, this
application note covers some uncommon aspects of the protocol, including reserved addresses, clock arbitration
and stretching, electrical timing and voltage specifications, and pullup resistor calculation.

spacer

Table of Contents
1 I2C Overview..3
2 I2C Physical Layer...4
3 I2C Protocol... 7
4 I2C Examples...9
5 Reserved Addresses.. 15
6 Advanced Topics.. 20
7 Protocols Similar to I2C..31
8 Summary... 31

List of Figures
Figure 2-1. Typical I2C Implementation..4
Figure 2-2. Open-Drain Connection Pulls Line Low When NMOS is Turned On...5
Figure 2-3. Pullup Resistor Pulls Line High When NMOS is Turned Off... 5
Figure 2-4. Comparison Between Open-Drain and Push-Pull Contention ..6
Figure 3-1. I2C START and STOP... 7
Figure 3-2. I2C Digital One and Zero Representations..7
Figure 3-3. I2C Address and Data Frames.. 8
Figure 4-1. DAC80501 Functional Block Diagram...9
Figure 4-2. Example Write to the DAC Data Register of the DAC80501...10
Figure 4-3. ADS1115 Functional Block Diagram..11
Figure 4-4. Configuration Register...12
Figure 4-5. I2C Transmission for Reading from the ADS1115... 13
Figure 4-6. ADC Conversion Register Contents..14
Figure 5-1. General Call Address Format..15
Figure 5-2. I2C High-Speed Controller Code... 16
Figure 5-3. Enabling I2C High-Speed Mode.. 17
Figure 5-4. I2C Device ID Data Bits... 17
Figure 5-5. Reading the I2C Device ID.. 18
Figure 5-6. I2C Ten-Bit Target Addressing Write..18
Figure 5-7. I2C 10-Bit Addressing Read.. 19
Figure 6-1. I2C Bus Contention With Multiple Controllers..20
Figure 6-2. I2C Clock Synchronization SCL Going Low...21
Figure 6-3. I2C Clock Synchronization SCL Returning High..21
Figure 6-4. I2C Clock Synchronization Monitoring SCL...22
Figure 6-5. I2C Clock Synchronization Resulting Wired-And...22
Figure 6-6. I2C Controller Arbitration... 23

www.ti.com Table of Contents

SBAA565 – NOVEMBER 2022
Submit Document Feedback

A Basic Guide to I2C 1

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SBAA565
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBAA565&partnum=DAC80501

Figure 6-7. I2C Target Clock Stretching... 24
Figure 6-8. I2C Pullup Resistor Under-Drives Inputs on Mismatched Bus Voltages..26
Figure 6-9. I2C Pullup Resistor Over-Drives Inputs on Mismatched Bus Voltages..27
Figure 6-10. I2C Pullup Resistor Over-Driven on Higher-Voltage Tolerant Lines...27
Figure 6-11. PCA3906 I2C Voltage Level Translator..28
Figure 6-12. Factors Affecting Pullup Resistor Sizing..28
Figure 6-13. Minimum Pullup Resistance Based on Pull-Down Current... 29
Figure 6-14. Maximum Pullup Resistance Based on Rise from Pullup and Bus Capacitance.. 30

List of Tables
Table 1-1. Maximum Transmission Rates for Different I2C Modes.. 3
Table 5-1. List of Reserved I2C Addresses..15
Table 6-1. Wired-AND Truth Table...20
Table 6-2. Electrical Characteristics of the ADS1119 Digital Inputs and Outputs.. 25
Table 6-3. Parametric Characteristics From I2C Protocol.. 29
Table 6-4. Characteristics of SDA and SCL Input and Output Voltages.. 29

Trademarks
SMBus® is a registered trademark of System Management Interface Forum, Inc..
PMBus® is a registered trademark of Intel.
All trademarks are the property of their respective owners.

Trademarks www.ti.com

2 A Basic Guide to I2C SBAA565 – NOVEMBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SBAA565
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBAA565&partnum=DAC80501

1 I2C Overview
I2C is a two-wire serial communication protocol using a serial data line (SDA) and a serial clock line (SCL). The
protocol supports multiple target devices on a communication bus and can also support multiple controllers that
send and receive commands and data. Communication is sent in byte packets with a unique address for each
target device.

1.1 History
I2C, often called I ‘two’ C, stands for the Inter-Integrated Circuit protocol. I2C was developed in 1982 by
Philips Semiconductor (now NXP Semiconductor) as a low-speed communication protocol for connecting
controller devices such as microcontrollers and processors with target devices such as data converters and
other peripheral devices. Since 2006, implementing the I2C protocol does not require a license, and many
semiconductor device companies, including TI, have introduced I2C-compatible devices.

I2C is a widely-used protocol for many reasons. The protocol requires only two lines for communications. Like
other serial communication protocols, there is a serial data line and a serial clock line. I2C can connect to
multiple devices on the bus with only the two lines. The controller device can communicate with any target
device through a unique I2C address sent through the serial data line. I2C is simple and economical for device
manufacturers to implement.

1.2 I2C Speed Modes
I2C has several speed modes starting with the Standard-mode (Sm), which is a serial protocol that operates up
to 100 kilobits per second (kbps). This mode is followed by the Fast-mode (Fm) which tops out at 400 kilobits per
second. Fast-mode can be used by the controller if the bus capacitance and drive capability allow for the faster
speed. Both of these protocols are widely supported.

The Fast-mode Plus (Fm+) mode allows for communication as high as 1 megabit per second (Mbps). To achieve
this speed, drivers in the devices require extra strength to comply with faster rise and fall times.

These three modes are relatively similar, using a communication structure that is the same. However, all have
different timing specifications for each of the modes and hardware implementation of the I2C in the devices are
different to accommodate the different speeds.

I2C also has two other modes for higher data rates. High-speed mode (Hs-mode) has a data rate to 3.4 megabits
per second. In this mode, the controller device must first use a controller code to allow for high-speed data
transfer. This enables high-speed mode in the target device. This mode can also require an active pullup to drive
the communication lines at a higher data rate.

Ultra-Fast mode (UFm) is the fastest mode of operation and transfers data up to 5Mbps. This mode is write-only
and omits some I2C features in the communication protocol.

Table 1-1 shows the different I2C modes and their respective data rates

Table 1-1. Maximum Transmission Rates for
Different I2C Modes

I2C Mode Maximum Bit Rate
Standard-mode 100kbps

Fast-mode 400kbps

Fast-mode Plus 1Mbps

High-speed mode 3.4Mbps

Ultra-Fast mode 5Mbps

www.ti.com I2C Overview

SBAA565 – NOVEMBER 2022
Submit Document Feedback

A Basic Guide to I2C 3

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SBAA565
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBAA565&partnum=DAC80501

2 I2C Physical Layer

2.1 Two-Wire Communication
An I2C system features two shared communication lines for all devices on the bus. These two lines are used
for bidirectional, half-duplex communication. I2C allows for multiple controllers and multiple target devices. Pullup
resistors are required on both of these lines. Figure 2-1 shows a typical implementation of the I2C physical layer.
VDD

SDA

SCL

GND

V
D
D

S
D
A

S
C
L

V
D
D

S
D
A

S
C
L

V
D
D

S
D
A

S
C
L

GND

G
N
D

G
N
D

G
N
D

Microprocessor

Controller 1

Peripheral

Target 1

V
D
D

S
D
A

S
C
L

G
N
D

Microprocessor

Controller 2
Peripheral

Target 2

Figure 2-1. Typical I2C Implementation

One of the reasons that I2C is a common protocol is because there are only two lines used for communication.
The first line is SCL, which is a serial clock primarily controlled by the controller device. SCL is used to
synchronously clock data in or out of the target device. The second line is SDA, which is the serial data line.
SDA is used to transmit data to or from target devices. For example, a controller device can send configuration
data and output codes to a target digital-to-analog converter (DAC), or a target analog-to-digital converter (ADC)
can send conversion data back to the controller device.

I2C is half-duplex communication where only a single controller or a target device is sending data on the bus at a
time. In comparison, the serial peripheral interface (SPI) is a full-duplex protocol where data can be sent to and
received back at the same time. SPI requires four lines for communication, two data lines are used to send data
to and from the target device. In addition to the serial clock, a unique SPI chip select line selects the device for
communication and there are two data lines, used for input and output from the target device.

An I2C controller device starts and stops communication, which removes the potential problem of bus contention.
Communication with a target device is sent through a unique address on the bus. This allows for both multiple
controllers and multiple target devices on the I2C bus.

The SDA and SCL lines have an open-drain connection to all devices on the bus. This requires a pullup resistor
to a common voltage supply.

I2C Physical Layer www.ti.com

4 A Basic Guide to I2C SBAA565 – NOVEMBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SBAA565
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBAA565&partnum=DAC80501

2.2 Open-Drain Connection
The open-drain connections are used on both SDA and SCL lines and connect to an NMOS transistor. This
open-drain connection controls the I2C communication line and pulls the line low or releases the line high. The
open-drain refers to the NMOS bus connection when the NMOS is turned OFF. Figure 2-2 shows the open-drain
connection as the NMOS is turned on.

