TigerData logo
TigerData logo
  • Product

    Tiger Cloud

    Robust elastic cloud platform for startups and enterprises

    Agentic Postgres

    Postgres for Agents

    TimescaleDB

    Postgres for time-series, real-time analytics and events

  • Docs
  • Pricing

    Pricing

    Enterprise Tier

  • Developer Hub

    Changelog

    Benchmarks

    Blog

    Community

    Customer Stories

    Events

    Support

    Integrations

    Launch Hub

  • Company

    Contact us

    About

    Timescale

    Partners

    Security

    Careers

Log InTry for free
Home
AWS Time-Series Database: Understanding Your OptionsStationary Time-Series AnalysisThe Best Time-Series Databases ComparedTime-Series Analysis and Forecasting With Python Alternatives to TimescaleWhat Are Open-Source Time-Series Databases—Understanding Your OptionsWhy Consider Using PostgreSQL for Time-Series Data?Time-Series Analysis in RWhat Is Temporal Data?What Is a Time Series and How Is It Used?Is Your Data Time Series? Data Types Supported by PostgreSQL and TimescaleUnderstanding Database Workloads: Variable, Bursty, and Uniform PatternsHow to Work With Time Series in Python?Tools for Working With Time-Series Analysis in PythonGuide to Time-Series Analysis in PythonUnderstanding Autoregressive Time-Series ModelingCreating a Fast Time-Series Graph With Postgres Materialized Views
Understanding PostgreSQLOptimizing Your Database: A Deep Dive into PostgreSQL Data TypesUnderstanding FROM in PostgreSQL (With Examples)How to Address ‘Error: Could Not Resize Shared Memory Segment’ How to Install PostgreSQL on MacOSUnderstanding FILTER in PostgreSQL (With Examples)Understanding GROUP BY in PostgreSQL (With Examples)PostgreSQL Join Type TheoryA Guide to PostgreSQL ViewsStructured vs. Semi-Structured vs. Unstructured Data in PostgreSQLUnderstanding Foreign Keys in PostgreSQLUnderstanding PostgreSQL User-Defined FunctionsUnderstanding PostgreSQL's COALESCE FunctionUnderstanding SQL Aggregate FunctionsUsing PostgreSQL UPDATE With JOINHow to Install PostgreSQL on Linux5 Common Connection Errors in PostgreSQL and How to Solve ThemUnderstanding HAVING in PostgreSQL (With Examples)How to Fix No Partition of Relation Found for Row in Postgres DatabasesHow to Fix Transaction ID Wraparound ExhaustionUnderstanding LIMIT in PostgreSQL (With Examples)Understanding PostgreSQL FunctionsUnderstanding ORDER BY in PostgreSQL (With Examples)Understanding WINDOW in PostgreSQL (With Examples)Understanding PostgreSQL WITHIN GROUPPostgreSQL Mathematical Functions: Enhancing Coding EfficiencyUnderstanding DISTINCT in PostgreSQL (With Examples)Using PostgreSQL String Functions for Improved Data AnalysisData Processing With PostgreSQL Window FunctionsPostgreSQL Joins : A SummaryUnderstanding OFFSET in PostgreSQL (With Examples)Understanding PostgreSQL Date and Time FunctionsWhat Is Data Compression and How Does It Work?What Is Data Transformation, and Why Is It Important?Understanding the Postgres string_agg FunctionWhat Is a PostgreSQL Left Join? And a Right Join?Understanding PostgreSQL SELECTSelf-Hosted or Cloud Database? A Countryside Reflection on Infrastructure ChoicesUnderstanding ACID Compliance Understanding percentile_cont() and percentile_disc() in PostgreSQLUnderstanding PostgreSQL Conditional FunctionsUnderstanding PostgreSQL Array FunctionsWhat Characters Are Allowed in PostgreSQL Strings?Understanding WHERE in PostgreSQL (With Examples)What Is a PostgreSQL Full Outer Join?What Is a PostgreSQL Cross Join?What Is a PostgreSQL Inner Join?Data Partitioning: What It Is and Why It MattersStrategies for Improving Postgres JOIN PerformanceUnderstanding the Postgres extract() FunctionUnderstanding the rank() and dense_rank() Functions in PostgreSQL