VDD

SDA or

SCL

GND

Pullup

resistor

Device I
2
C

logic

SDA or SCL Voltage

VDD

GND

When the NMOS turns on,

SDA or SCL is pulled low

Quick transition from high to low as NMOS pulls

charge from any bus capacitance from SDA or SCL

Figure 2-2. Open-Drain Connection Pulls Line Low When NMOS is Turned On

To set the voltage level of the SDA or SCL line, the NMOS is set on or off. When the NMOS is on, the device
pulls current through the resistor to ground. This pulls the open-drain line low. Typically, the transition from
high to low for I2C is a fast transition as the NMOS pulls down on SDA or SCL. The speed of the transition is
determined by the NMOS drive strength and any bus capacitance on SDA or SCL.

When the NMOS turns off, the device stops pulling current, and the pullup resistor pulls the SDA or SCL line
to VDD. Figure 2-3 shows an open-drain line as the NMOS is turned off. The pullup resistor pulls the line high.
The transition of the open-drain line is slower because line is pulled up against the bus capacitance, and is not
actively driven.

VDD

SDA or

SCL

GND

Pullup

resistor

Open-drain

connection

Device I
2
C

logic

SDA or SCL Voltage

VDD

GND

When the NMOS turns off, SDA or

SCL is released and returns high

from the pullup resistor

Rise depends on parasitic capacitance on SDA or

SCL and pullup resistor size

Low resistance: faster communication, more power

High resistance: slower communication, less power

Figure 2-3. Pullup Resistor Pulls Line High When NMOS is Turned Off

Through control of this open-drain connection, both SDA and SCL can be set high and low, enabling the I2C
communication.

Because of capacitance on the I2C communication line, the SDA and SCL lines discharge with an exponential
settling RC time constant depending on the size of the pullup resistor and capacitance on the I2C bus. Higher
capacitance limits the speed of I2C communication, the number of devices, and the physical distance between
devices on the bus. A smaller pullup resistor has a faster rise time, but requires more power for communication.
A larger pullup resistor has a slower rise time leading to slower communication, but requires less power.

www.ti.com I2C Physical Layer

SBAA565 – NOVEMBER 2022
Submit Document Feedback

A Basic Guide to I2C 5

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SBAA565
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBAA565&partnum=DAC80501

2.3 Non-Destructive Bus Contention
One of the benefits of I2C using an open drain is that bus contention does not put the bus into a destructive
state. With an open-drain output, many devices can be connected together without destructive contention. For
any output on that connection, if any output pulls the line low, the line is low. This kind of connection is called a
wired-AND connection. The output is the logical AND of all the outputs when tied together.

If the outputs are a push-pull type, the outputs cannot be tied together without the possibility of a destructive
state. A push-pull output (often used for SPI communication) has complementary NMOS and PMOS transistors
that drive the output high or low. Figure 2-4 shows a comparison between open-drain and push-pull outputs in
contention.

VDD

SDA

GND
Open-drain

connection

Device I
2
C

logic

GND
Open-drain

connection

Device I
2
C

logic

GND
Push-pull

output tries to

drive high

Device I
2
C

logic

VDD

GND

Device I
2
C

logic

VDD

On

Off On

Off

Push-pull

output tries to

drive low

Bus contention,

output at indeterminate

state

OffOn
Any output that goes low

takes priority

Q1 Q2

Q1

Q2

Q3

Q4

Open-Drain Output

Push-Pull Output

VDD

Figure 2-4. Comparison Between Open-Drain and Push-Pull Contention

With the open-drain connection, any device can pull the connection low at any time. The line appears low any
time any device pulled the line low, but does not appear as destructive contention.

In the push-pull output, the outputs are also tied together. If two devices are active on the bus and one output is
high and another output is low, this bus contention has an undetermined state, possibly settling at the mid-supply
point. Additionally, one device has NMOS conducting current and another device has a PMOS conducting
current. These devices source current from VDD to GND through a very low impedance path, conducting as
much current as the transistors allow. The result of this contention can be a significant amount of current,
potentially damaging the devices.

I2C Physical Layer www.ti.com

6 A Basic Guide to I2C SBAA565 – NOVEMBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SBAA565
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBAA565&partnum=DAC80501

3 I2C Protocol

3.1 I2C START and STOP
I2C communication is initiated from the controller device with an I2C START condition. If the bus is open, an I2C
controller claims the bus for communication by sending an I2C START. To do this, the controller device first pulls
the SDA low and then pulls the SCL low. This sequence indicates that the controller device is claiming the I2C
bus for communication, forcing other controller devices on the bus to hold their communication.

When the controller device has completed communication, the SCL releases high and then the SDA releases
high. This indicates an I2C STOP condition. This releases the bus to allow other controllers to communicate or
to allow for the same controller to communicate with another device. Figure 3-1 shows the protocol for an I2C
START and STOP.

SDA

SCL

I
2
C START

A controller device claims the

I
2
C bus for communication

with a target device

I
2
C STOP

A controller device completes

communication with a target

device and releases the I
2
C bus

Figure 3-1. I2C START and STOP

3.2 Logical Ones and Zeros
I2C uses a sequence of ones and zeros for serial communication. SDA is used for the data bits while SCL is the
serial clock that times the bit sequence. A logical one is sent when the SDA releases the line, allowing the pullup
resistor to pull the line to a high level. A logical zero is sent when SDA pulls down on the line, setting a low level
near ground. Figure 3-2 shows the representation of a digital one and zero for I2C communication.

SDA

SCL

1 0

Figure 3-2. I2C Digital One and Zero Representations

The ones and zeros are received when SCL is pulsed. For a valid bit, SDA does not change between a rising
edge and the falling edge of SCK for that bit. Changes of the SDA between the rising and falling edges of the
SCL can be interpreted as a START or STOP condition on the I2C bus.

www.ti.com I2C Protocol

SBAA565 – NOVEMBER 2022
Submit Document Feedback

A Basic Guide to I2C 7

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SBAA565
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBAA565&partnum=DAC80501

3.3 I2C Communication Frames
The I2C protocol is broken up into frames. Communication begins with the controller device sending an address
frame after a START. The address frame is followed by one or more data frames each consisting of one byte.
Each frame also has an acknowledge bit to alert the controller that the target device or the controller device has
received communication. Figure 3-3 shows a diagram of two I2C communication frames.

A6 A5 A4 A3 A2 A1 A0 R/W ACK D7 D6 D5 D4 D3 D2 D1 D0 ACK

START STOP

SDA

SCL

Address Frame Data Frame

7-bit address, R/W bit, ACK Data byte, ACK

Figure 3-3. I2C Address and Data Frames

At the beginning of the address frame, the controller device initiates a START condition. The controller device
first pulls SDA low and then pulls SCL low for the START. This allows the controller device to claim the bus
without contention from other controller devices on the bus. Each I2C target device has an associated I2C
address. When beginning communications with a particular target device the controller uses the target device
address to send or receive data in the following I2C frames. The I2C address consists of 7 bits and devices on
the I2C bus, each have a unique address on the bus.

A 7-bit address implies 27 (or 128) unique addresses. However, there are several reserved I2C addresses which
limits the number of possible devices. Reserved addresses are discussed in Section 5. The address is sent
with the SDA as the data and SCL as the serial clock. With this information, you can to read through the I2C
communication of a device and understand what is being sent back and forth from the controller device and the
target device.

The 8th bit of this frame following the address, is the read-write (R/W) bit. If this bit is 1, the controller is asking to
read data from the target device. If this bit is 0, the controller asks to write data to the target device.

After any communication byte, an extra 9th bit is used to verify the communication was successful. At the end of
the address byte communication, the target device pulls down the SDA during the SCL pulse to indicate to the
controller that the address was received. This is known as an acknowledge (ACK) bit. If this bit is high, then no
target device received the address and the communication was unsuccessful. If the bit is high, this is known as a
NACK and there was no ACK.

The address frame is followed by one or more data frames. These frames are sent one byte at a time. After each
data byte is transferred, there is another ACK. If the data byte is a write to the device, then the target device
pulls the SDA low to ACK the transfer. If the data byte is a read from the device, the controller pulls the SDA low
to acknowledge the data has been received. The ACK is a useful debugging tool. The absence of this bit can
indicate that the target peripheral did not receive the proper I2C address for communication, or that the controller
peripheral did not receive the expected data.

After the communication is completed, the controller issues an I2C STOP condition. SCL is first released and
then SDA is released. The controller uses the STOP to indicate that the communication is completed and the I2C
bus is released.

This is the basic protocol for any I2C communication between the controller device and the target device.
Communication can consist of more than one byte of data. In some cases where a target device has multiple
data and configuration registers, a read from a device can begin with a write to the device to indicate which
register is to be read. The following sections show examples on how to read from and write to different data
converter devices.

I2C Protocol www.ti.com

8 A Basic Guide to I2C SBAA565 – NOVEMBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SBAA565
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBAA565&partnum=DAC80501

4 I2C Examples
This section uses two examples to show how I2C can communicate with different data converters. First, the I2C
protocol is used to write to the DAC data register of the DAC80501 to set the output voltage. Second, I2C is used
to read from the conversion register from the ADS1115 ADC.

4.1 DAC80501 Example
The DAC80501 is a 16-bit precision voltage output DAC with an internal reference. When the SPI2C pin is set
high at power up, the device uses an I2C interface and is capable of standard, fast, and fast-mode plus I2C
modes. Figure 4-1 shows the functional block diagram of the device.

In
te

rf
a
c
e
 L

o
g
ic

DAC

Buffer

DAC

Register
DAC BUF

Power On Reset
Power Down Logic

Resistive Network

Internal

Reference

SPI2C

SCLK or SCL

SDIN or SDA

SYNC or A0

VDD VREFIO

AGND

VOUT

Figure 4-1. DAC80501 Functional Block Diagram

The DAC80501 has an address pin labeled A0. This pin is used to select one of four I2C addresses, meaning
that four of these devices can be used on the same bus as long as the devices are programmed to different
addresses. With the A0 pin connected to AGND, VDD, SDA, or SCL, the device can be set to four unique
addresses shown. For this example, the A0 is set to VDD, so the address is 49h.

The device has a set of registers that can be used to enable the DAC reference and the output; set the output
range through either a reference divider or a buffer gain; set a reset or enable the LDAC trigger; and the DAC
output code. These registers can also be read to verify the settings, to identify the device from different versions
of DAC resolution and power-on reset values, and to check an alarm for a low supply based on the reference.

The DAC80501 has seven internal registers, each addressed by a command byte (an additional register is a
NOOP register (no operation) that is write-only and does not send a command or set a register value). Each
register has 16 data bits with two data bytes for access. Communications with a command or register byte in this
example is a common method used in I2C devices with multiple registers.

The DAC data register (08h) sets the DAC output voltage. For this example, the DAC data register is written to
using the I2C protocol to set the output voltage of the device. The data write consists of the address byte, the
register byte, and two data bytes, for a total of four communication frames.

4.1.1 DAC80501 DAC Data Register

The output to the DAC80501 is set through the DAC data register based on the transfer function in Equation 1.

VOUT = DAC_DATA2N × VREFIODIV × GAIN (1)

where

• DAC_DATA is the 16-bit value in the DAC Data Register
• N is the number of bits of the DAC (16 bits)
• VREFIO is the reference voltage (2.5-V internal reference)
• DIV = 1 (as the default setting)
• GAIN = 2 (as the default setting)

www.ti.com I2C Examples

SBAA565 – NOVEMBER 2022
Submit Document Feedback

A Basic Guide to I2C 9

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com/product/DAC80501
https://www.ti.com
https://www.ti.com/lit/pdf/SBAA565
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBAA565&partnum=DAC80501

For example, the DAC output can be set to an output voltage of 1.5 V. To do this, calculate the voltage based on
the transfer function equation. Set VOUT to 1 V and calculate a value for DAC_DATA.

DAC_DATA = VOUTGAIN × DIVVREFIO × 2N = 1.5 V2 × 12.5 V × 216 = 19661 = 4CCDh (2)

To write 4CCDh to the DAC80501, there are four bytes to be written. I2C communications start with the address
byte and then is followed by the command byte to indicate which register is to be written to. The communication
frame ends with the two bytes of the DAC_DATA register to set the output voltage.

4.1.2 DAC80501 I2C Example Write

The I2C write begins with a START condition. SDA is pulled low, and then SCL is pulled low. Then the I2C
address is written. With the A0 pin connected to VDD, the DAC80501 responds to an address of 100 1001 (or
49h). The Read/Write (R/W) bit is set low, indicating that the controller is writing to the device.

After the completion of the address byte, the DAC80501 ACKs the address by pulling down the SDA for the
last bit of the address frame. The controller sends out the address and read or write information to all of the
targets on the bus. If the target DAC80501 has a matching address, the device sends an ACK to indicate to the
controller that a valid address is received and so that the device is ready to receive information.

After the controller sends the address with the write to the DAC80501, the controller tells the device which
register is being written to. The second byte sent to the target device is the register pointer for the DAC Data
register. Here, 0000 1000 is sent to the DAC80501. As a response, the DAC80501 pulls down on SDA for an
ACK. Again, the target device is indicating to the controller that the device has received the address pointer data
and which register is being written to.

Now, the DAC data register value is sent to the target device one byte at a time. For this byte, send in the first
byte of the DAC data. Bit 0100 1100 is sent to the DAC80501. The DAC80501 ACKs the first byte.

Finally, the last byte of the configuration register is sent to the target device. Here, 1100 1101 is sent to the
DAC80501. The DAC80501 ACKs this second data byte. At the end, SCL is released high and then SDA is
released high. In this action, the controller releases the bus by issuing a STOP condition.

Putting the frames together, the I2C write appears as Figure 4-2. Here,the diagram shows the entire
communication with the proper bit settings for all frames. If an oscilloscope plots the I2C communication for
SDA and SCL, this figure can be directly compared with the plot for debugging.

SDA

SCL

ACK ACK

Target Address Frame Command Frame

1 0 0 1 0 0 1 W 0 0 1 0 0 00

SDA

SCL

ACK ACK

DAC Data Frame

Most Significant Byte

DAC Data Frame

Least Significant Byte

10 0 0 0 0 0 1 1 0 10 1 1 1 1

0

START

STOP

4 9 0 8

C D4 C

Figure 4-2. Example Write to the DAC Data Register of the DAC80501

I2C Examples www.ti.com

10 A Basic Guide to I2C SBAA565 – NOVEMBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SBAA565
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBAA565&partnum=DAC80501

4.2 ADS1115 Example
In this second example, I2C is used to read data from a precision ADC. The ADS1115 is a 16-bit precision ADC
that uses an I2C interface and is capable of standard, fast, and high-speed modes. The device has several
settings that can be set through a configuration register, including the input range set by a programmable
gain amplifier (or PGA), a variety of data rates, and an input multiplexer that can be set to make differential
measurements, or single-ended measurements with respect to ground. Figure 4-3 shows the functional block
diagram for the ADS1115.

Comparator

ALERT/RDYVoltage

Reference

SCL

SDA

ADDR

ADS1115

I
2
C

Interface
16-Bit ��

ADC

Oscillator

PGA

GND

VDD

MUX

AIN1

AIN2

AIN0

AIN3

Figure 4-3. ADS1115 Functional Block Diagram

Similar to the previous example, the ADS1115 has an address pin labeled ADDR. This pin is used to select
one of four I2C addresses, meaning that four of these devices can be used on the same bus as long as the
devices are programmed to different addresses. The I2C address used for the device depends on the ADDR
pin connection. With the ADDR pin connected to VDD, SDA, or SCL, the device can be set to other addresses
shown in the table. For this example, the ADDR set to ground, so the address is set to 48h.

The ADS1115 has four internal registers, each addressed by an internal pointer register. The first register is the
conversion data register. When the ADC completes a conversion, the ADC data is placed in this register and the
controller device reads this register.

The second register is the configuration register. The controller device writes to this register to program the
device and start a conversion. The configuration register sets the programmable gain amplifier, the input
channel, the data rate, and other modes of operation for the device.

The last two registers are the Lo_threshold register and the Hi_threshold register. These two registers are used
to set thresholds for a digital comparator in the device. Once the conversion data goes beyond these thresholds,
the device can set an alert to the ALERT/RDY pin. For this example, the comparator and the thresholds are not
configured.

For this example, the settings for the configuration register are first shown to explain the settings and range of
the ADC. After that, an example I2C read from conversion register for the ADC is shown.

www.ti.com I2C Examples

SBAA565 – NOVEMBER 2022
Submit Document Feedback

A Basic Guide to I2C 11

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com/product/ADS1115
https://www.ti.com
https://www.ti.com/lit/pdf/SBAA565
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBAA565&partnum=DAC80501

4.2.1 ADS1115 Configuration Register

The ADS1115 has a 16-bit configuration register. Writing to this register programs the configuration of the device
and starts a conversion. This section details these settings and the operational modes of the device. Figure
4-4 shows the configuration register data fields. This shows the functions in the configuration register and their
bit positions. After determining the all of the settings for the configuration register, use an I2C write to set the
register.

Figure 4-4. Configuration Register
15 14 13 12 11 10 9 8

OS MUX[2:0] PGA[2:0] MODE

R/W-1h R/W-0h R/W-2h R/W-1h

7 6 5 4 3 2 1 0

DR[2:0] COMP_MODE COMP_POL COMP_LAT COMP_QUE[1:0]

R/W-4h R/W-0h R/W-0h R/W-0h R/W-3h

Figure 4-4 shows the configuration register field descriptions, giving a detailed description of the bit setting.
Starting with the most significant bit, bit 15 is the single-shot conversion start bit.

Bits 14 to 12 set the multiplexer setting of the device. For this example, the device is set to a single-ended
measurement from AIN0 with respect to ground. Within the configuration register, set AINP to AIN0 and AINN to
GND. To do this, set bits 14 to 12 to be 100 in binary.