Guide to PostgreSQL PerformanceHow to Reduce Bloat in Large PostgreSQL TablesDesigning Your Database Schema: Wide vs. Narrow Postgres TablesBest Practices for Time-Series Data Modeling: Single or Multiple Partitioned Table(s) a.k.a. Hypertables Best Practices for (Time-)Series Metadata Tables A Guide to Data Analysis on PostgreSQLA Guide to Scaling PostgreSQLGuide to PostgreSQL SecurityHandling Large Objects in PostgresHow to Query JSON Metadata in PostgreSQLHow to Query JSONB in PostgreSQLHow to Use PostgreSQL for Data TransformationOptimizing Array Queries With GIN Indexes in PostgreSQLPg_partman vs. Hypertables for Postgres PartitioningPostgreSQL Performance Tuning: Designing and Implementing Your Database SchemaPostgreSQL Performance Tuning: Key ParametersPostgreSQL Performance Tuning: Optimizing Database IndexesDetermining the Optimal Postgres Partition SizeNavigating Growing PostgreSQL Tables With Partitioning (and More)Top PostgreSQL Drivers for PythonWhen to Consider Postgres PartitioningGuide to PostgreSQL Database OperationsUnderstanding PostgreSQL TablespacesWhat Is Audit Logging and How to Enable It in PostgreSQLGuide to Postgres Data ManagementHow to Index JSONB Columns in PostgreSQLHow to Monitor and Optimize PostgreSQL Index PerformanceSQL/JSON Data Model and JSON in SQL: A PostgreSQL PerspectiveA Guide to pg_restore (and pg_restore Example)PostgreSQL Performance Tuning: How to Size Your DatabaseAn Intro to Data Modeling on PostgreSQLExplaining PostgreSQL EXPLAINWhat Is a PostgreSQL Temporary View?A PostgreSQL Database Replication GuideHow to Compute Standard Deviation With PostgreSQLHow PostgreSQL Data Aggregation WorksBuilding a Scalable DatabaseRecursive Query in SQL: What It Is, and How to Write OneGuide to PostgreSQL Database DesignHow to Use Psycopg2: The PostgreSQL Adapter for Python
Best Practices for Scaling PostgreSQLHow to Design Your PostgreSQL Database: Two Schema ExamplesHow to Handle High-Cardinality Data in PostgreSQLHow to Store Video in PostgreSQL Using BYTEABest Practices for PostgreSQL Database OperationsHow to Manage Your Data With Data Retention PoliciesBest Practices for PostgreSQL AggregationBest Practices for Postgres Database ReplicationHow to Use a Common Table Expression (CTE) in SQLBest Practices for Postgres Data ManagementBest Practices for Postgres PerformanceBest Practices for Postgres SecurityBest Practices for PostgreSQL Data AnalysisTesting Postgres Ingest: INSERT vs. Batch INSERT vs. COPYHow to Use PostgreSQL for Data Normalization
PostgreSQL Extensions: amcheckPostgreSQL Extensions: Unlocking Multidimensional Points With Cube PostgreSQL Extensions: hstorePostgreSQL Extensions: ltreePostgreSQL Extensions: Secure Your Time-Series Data With pgcryptoPostgreSQL Extensions: pg_prewarmPostgreSQL Extensions: pgRoutingPostgreSQL Extensions: pg_stat_statementsPostgreSQL Extensions: Install pg_trgm for Data MatchingPostgreSQL Extensions: Turning PostgreSQL Into a Vector Database With pgvectorPostgreSQL Extensions: Database Testing With pgTAPPostgreSQL Extensions: PL/pgSQLPostgreSQL Extensions: Using PostGIS and Timescale for Advanced Geospatial InsightsPostgreSQL Extensions: Intro to uuid-ossp
Columnar Databases vs. Row-Oriented Databases: Which to Choose?Data Analytics vs. Real-Time Analytics: How to Pick Your Database (and Why It Should Be PostgreSQL)How to Choose a Real-Time Analytics DatabaseUnderstanding OLTPOLAP Workloads on PostgreSQL: A GuideHow to Choose an OLAP DatabasePostgreSQL as a Real-Time Analytics DatabaseWhat Is the Best Database for Real-Time AnalyticsHow to Build an IoT Pipeline for Real-Time Analytics in PostgreSQL