Bits 11 to 9 set the PGA setting of the device. This is the setting for the programmable gain amplifier. This sets
the full-scale range of the input measurement, setting how large of an input signal can be measured by the ADC.
Set the ADC to measure a signal as large as plus and minus 4.096 V. Set bits 11 to 9 to be 001 in binary.

Bit 8 sets the operating mode of the device. For this operation, set the device to be in single-shot conversion
mode, set bit 8 to 1.

Bits 7 to 5 set the data rate for the ADC of the device. Set this to the highest data rate of 860 samples per
second. Set bits 7 to 5 to 111.

The last five bits from 4 down to 0 control the digital comparator for this device. The digital comparator is not
used, and is disabled with the last two bits of the register. The remaining bits are in their default setting. Set bits
4 to 0 to 00011.

This completes the configuration register setting for the ADS1115. These bits are used for the write to the
register. This register can also be represented in hexadecimal as C3E3h. To write this to the device, use the
same format for writing to the target device as shown in Figure 4-2 for the DAC80501.

I2C Examples www.ti.com

12 A Basic Guide to I2C SBAA565 – NOVEMBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SBAA565
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBAA565&partnum=DAC80501

4.2.2 ADS1115 I2C Example Read

The ADS1115 has a 16-bit ADC and therefore puts out 16-bit data conversions. The controller device reads
from the conversion register to get the ADC conversion data. The conversion register address pointer is 00h.
Conversion data appears as a 16-bit result in binary two’s complement. A positive full-scale input produces an
output code of 7FFFh and a negative full-scale input produces an output code of 8000h.

With the ADDR pin connected to GND, the device responds to address 48h. Figure 4-5 shows an example read
from the Conversion Data register at the 00h address pointer.

SDA

SCL

ACK ACK

Target Address Frame Address Pointer

1 0 0 1 0 0 0 W 0 0 0 0 0 00

SDA

SCL

ACK ACK

ADC Data Frame MSB

R 0 0 0 1 0 00 1

Target Address Frame

1 0 0 1 0 0 0

START

SDA

SCL

ACK0

ADC Data Frame LSB

1 1 0 0 0 0 0

Repeated

START

STOP

STOP

4 8 0 0

4 4

0

4 8

C 0

Figure 4-5. I2C Transmission for Reading from the ADS1115

The I2C write begins with a START condition. SDA is pulled low, and then SCL is pulled low. Then the controller
writes the I2C address. Again, the device responds to an address of 100 1000 (or 48h).

The controller first needs to tell the device which register is to be read from. For this, the communication first
sends an I2C Write to the device so that to set up the read from the Data Conversion register of the ADS1115. At
this point, the R/W bit is set low, indicating that the communication begins with a write to the device.

When the address frame is completed, the ADS1115 ACKs the address by pulling down the SDA for the last bit
of the address frame.

After indicating that the controller is reading from the ADS1115, the controller tells the device which register
is read from. The second byte is the register pointer for the Data Conversion register. Here, send 00h to the
ADS1115. As a response, the ADS1115 pulls down on SDA for an ACK. Finally, the controller issues a STOP to
release the bus.

Now that the controller has told the device to access the data conversion register, the controller follows up with
the read from the register. The controller writes the I2C address again. The controller has already indicated
which register is to be read from, now the controller sends a read to the device so that the data conversion
register of the ADS1115 can be read. At this point, the R/W bit is then set high, indicating the read. Again, after
the completion of the address frame, the ADS1115 ACKs the address.

The next two data bytes are used to read the register. The first byte is the most significant byte of the conversion
data and then the second byte follows as a read of the least significant byte conversion data. An ACK from the
controller follows each byte controller. Finally, the controller sends a STOP to end the I2C communication.

www.ti.com I2C Examples

SBAA565 – NOVEMBER 2022
Submit Document Feedback

A Basic Guide to I2C 13

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SBAA565
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBAA565&partnum=DAC80501

As in the previous example, Figure 4-5 is a convenient diagram showing the I2C communication with the device.
If there are problems in communication, an oscilloscope plot of the SDA and SCL can be used to compare
against the this example write.

4.2.3 ADS1115 Conversion Result

Using the conversion register result, this example continues with calculating the conversion result. The
conversion register is read as 44C0h, or 17600 in decimal. This is the ADC output based on the input voltage
from the measurement. Figure 4-6 shows the data contents of the Conversion Register.

0 1 0 0 0 1 0 0
Conversion

Register
1 1 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Bit

4 4 C 0

Figure 4-6. ADC Conversion Register Contents

Using the value in the conversion register, convert the conversion register to a voltage for the ADC
measurement. With a positive full-scale range of 4.096 V, convert this data to a measured voltage.

Conversion Voltage = 4 .096 V × Data Code / 215 = 4 .096 V × 17600 / 32768 = 2 .2 V (3)

With an ADC data code of 17600d, the ADC reports a measurement of 2.2 V.

I2C Examples www.ti.com

14 A Basic Guide to I2C SBAA565 – NOVEMBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SBAA565
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBAA565&partnum=DAC80501

5 Reserved Addresses
In the I2C protocol, writing to and reading from the target device requires the use of an I2C address. The I2C
address identifies which device the controller wants to communicate with. Typically, this address is written over a
single byte, where the address itself is 7 bits, and an eighth additional bit is used to indicate a read from or write
to the device

However, not all addresses of the 7 bits can be used for target devices. Some addresses are reserved for other
purposes. This section shows what functions these reserved addresses are used for.

I2C has several sets of reserved addresses that are limited for use based on specific applications. The functions
called with these reserved addresses are options for devices, and are not necessarily available in all I2C
devices. Table 5-1 lists a set of these reserved addresses and their functions.

Table 5-1. List of Reserved I2C Addresses
Target Address R/W Bit Description

000 0000 0 General call address

000 0000 1 START byte

000 0001 X C-Bus address

000 0010 X Reserved for different bus format

000 0011 X Reserved for future purposes

000 01XX X Hs-mode controller code

111 11XX 1 Device ID

111 10XX X 10-bit target address

5.1 General Call
The first reserved address is I2C address 0 and is the general call address. A write to the general call address
is used to address all the devices connected to the I2C bus at the same time. Not all devices are designed
to respond to the general call address. However, if there is a response, then the target device can process a
second byte and the following bytes after the general call. Figure 5-1 shows the two-byte format for the general
call address.

S 0 0 0 0 0 0 0 0 A X X X X X X X B A

First byte

General call address

Second byte

B = 0, General call command

B = 1, Controller address

ACKSTART

Figure 5-1. General Call Address Format

The response of the device is characterized by two different cases dependent on the least significant bit of the
byte following the general call. If the least significant bit of the second byte (B) is a zero, the second byte can
be used to send commands to those devices receiving the general call. As one example, a common command
sent through I2C is the general call reset. If the second byte is 06h, the controller device is sending a general call
reset to all devices on the I2C bus.

If B is a one, the controller is sending the two-byte sequence as a hardware general call. In this case, the
controller device can be a hardware controller that cannot be programmed to transmit to a particular target
address or does not know what device to send the command to. In this case, the second byte is used to send
the controller address to identify itself to all the devices on the system. This address can then be recognized by
another controller device in the system that can be used to direct information to the hardware controller acting as
a target device.

www.ti.com Reserved Addresses

SBAA565 – NOVEMBER 2022
Submit Document Feedback

A Basic Guide to I2C 15

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SBAA565
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBAA565&partnum=DAC80501

5.2 START Byte
A read from I2C address 00 is the START byte. Not all microprocessors have a built-in, onboard I2C controller
and do not necessarily have an interrupt to detect communication on the bus. In that case, a microprocessor
monitoring the I2C bus must repeatedly poll the SDA and SCL lines to make sure communications are not
missed. This requires the device to poll at a fast rate to detect the I2C address.

One option can be to use a START byte before the communication. When the controller uses the START byte
with 7 zeros in the address, the target device can poll at a much slower rate, saving processing power.

After the target device detects that the SDA sent a zero during the START byte, the device can then switch to
faster polling to detect the next I2C transmission for the address being sent. Once the I2C transfer has ended
with a STOP condition, the target device can then resume polling at a slower rate, again saving processing
power.

5.3 C-Bus Address, Different Bus Format, Future Purposes
The next three I2C addresses listed in the table are all reserved for different reasons. Address 01 is reserved for
the C-Bus protocol so that C-Bus devices can be placed on the I2C bus. However, the C-Bus protocol is used for
home and building automation in some parts of the world, but is generally not used in the United States. This I2C
address is ignored by most devices.

Address 02 is reserved for different bus formats. This is designed to allow communication between different
protocols. Only I2C devices that work between different protocols can respond to this address.

Address 03 is reserved for future purposes (yet to be defined).

5.4 HS-Mode Controller Code
The next reserved addresses are for the high-speed controller code. These codes are from 04 to 07. The eighth
bit normally used for read or write indication is used as part of the high-speed controller code. These high-speed
controller codes are reserved 8-bit codes which are not used for target addressing or other purposes. Each
high-speed controller has a unique controller code and this allows for up to eight high-speed controllers on the
I2C bus. The controller code for a high-speed mode controller device is software programmable and is chosen by
the system designer.

Devices that support high-speed mode begin operation in standard or fast mode. The controller code enables
high-speed mode. The high-speed controller code allows for arbitration between the high-speed controllers and
indicates the start of a high-speed mode transfer. The code enables internal current sources allowing the I2C
communication bus to be faster than with just pullup resistors.

When enabled, high-speed data transfer continues through the data transmission. A repeated START continues
high-speed mode data transmission, while a STOP condition returns the I2C bus to fast or standard mode.
Figure 5-2 shows the start transmission to the high-speed controller code. This diagram shows the beginning of
a high-speed mode transmission.

S 0 0 0 0 1 X X X A X X X X X X X
R

W

A

A

Standard or Fast Mode High-Speed Mode

Controller Code Target AddressNACKSTART ACK or

NACK

Figure 5-2. I2C High-Speed Controller Code

For this and subsequent byte and bit frame diagrams, the shaded codes are set by the controller device, while
the non-shaded codes are set by the target device.

Reserved Addresses www.ti.com

16 A Basic Guide to I2C SBAA565 – NOVEMBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SBAA565
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBAA565&partnum=DAC80501

At the start of communication, the device starts in standard or fast mode. The controller sends a START
condition by pulling SDA low followed by pulling SCL low. Then, the first byte is sent with the reserved address
used for the high-speed controller code. The controller code enables high-speed mode for all devices that are
capable of high-speed mode, and the internal circuits of the controller for high-speed mode are enabled. Figure
5-3 shows a detailed figure on how the I2C high-speed mode is enabled followed by communication with data.

S
Hs controller

code 8 bits
A

Target

address XXh

R

W
A Data A Data

A

A
P

0 0 0 0 1 X X X

Normal or Fast mode

START NACK Read

or

write

ACK ACK

or

NACK

STOP

High-speed mode

8-bit controller code

Figure 5-3. Enabling I2C High-Speed Mode

The controller then sends the target address of the high-speed mode device and follows with a read or write
bit for communication. Data is transmitted by the controller or target, with ACK for each data byte similar to the
standard I2C communication. The target device continues communication until receiving a STOP condition or
receiving a repeated START for a new target address.

5.5 Device ID
Addresses 7C to 7F are all reserved for Device ID. The controller begins by sending the Reserved Device ID
address followed by a write bit. The controller then sends the target device address to identify. The controller
then sends a repeated START condition followed by the reserved Device ID address followed by a read bit.

The Device ID is sent by the target through the bytes in three I2C data frames. This data starts with 12 bits for
the manufacturer ID, followed by 9 bits for the part identification, completed by 3 bits for the die revision. Figure
5-4 shows the data transmission to the Device ID.

X

Data byte 1 Data byte 2 Data byte 3

Manufacturer ID

12 bits

Part Identification

9 bits

Die revision

3 bits

X X

Figure 5-4. I2C Device ID Data Bits

The controller first sends a START condition. The first byte is sent with the reserved address for Device ID and
is followed by a 0 for a write. At this point, there can be multiple targets that respond to Device ID, so multiple
devices can ACK this address.

The controller then sends the address for the target device. The last bit of this target address byte is a “Don’t
Care” followed by an ACK. At this point, there is only one device that ACKs this address.

The controller then sends a repeated START condition. After that, the controller sends the Reserved Device ID
I2C-bus address followed by the read bit. The target device ACKs this reserved address. Note that the beginning
of this third byte must be a repeated START. A STOP followed by a START condition, or a STOP with a repeated
START condition followed by access to a different target device resets the target device state machine and the
Device ID read cannot be performed.

www.ti.com Reserved Addresses

SBAA565 – NOVEMBER 2022
Submit Document Feedback

A Basic Guide to I2C 17

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SBAA565
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBAA565&partnum=DAC80501

The target device then sends three bytes for device ID. Figure 5-5 shows a detailed figure on how the Device ID
is read from a device that supports the I2C Device ID.

A

WS
Device ID

reserved address
A

Target

address
X A

Data Byte P

1 1 1 1 1 X X

START ACKWrite ACK

STOP

0

Sr
Device ID

reserved address
R

A Data Byte A Data Byte

Don’t

care

8 MSB for

manufacturing ID

4 LSB for manufacturing ID

4 MSB for part ID

5 LSB for part ID

3 bits for revision ID

NACK

Repeated

START 1 1 1 1 1 X X 1

7C to 7F 7C to 7F

Figure 5-5. Reading the I2C Device ID

The controller NACKs the last byte and concludes the Device ID read with a STOP. The reading of the Device
ID can be stopped at any time by sending a NACK. If the controller continues to ACK the bytes after the third
byte, the target rolls back to the first byte and keeps sending the Device ID sequence until a NACK has been
detected.

5.6 10-Bit Target Addressing
With the normal 7-bit I2C address and all of the reserved addresses, the number of possible I2C devices on a
bus becomes limited. To expand the number of devices, several reserved addresses can be used to expand
the address to 10-bits. In the reserved address, the last two bits of 78h to 7Bh represent the first two bits
used to expand the address space. A second full byte of eight bits is used to complete the 10-bit address.
Communication with the 10-bit address is very similar to the 7-bit address communication.

5.6.1 10-Bit Target Addressing Write

Figure 5-6 shows the protocol to writing to a device that supports 10-bit addressing. At the beginning of a 10-bit
address write, the controller sends a START condition. Then, the first byte is sent with the reserved address for
10-bit I2C addressing and is followed by a 0 for a write. The reserved address last two bits includes the first two
bits of the 10-bit address. At this point there can be multiple targets that have the same first address byte for
10-bit addressing, so multiple devices can ACK this address. The second byte includes the target address. This
byte is the eight least significant bits of the 10-bit target address.

WS
Target address

1
st
 7 bits

A
Target address

2
nd

 byte
A

1 1 1 1 0 X X

START ACKWrite ACK

0 X X X X X X X X

Data A Data P
A

A

8 bits for

second byte
STOP

78 to 7B

Figure 5-6. I2C Ten-Bit Target Addressing Write

With the second byte, there is presumably only one device with the unique 10-bit address. This is the only device
that ACKs the communication. With the two bits of the reserved address and the eight bits of the second byte
target address, this totals 10-bits of addressing.

This target stays in communication until the controller sends a STOP condition or until the controller sends a
repeated START condition to communicate with a different target address.

Reserved Addresses www.ti.com

18 A Basic Guide to I2C SBAA565 – NOVEMBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SBAA565
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBAA565&partnum=DAC80501

5.6.2 10-Bit Target Addressing Read

Reading from a 10-bit addressed device is similar to a write but with added steps. At the beginning of the
communication, there is a START followed by the reserved address. A 0 for a write bit is then written. This is
followed by an ACK from all devices that use the reserved address. The target address second byte is then sent.
An ACK from the addressed device is then received. Until this point, the communication is exactly the same as a
10-bit address write.

AWS
Target address

1
st
 7 bits

A
Target address

2
nd

 byte
A

1 1 1 1 0 X X

START ACKWrite

0 X X X X X X X X

Data A Data P

8 bits for second

address byte

Sr
Target address

1
st
 7 bits

1 1 1 1 0 X X

A R

1

STOPRepeated

START

78 to 7B 78 to 7B

Figure 5-7. I2C 10-Bit Addressing Read

To read from this device, the controller then sends a repeated START. This step is followed by the reserved
address that was just used. Then the read bit is sent followed by an ACK. Because the read bit is sent (and not
the write bit), the device that previously ACKed this communication interprets that this is a read. Other devices
with the same reserved address do not respond. The addressed device then ACKs this repeat of the reserved
target address.

After the addressed device sends the ACK, data is transmitted by the device, and after each byte, the controller
ACKs the data. This data transmission continues until the controller sends a STOP condition or a repeated
START followed by a different target address.

www.ti.com Reserved Addresses

SBAA565 – NOVEMBER 2022
Submit Document Feedback

A Basic Guide to I2C 19

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SBAA565
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBAA565&partnum=DAC80501

6 Advanced Topics
In previous sections, the protocol basics of I2C were discussed with examples to show communications with
precision data converters. Those sections show how I2C works and how to read, write, and help debug basic
system communications.

However, those descriptions only scratch the surface of the I2C protocol. This section covers some advanced
topics of I2C. The following is not covered in detail. However, this section introduces some topics that allow you
to understand what these topics are. More detailed information is found in the I2C bus specification.

6.1 Clock Synchronization and Arbitration
The first I2C topic in this section is clock synchronization and arbitration between controller devices on the bus.
In I2C, there can be multiple controllers on the same bus. Because of this, there can be two or more devices
trying to claim the bus for communication at the same time. This requires multiple active controllers to resolve
which device controls the bus.