When Should You Use Full-Text Search vs. Vector Search?HNSW vs. DiskANNA Brief History of AI: How Did We Get Here, and What's Next?A Beginner’s Guide to Vector EmbeddingsPostgreSQL as a Vector Database: A Pgvector TutorialUsing Pgvector With PythonHow to Choose a Vector DatabaseVector Databases Are the Wrong AbstractionUnderstanding DiskANNA Guide to Cosine SimilarityStreaming DiskANN: How We Made PostgreSQL as Fast as Pinecone for Vector DataImplementing Cosine Similarity in PythonVector Database Basics: HNSWVector Database Options for AWSVector Store vs. Vector Database: Understanding the ConnectionPgvector vs. Pinecone: Vector Database Performance and Cost ComparisonHow to Build LLM Applications With Pgvector Vector Store in LangChainHow to Implement RAG With Amazon Bedrock and LangChainRetrieval-Augmented Generation With Claude Sonnet 3.5 and PgvectorRAG Is More Than Just Vector SearchPostgreSQL Hybrid Search Using Pgvector and CohereImplementing Filtered Semantic Search Using Pgvector and JavaScriptRefining Vector Search Queries With Time Filters in Pgvector: A TutorialUnderstanding Semantic SearchWhat Is Vector Search? Vector Search vs Semantic SearchText-to-SQL: A Developer’s Zero-to-Hero GuideNearest Neighbor Indexes: What Are IVFFlat Indexes in Pgvector and How Do They WorkBuilding an AI Image Gallery With OpenAI CLIP, Claude Sonnet 3.5, and Pgvector
Understanding IoT (Internet of Things)A Beginner’s Guide to IIoT and Industry 4.0Storing IoT Data: 8 Reasons Why You Should Use PostgreSQLMoving Past Legacy Systems: Data Historian vs. Time-Series DatabaseWhy You Should Use PostgreSQL for Industrial IoT DataHow to Choose an IoT DatabaseHow to Simulate a Basic IoT Sensor Dataset on PostgreSQLFrom Ingest to Insights in Milliseconds: Everactive's Tech Transformation With TimescaleHow Ndustrial Is Providing Fast Real-Time Queries and Safely Storing Client Data With 97 % CompressionHow Hopthru Powers Real-Time Transit Analytics From a 1 TB Table Migrating a Low-Code IoT Platform Storing 20M Records/DayHow United Manufacturing Hub Is Introducing Open Source to ManufacturingBuilding IoT Pipelines for Faster Analytics With IoT CoreVisualizing IoT Data at Scale With Hopara and TimescaleDB
What Is ClickHouse and How Does It Compare to PostgreSQL and TimescaleDB for Time Series?Timescale vs. Amazon RDS PostgreSQL: Up to 350x Faster Queries, 44 % Faster Ingest, 95 % Storage Savings for Time-Series DataWhat We Learned From Benchmarking Amazon Aurora PostgreSQL ServerlessTimescaleDB vs. Amazon Timestream: 6,000x Higher Inserts, 5-175x Faster Queries, 150-220x CheaperHow to Store Time-Series Data in MongoDB and Why That’s a Bad IdeaPostgreSQL + TimescaleDB: 1,000x Faster Queries, 90 % Data Compression, and Much MoreEye or the Tiger: Benchmarking Cassandra vs. TimescaleDB for Time-Series Data
Alternatives to RDSWhy Is RDS so Expensive? Understanding RDS Pricing and CostsEstimating RDS CostsHow to Migrate From AWS RDS for PostgreSQL to TimescaleAmazon Aurora vs. RDS: Understanding the Difference
5 InfluxDB Alternatives for Your Time-Series Data8 Reasons to Choose Timescale as Your InfluxDB Alternative InfluxQL, Flux, and SQL: Which Query Language Is Best? (With Cheatsheet)What InfluxDB Got WrongTimescaleDB vs. InfluxDB: Purpose Built Differently for Time-Series Data
5 Ways to Monitor Your PostgreSQL DatabaseHow to Migrate Your Data to Timescale (3 Ways)Postgres TOAST vs. Timescale CompressionBuilding Python Apps With PostgreSQL: A Developer's GuideData Visualization in PostgreSQL With Apache SupersetMore Time-Series Data Analysis, Fewer Lines of Code: Meet HyperfunctionsIs Postgres Partitioning Really That Hard? An Introduction To HypertablesPostgreSQL Materialized Views and Where to Find ThemTimescale Tips: Testing Your Chunk Size
Postgres cheat sheet
HomeTime series basicsPostgres basicsPostgres guidesPostgres best practicesPostgres extensionsPostgres for real-time analytics
Sections