VCC

Controller 1

SDA

SCL

Controller 2

SDA

SCL

Target

Device 1

Target

Device 2

SDA SCL

I
2
C pullup

resistors

If both controllers try to use the bus at the

same time, there must be a way to resolve

contention without disrupting communications

SDA SCL

Figure 6-1. I2C Bus Contention With Multiple Controllers

I2C uses a method of clock synchronization and arbitration to make sure that one controller gains control and
does so without compromising communication. Because I2C uses open-drain connections to SDA and SCL, the
connections result in a wired-AND connection, where the line gives a logical AND of the device outputs. This is
helpful in arbitration without disruption to the communication. In systems with only one controller, this arbitration
is not necessary.

This section details clock synchronization and how multiple controllers synchronize clocks for I2C to prevent
contention. How controllers use arbitration to determine which controller wins the bus without disruptive
contention is also described.

To prevent bus contention, clock synchronization is first performed using the SCL line and the open-drain
connections from the controllers on the bus. This wired-AND connection is low if any of the controllers pull SCL
low. This connection is the logical AND of the SCL connection of the two controller devices. The output of SCL is
high only if both controller devices have released the open-drain connection high. Table 6-1 details a truth table
of this logical wired-AND.

Table 6-1. Wired-AND Truth Table
Controller 1 SCL Controller 2 SCL Resulting SCL

0 0 0

0 1 0

1 0 0

1 1 1

During a START condition where two controllers are trying to claim the bus, there is a high-to-low transition on
SCL. Here is an example where two controller devices are trying to claim the bus at or near the same time.

Advanced Topics www.ti.com

20 A Basic Guide to I2C SBAA565 – NOVEMBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SBAA565
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBAA565&partnum=DAC80501

In Figure 6-2, the controller 1 device initiates a START condition shortly before controller device 2 does the
same. Controller 1 pulls SCL down before controller 2. With the wired-AND connection, SCL pulls low as soon
as controller 1 pulls down on SCL.

SCL goes low with the first

controller to pull it low

Controller 1

SCL connection

Controller 2

SCL connection

SCL

(Wired-AND)

Figure 6-2. I2C Clock Synchronization SCL Going Low

After the START condition, controller 1 releases SCL to go high. However, controller 2 is still holding SCL low.
Because of the wired-AND connection, SCL remains low until controller 2 releases the SCL high. At the same
time, controller 1 is still monitoring SCL and must wait for the other controller to release the clock. Controller 1
cannot advance the SCL pulse until controller 2 has released SCL and becomes available.

When multiple controllers are competing for the bus, SCL stays low for as long as the longest period of time that
any controller pulls down SCL. Only after all the controllers have released the SCL can the line be released high
for the serial clock pulse. This synchronizes the start of the serial clock for all controllers. Figure 6-3 shows the
resulting SCL as both controllers release the SCL.

Controller 1

SCL connection

Controller 2

SCL connection

SCL

(Wired-AND)

SCL returns high with the

last controller to pull it low

Figure 6-3. I2C Clock Synchronization SCL Returning High

For clock synchronization, each controller device must monitor the SCL line and react to cases where the SCL
does not match the expected SCL output.

www.ti.com Advanced Topics

SBAA565 – NOVEMBER 2022
Submit Document Feedback

A Basic Guide to I2C 21

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SBAA565
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBAA565&partnum=DAC80501

Similarly, after the beginning of the serial clock pulse, all the controllers pull down on SCL to complete the
serial clock pulse. Again, with the wired-AND connection, SCL is then pulled down with the first controller that
responds by pulling down SCL. The first controller that completes the SCL high-time period determines the high
time of SCL from the wired-AND connection. Figure 6-4 shows the SCL line as SCL is again pulled low.

Controllers must monitor SCL and must keep SCL high

until all other controllers have released SCL high

Controller 1

SCL connection

Controller 2

SCL connection

SCL

(Wired-AND)

Figure 6-4. I2C Clock Synchronization Monitoring SCL

The synchronization of the SCL clock continues for subsequent clock pulses between all active controllers. Each
SCL clock pulse is generated with the low period determined by the controller with the longest clock low period
and the high period is determined by the controller with the shortest clock high period. Clock synchronization
continues through the communication shown in Figure 6-5.

Controller 1

SCL connection

Controller 2

SCL connection

SCL

(Wired-AND)

Figure 6-5. I2C Clock Synchronization Resulting Wired-And

Clock synchronization works because the controllers monitor each pulse of the SCL line and react to cases
where the SCL line does not match the state that the controller expects.

Advanced Topics www.ti.com

22 A Basic Guide to I2C SBAA565 – NOVEMBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SBAA565
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBAA565&partnum=DAC80501

Now that the serial clocks are synchronized, arbitration is done on SDA. Both controllers transmit data normally
on SDA, sending their communication to the intended target device. Similar to SCL, SDA is a wired-AND
connection. Figure 6-6 shows arbitration of SDA after clock synchronization.

Controller 2

SDA connection

SDA

(Wired-AND)

SCL

01 0 1

01 1

01 0 1
Controller 1

SDA connection

Controller 1 is low but

controller 2 is high

Controller 1

wins arbitration

Wired-AND SDA

reads low

Controller 2

stops transmission

Figure 6-6. I2C Controller Arbitration

In bus arbitration, the communication continues until there is a noted difference between the data being sent.

In the figure, both devices send the I2C START at the same time. For the first two bits of the transmission, the
data are the same. After the data reaches the third bit, there is a difference as controller 1 sends a 0, while
controller 2 sends a 1. Because both controllers monitor the SDA and SCL lines, the contention is discovered.
Controller 2 discovers that SDA is low despite sending a 1. To preserve the communication on the bus with the
correct wired-AND result, controller 2 releases the bus, while controller 1 wins the arbitration.

www.ti.com Advanced Topics

SBAA565 – NOVEMBER 2022
Submit Document Feedback

A Basic Guide to I2C 23

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SBAA565
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBAA565&partnum=DAC80501

6.2 Clock Stretching
In some I2C target devices, there are situations that the target device controls the SCL serial clock. In those
cases, the target device can slow down the communication. This process is known as clock stretching.

In general, the SCL line and therefore the I2C clock rate, is controlled by the controller. However, there are
instances where the target device is unable to comply with the clock rate. For example, the target device
requires extra time to process a command or send data. In such cases, the target device can slow down the
communication through clock stretching.

With clock stretching, after the controller sends a byte of data in transmission, the target device holds down
SCL longer so that the controller is required to adjust the clock. This manipulation of the SCL is similar to clock
synchronization. The controller monitors SCL and is forced to extend the SCL pulse if SCL is still low after the
controller has released the clock. Any SCL pulse can be clock-stretched by the target device. However, the
general implementation of clock stretching is done with the SCL pulse at the time the ACK bit is sent.

According to the I2C specification, there is no time limit to the target holding down SCL for clock stretching. Other
similar specifications (like SMBus) have time limits for how long SCL can be held low.

Figure 6-7 shows an example of the target device clock stretching SCL. In this example, the controller issues a
START and sends the target device address.

Controller 2

SCL connection

Target device

SCL connection

SCL

(Wired-AND)

Controller sends START condition

and sends target address

Target device detects its address

but wants to clock stretch SCL

During ACK, target device

pulls down on SCL

Controller is forced to hold SCL

high until SCL is released

Resulting wired-AND

SCL is clock-stretched

Figure 6-7. I2C Target Clock Stretching

When the target device recognizes the controller is sending the proper target address, the target device ACKs
the address. If clock stretching is needed to slow down communications, the target device can pull down on SCL
during the ACK. This is the only instance the target device can control the SCL.

When the target device begins clock stretching, SCL remains low even though the controller has released SCL.
Because the target device has control of the clock, the controller cannot continue with the SCL pulse until the
SCL is released by the target. The controller continues to monitor SCL. Once SCL is released high, the controller
can then continue past the ACK of the target device and continue with the next byte transmission. The resulting
wired-AND connection of SCL shows the SCL stretched. Data transmission is delayed by the target device
without disrupting communication.

Advanced Topics www.ti.com

24 A Basic Guide to I2C SBAA565 – NOVEMBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SBAA565
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBAA565&partnum=DAC80501

6.3 Electrical Specifications
The data sheet for every I2C device has electrical specifications that cover the characteristics for the I2C
bus. Because I2C is a common protocol, these specifications are matched from device to device. This section
discusses the electrical characteristics as shown in the I2C specification.

This application note does not go into detail about each of the specifications, but gives an overview of how these
specifications are organized. Data sheets for I2C devices cover specifications on what is needed to operate TI
devices.

As an example, Table 6-2 shows electrical characteristics from the ADS1119 digital input and output for the I2C
digital lines.

Table 6-2. Electrical Characteristics of the ADS1119 Digital Inputs and Outputs
Parameter Test Conditions Minimum Typical Maximum Unit

VIL Logic input level, low DGND 0.3 DVDD V

VIH Logic input level, high 2.3 V ≤ DVDD < 3.0 V,
SCL, SDA, A0, A1, DRDY

0.7 DVDD DVDD + 0.5 V

3.0 V ≤ DVDD ≤ 3.0 V,
SCL, SDA, A0, A1, DRDY

0.7 DVDD 5.5 V

RESET 0.7 DVDD DVDD V

Vhys Hysteresis of Schmitt-
trigger inputs

Fast-mode, fast-mode plus 0.05 DVDD V

VOL Logic output level, low IOL = 3 mA DGND 0.15 0.4 V

IOL Low-level output current VOL = 0.4 V, standard-mode, fast-mode 3 mA

VOL = 0.4 V, fast-mode plus 20

VOL = 0.6 V, fast-mode 6

Ii Input current DGND + 0.1 V < VDigital Input < DVDD – 0.1 V –10 10 μA

Ci Capacitance Each pin 10 pF

Highlighting some of the parameters, the table gives specifications for low-level and high-level input and output
voltages for SCL and SDA. This specifies that each I2C bus line has a voltage range that correctly transmits and
receives high and low levels. This table also gives the minimum output current that the device open drains pull
down on SCL and SDA. There are also specific characteristics depending on the I2C mode used.

In whatever I2C devices used, these SCL and SDA bus line characteristics are found in their respective
data sheets. The data sheets give enough of these characteristics to set up the device correctly. For further
information see the I2C specifications.

6.4 Voltage Level Translation
One common problem with designing large systems is the mixing of different voltage levels within the system.
For example, what happens when the controller and the target device do not run on the same voltage?

Larger systems can have multiple power sources with multiple voltages. These different voltages can power
different I2C controllers and target devices. This section discusses voltage level translation and how these
different I2C voltages interact.

Mismatched voltages in the supply can disrupt communication or even damage a device. The connection of the
pullup resistors determines if the output voltage of one overdrives or underdrives the input of the next device.
The following examples show some of the consequences of the mismatch.

www.ti.com Advanced Topics

SBAA565 – NOVEMBER 2022
Submit Document Feedback

A Basic Guide to I2C 25

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SBAS925
https://www.ti.com
https://www.ti.com/lit/pdf/SBAA565
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBAA565&partnum=DAC80501

6.4.1 Example 1

In Figure 6-8, the controller and the pullups are set to 3.3 V, while the target device is set to 5.0 V.

I
2
C Controller

SDA

SCL

3.3 V

I
2
C Target

SDA

SCL

5.0 V

3.3 V

VCC = 5.0 V

GND

VIH = 0.7 × VCC = 3.5 V

VIL = 0.3 × VCC = 1.5 V

I
2
C Controller

Input Voltage Level

At 3.3 V, controller I
2
C

bus cannot be pulled high

enough to meet the input

high voltage minimum

(VIL) for the target device

3.3 V

Figure 6-8. I2C Pullup Resistor Under-Drives Inputs on Mismatched Bus Voltages

In the I2C specification, there are minimum and maximum voltages required for a digital input voltage to be
accurately interpreted as a digital high or low. For example, the SDA and SCL are interpreted as a digital input
low voltage when the input goes below the maximum 0.3 × VCC. Also, the SDA and SCL are interpreted as
a digital input high voltage when the input goes above the minimum of 0.7 × VCC. This latter specification is
important for the mismatched supplies.

With the pullups tied to the lower supply of 3.3 V, the resistors are never able to pull up higher than the minimum
required voltage of 3.5 V. In this case, neither the SDA, nor the SCL are designed to be high enough to be
received as a digital high. This potentially prevents communication between the devices.

Advanced Topics www.ti.com

26 A Basic Guide to I2C SBAA565 – NOVEMBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SBAA565
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBAA565&partnum=DAC80501

6.4.2 Example 2

In Figure 6-9 the controller is set to 1.8 V, but the pullups and the target device are set to 5.0 V.

I
2
C Controller

SDA

SCL

1.8 V

I
2
C Target

SDA

SCL

5.0 V

5.0 V

Pullup voltage to 5.0 V

may exceed input range

for SDA and SCL for this

I
2
C Controller

Figure 6-9. I2C Pullup Resistor Over-Drives Inputs on Mismatched Bus Voltages

In this example, the I2C bus lines can be pulled up to 5.0 V. However, one of the devices does not tolerate
voltages that high. If the difference between the device voltages are too great, the lower voltage device can be
damaged by the overvoltaged connection.

6.4.3 Example 3

In Figure 6-10, the controller and pullups are set to 5 V, but the target device is set to 3.3 V.

The I2C bus lines are able to be pulled up to 5 V, exceeding the target device supply. However, the target device
has inputs tolerant to higher voltages. This higher tolerance is a feature in some I2C devices. This feature allows
for direct connections between the I2C bus with pullups to the higher voltage supply. Check with the device data
sheets for this possible feature.

I
2
C Controller

SDA

SCL

5.0 V

I
2
C Target

SDA

SCL

3.3 V

5.0 V

SDA, SCL for some

devices can be tolerant

to higher voltages

Figure 6-10. I2C Pullup Resistor Over-Driven on Higher-Voltage Tolerant Lines

As an example, the ADS1115 is just one device that has SDA and SCL lines that are tolerant to voltages
higher than the supply. Looking at the Absolute Maximum Table from the data sheet, the maximum digital input
voltage is 5.5 V, regardless of the supply voltage. With this type of I2C line, the target device can tolerate pullup
voltages higher than the supply. This allows for I2C communication between the devices even with different
supply voltages.

www.ti.com Advanced Topics

SBAA565 – NOVEMBER 2022
Submit Document Feedback

A Basic Guide to I2C 27

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SBAS444
https://www.ti.com
https://www.ti.com/lit/pdf/SBAA565
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBAA565&partnum=DAC80501

6.4.4 Example 4

With mismatched supply voltages, the best option is to use a special device to bridge the two supply voltages.
Figure 6-11 shows an example of using an I2C voltage level translator to bridge the communication between
two different supply voltages. There are two sets of pullups, one for each voltage level. As a common voltage
translator, the PCA9306 allows for communication between different supply levels.

I
2
C Controller

SDA

SCL

VCCA

I
2
C Target

SDA

SCL

VCCB

VCCA VCCB

I
2
C Voltage

Level

Translator

PCA3906

SDA1

SCL1

SDA2

SCL2

Figure 6-11. PCA3906 I2C Voltage Level Translator

6.5 Pullup Resistor Sizing
To design the system so that the bus speed is fast enough to meet the protocol bus speed, calculate the values
for the pullup resistances.

With the open-drain connections of SDA and SCL, transitions from these lines from high to low and from low
to high are dependent on the current sink from the device open-drain connection, the bus capacitance, and
the pullup resistor value. Based on these different parameters, a minimum and maximum resistance can be
calculated for the I2C bus speed.

VCC

Controller 1
SDA

SCL

Controller 2

I
2
C Target

Device 1

I
2
C Target

Device 2

I
2
C Pullup

Resistors

Parasitic

Bus

Capacitance

Open-drain connections on each

device pull current when turned on

Figure 6-12. Factors Affecting Pullup Resistor Sizing

The normal pullup resistor recommendation is 1 kΩ to 10 kΩ. With higher resistances, the I2C communication
is slower. With lower resistances, the I2C communication requires more power. Based on the several different
parameters, a minimum and maximum resistance can be calculated for the I2C bus speed.

Advanced Topics www.ti.com

28 A Basic Guide to I2C SBAA565 – NOVEMBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SBAA565
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBAA565&partnum=DAC80501

Table 6-3 lists some of the parametric characteristics of the I2C bus. The table lists the bit rate of the I2C bus, the
maximum rise time for the bus, and the maximum capacitive load on the bus. All of these parameters are used to
determine the minimum and maximum pullup resistance values.

Table 6-3. Parametric Characteristics From I2C Protocol
Parameter Standard-mode

(MAX)
Fast-mode (MAX) Fast-mode Plus

(MAX)
Unit

fSCL SCLK clock frequency 0 to 100 0 to 400 0 to 1000 kHz

tr Rise time of both SDA and SCL signals 1000 300 120 ns

Cb Capacitive load for each bus line 400 400 550 pF

In addition to these parameters, the I2C input and output voltage minimums and maximums are considered.
Table 6-4 describes these voltages.

Table 6-4. Characteristics of SDA and SCL Input and Output Voltages
Parameter Standard Mode Fast Mode Fast Mode Plus

Unit
MIN MAX MIN MAX MIN MAX

VIL Low-level input voltage –0.5 0.3 × VCC –0.5 0.3 × VCC –0.5 0.3 × VCC V

VIH High-level input voltage 0.7 × VCC VCC + 0.5 0.7 × VCC VCC + 0.5 0.7 × VCC VCC + 0.5 V

VOL Low-level output voltage, 3
mA sink current; VCC > 2 V

0 0.4 0 0.4 0 0.4 V

Low-level output voltage, 3
mA sink current; VCC ≤ 2 V

- - 0 0.2 × VCC 0 0.2 × VCC V

6.5.1 Minimum Pullup Resistance Sizing

Figure 6-13 shows an open drain connection to the I2C bus and the output waveform for SDA or SCL. The SDA
and SCL bus transition low from the current pulling from the device.

VCC

GND
VOL = 0.4 V

SDA, SCL Voltage

Minimum pullup resistance based on VCC

to VOL and the pulldown current IOL

Rp(min) =
(VCC – VOL(max))

IOL

Figure 6-13. Minimum Pullup Resistance Based on Pull-Down Current

The bus line is connected to the VCC voltage when the device releases the SDA or SCL. When active, the device
drain pulls the bus line output to near ground. The output must drop to the output low-level voltage VOL. The
device pulls the bus line low with current IOL. VOL and IOL (the 3-mA current sink) are described in Table 6-4.
Based on this current, calculate the minimum resistance needed for the pullup. If the resistance is smaller, the
output current cannot pull the output voltage of the bus low enough to be recognized as a digital low. This is
shown in Equation 4.RP min = VCC – VOL max / IOL (4)

Solving for the minimum pullup resistance, subtract the output low voltage of 0.4 V from the supply voltage of 3.3
V. Then divide by the current pulled by the bus line of 3 mA. This results in 967 Ω as the minimum resistance.

6.5.2 Maximum Pullup Resistance Sizing

After the open-drain connection releases the output current, pullup resistors pull the bus connection high. The
bus line output waveform has an exponential settling. As the resistor pulls the voltage up from ground, the
voltage settling time is based on the bus capacitance (CB). The maximum pullup resistance is limited by the bus
capacitance because of the I2C standard rise time specification. With a higher resistance, the pullup output rises
too slowly, and does not reach the logical high fast enough.

www.ti.com Advanced Topics

SBAA565 – NOVEMBER 2022
Submit Document Feedback

A Basic Guide to I2C 29

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SBAA565
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBAA565&partnum=DAC80501

VCC

GND

0.7 × VCC

SDA, SCL Voltage Maximum pullup resistance based

on exponential voltage settling

V(t) = (1 – e) × VCC

0.3 × VCC

–t/RC

From the digital input low voltage:

VIL = 0.3 × VCC = (1 – e) × VCC

t1 t2

–t1/RpCb

To the digital input high voltage:

VIL = 0.7 × VCC = (1 – e) × VCC
–t2/RpCb

Figure 6-14. Maximum Pullup Resistance Based on Rise from Pullup and Bus Capacitance

The equation for the exponential settling over time is shown in Equation 5 with the pullup resistance.V t = 1 – e–t/RC × VCC (5)

The rise time is based on the transition from the digital input low voltage (VIL) of 0.3 times the supply voltage
to the digital input high voltage (VIH) of 0.7 times the supply voltage. The rise time is described in Table 6-3
while VIL and VIH are described in Table 6-4. The pullup settling with these parameters results in Equation 6 and
Equation 7.

VIL = 0 .3 × VCC = 1 – e–t1/RPCB × VCC (6)

VIL = 0 . 7 × VCC = 1 – e–t2/RPCB × VCC (7)

From the exponential settling equations, the rise time can be solved in terms of the maximum pullup resistance
and the bus capacitance. In this example, the calculation is for a 400-pF bus capacitance (for the maximum
bus capacitance) and supply voltage of 3.3 V. Equation 8 and Equation 9 solve for the rise time and then the
maximum pullup resistance.tRISE = t2 – t1 = 0 .8473 × RP × CB (8)RP max = tRISE / 0 .8473 × CB (9)

The rise time is dependent on the I2C mode. For this example, the standard mode can be used. Take the rise
time of 1000 nanoseconds and divide by the quantity of 0.8473 times 400 pF. This gives a maximum resistance
of 2.95 kΩ.

With a minimum resistance of 967 Ω and maximum resistance of 2.95 kΩ, these values appear to give a narrow
range for the resistance. However, this small range is because the pullup resistor sizing is calculated to operate
with the maximum standard-mode bus capacitance of 400 pF. This amount of bus capacitance is unusually large
especially for a parasitic capacitance on the board. If the design has a lower bus capacitance (which is likely),
the maximum resistance can be increased, reducing the power dissipated on the I2C bus.

For a more detailed description of I2C pullup resistor calculations see the I2C Bus Pullup Resistor Calculation
application report. An I2C pullup calculator is also found in the Analog Engineer’s Calculator.

Advanced Topics www.ti.com

30 A Basic Guide to I2C SBAA565 – NOVEMBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SLVA689
https://www.ti.com/tool/ANALOG-ENGINEER-CALC
https://www.ti.com
https://www.ti.com/lit/pdf/SBAA565
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBAA565&partnum=DAC80501

7 Protocols Similar to I2C
The I2C specification discusses several other communications protocols based on I2C. These other protocols
can be similar and compatible with I2C communication and can be used for specific applications. Some
protocols also have defined sets of commands and application-specific extensions for their systems. This section
briefly describes the applications for these other protocols, but their systems, applications, and uses are found
elsewhere.

The first of these similar protocols is the Two Wire Interface or TWI. This protocol is basically the same as I2C.
However, there are some minor differences in that TWI does not support a START byte and does not support
high-speed modes. Generally, TWI-compatible devices are expected to be compatible with I2C and the protocol
can be seen with the same logic analyzers.

The System Management bus or SMBus® is a protocol similar to I2C that is tailored to a specific function. SMBus
is commonly used in servers and computer motherboards for power source management. The protocol is very
similar to I2C in the communication protocol, and can be understood by an I2C controller.

The SMBus protocol has some additional features in comparison to I2C. The SMBus can dynamically set
addresses, allowing for quick communications at the start up of a system. Also, the bus has a 35-ms timeout
which prevents one device from indefinitely tying up the bus. The protocol also has a packet error checking for
error detection in data communication. There is an additional line called SMBAlert that is used by target devices
as an interrupt to tell the controller about certain events detected by the target device.

The Power Management bus or PMBus® is a variant of SMBus defined by Intel. PMBus is used in the digital
management of power supplies. This protocol also defines specific commands to retrieve data about voltage,
current, and power in the system.

Intelligent Platform Management Interface or IPMI is another I2C-based protocol. This protocol is used
by baseboard management controllers (BMC) for autonomous computer subsystems for monitoring and
management of the system CPU, firmware, and operating system. The protocol uses a standardized message-
based interface for a computer motherboard or server. The BMC is always running even when the main system
is off. This allows for operation, measurement, and remote management of a system.

There are several other similar protocols discussed in the I2C specifications. Advanced Telecommunications
Computing Architecture (ATCA) is a follow-on to Compact PCI and is used in rack-mounted telecom hardware.
Display Data Channel (DDC) is a monitor or display information protocol used by hosts for control of display
functions. Finally, C-Bus is another protocol that is derived from I2C. As mentioned in the reserved address
section, this protocol is used in some parts of the world for home and building automation, but is generally not
used in the United States.

8 Summary
I2C is a common digital communication standard used in a wide variety of products. The protocol uses a
two-wire communication interface that allows for multiple controllers and multiple target peripheral devices. This
application note described many important aspects of the protocol as a guide to using I2C to communicate with
controller devices.

This application note discussed both the protocol and the physical layer for I2C communications. Because I2C
are often used with data converter devices, examples of communications were provided for a DAC and an
ADC for both writing to and reading from registers. This note also covered many not-so-common aspects of
the protocol, such as clock stretching, fast-mode, and clock stretching which are not commonly implemented in
devices.

The topics presented here were not all covered in depth. However, this application note provides system
designers with a working knowledge of the protocol. Using this information, designers can set up their I2C
systems and debug them when there are communication problems.

www.ti.com Protocols Similar to I2C

SBAA565 – NOVEMBER 2022
Submit Document Feedback

A Basic Guide to I2C 31

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SBAA565
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBAA565&partnum=DAC80501

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 I2C Overview
	1.1 History
	1.2 I2C Speed Modes

	2 I2C Physical Layer
	2.1 Two-Wire Communication
	2.2 Open-Drain Connection
	2.3 Non-Destructive Bus Contention

	3 I2C Protocol
	3.1 I2C START and STOP
	3.2 Logical Ones and Zeros
	3.3 I2C Communication Frames

	4 I2C Examples
	4.1 DAC80501 Example
	4.1.1 DAC80501 DAC Data Register
	4.1.2 DAC80501 I2C Example Write

	4.2 ADS1115 Example
	4.2.1 ADS1115 Configuration Register
	4.2.2 ADS1115 I2C Example Read
	4.2.3 ADS1115 Conversion Result

	5 Reserved Addresses
	5.1 General Call
	5.2 START Byte
	5.3 C-Bus Address, Different Bus Format, Future Purposes
	5.4 HS-Mode Controller Code
	5.5 Device ID
	5.6 10-Bit Target Addressing
	5.6.1 10-Bit Target Addressing Write
	5.6.2 10-Bit Target Addressing Read

	6 Advanced Topics
	6.1 Clock Synchronization and Arbitration
	6.2 Clock Stretching
	6.3 Electrical Specifications
	6.4 Voltage Level Translation
	6.4.1 Example 1
	6.4.2 Example 2
	6.4.3 Example 3
	6.4.4 Example 4

	6.5 Pullup Resistor Sizing
	6.5.1 Minimum Pullup Resistance Sizing
	6.5.2 Maximum Pullup Resistance Sizing

	7 Protocols Similar to I2C
	8 Summary