Postgres overview

Understanding PostgreSQLOptimizing Your Database: A Deep Dive into PostgreSQL Data Types

Postgres errors

How to Address ‘Error: Could Not Resize Shared Memory Segment’ 5 Common Connection Errors in PostgreSQL and How to Solve ThemHow to Fix No Partition of Relation Found for Row in Postgres DatabasesHow to Fix Transaction ID Wraparound Exhaustion

Install postgres

How to Install PostgreSQL on LinuxHow to Install PostgreSQL on MacOS

Postgres clauses

Understanding FROM in PostgreSQL (With Examples)Understanding FILTER in PostgreSQL (With Examples)Understanding HAVING in PostgreSQL (With Examples)Understanding GROUP BY in PostgreSQL (With Examples)Understanding LIMIT in PostgreSQL (With Examples)Understanding ORDER BY in PostgreSQL (With Examples)Understanding WINDOW in PostgreSQL (With Examples)Understanding PostgreSQL WITHIN GROUPUnderstanding DISTINCT in PostgreSQL (With Examples)Understanding WHERE in PostgreSQL (With Examples)Understanding OFFSET in PostgreSQL (With Examples)

Postgres joins

PostgreSQL Joins : A SummaryWhat Is a PostgreSQL Full Outer Join?What Is a PostgreSQL Cross Join?What Is a PostgreSQL Inner Join?What Is a PostgreSQL Left Join? And a Right Join?PostgreSQL Join Type TheoryStrategies for Improving Postgres JOIN Performance

Postgres operations

A Guide to PostgreSQL ViewsData Partitioning: What It Is and Why It MattersWhat Is Data Compression and How Does It Work?Self-Hosted or Cloud Database? A Countryside Reflection on Infrastructure Choices

More

Understanding ACID Compliance Structured vs. Semi-Structured vs. Unstructured Data in PostgreSQLUnderstanding Foreign Keys in PostgreSQL

Postgres functions

Understanding PostgreSQL FunctionsPostgreSQL Mathematical Functions: Enhancing Coding EfficiencyUsing PostgreSQL String Functions for Improved Data AnalysisData Processing With PostgreSQL Window FunctionsUnderstanding PostgreSQL Date and Time FunctionsUnderstanding the Postgres string_agg FunctionUnderstanding PostgreSQL User-Defined FunctionsUnderstanding PostgreSQL's COALESCE FunctionUnderstanding SQL Aggregate FunctionsUnderstanding percentile_cont() and percentile_disc() in PostgreSQLUnderstanding PostgreSQL Conditional FunctionsUnderstanding PostgreSQL Array FunctionsUnderstanding the Postgres extract() FunctionUnderstanding the rank() and dense_rank() Functions in PostgreSQL

Postgres statements

Understanding PostgreSQL SELECTUsing PostgreSQL UPDATE With JOINWhat Characters Are Allowed in PostgreSQL Strings?

Data analysis

What Is Data Transformation, and Why Is It Important?

Products

Time Series and Analytics AI and Vector Enterprise Plan Cloud Status Support Security Cloud Terms of Service

Learn

Documentation Blog Forum Tutorials Changelog Success Stories Time Series Database

Company

Contact Us Careers About Brand Community Code Of Conduct Events

Subscribe to the Tiger Data Newsletter

By submitting, you acknowledge Tiger Data's Privacy Policy

2025 (c) Timescale, Inc., d/b/a Tiger Data. All rights reserved.

Privacy preferences
LegalPrivacySitemap

Published at Mar 6, 2024

Using PostgreSQL String Functions for Improved Data Analysis

PostgreSQL holds a special place in database management with its robust set of built-in functions. Among these, PostgreSQL string functions are particularly noteworthy due to their ability to manipulate and transform text data within the database.

For developers working on any product, software, or technology involving data handling, mastering PostgreSQL string functions can bring significant benefits.

Learn how to create, call, list, and edit Postgres functions.

The Benefits of PostgreSQL String Functions

Faster query performance

PostgreSQL string functions allow developers to perform complex operations directly within the database, reducing the data transfer between the database and the application.

This leads to faster query performance, as the database server handles the computational load, which is typically more powerful and better equipped for such tasks than the application server.

Better data validation

Data validation is a critical aspect of any application that deals with user input. PostgreSQL string functions provide developers with a set of tools for checking, cleaning, and transforming this input. Functions like LENGTH(), TRIM(), SUBSTRING(), and REGEXP_REPLACE() can be used to ensure that the input data meets specific criteria, thereby enhancing the reliability and integrity of the application's data.

Improved data analysis capabilities

PostgreSQL string functions can be used to extract meaningful information from text data, facilitating more sophisticated data analysis. For example, the SPLIT_PART() function can be used to split a string into an array based on a delimiter, and the POSITION() function can be used to find the position of a substring within a string. 

These functions can be combined in various ways to extract insights from raw text data, opening up new possibilities for data analysis within the database.

List of PostgreSQL String Functions

ASCII

The ASCII(text) function returns the ASCII value of the first character of the text. For example:

SELECT ASCII('A');  -- Returns: 65

CONCAT

The CONCAT(arg1, arg2, ...) function concatenates two or more strings into one string. For instance:

SELECT CONCAT('Post', 'greSQL');  -- Returns: 'PostgreSQL'

CHR

The CHR(code) function returns the character associated with the specified ASCII code. For example: SELECT CHR(65);  -- Returns: 'A'

FORMAT

The FORMAT(format_string, argument,...) function formats strings according to the given format string. For instance: SELECT FORMAT('%s %s', 'Hello', 'World');  -- Returns: 'Hello World'

LEFT

The LEFT(string, count) function extracts a substring from a string (from the left). For example: SELECT LEFT('PostgreSQL', 4);  -- Returns: 'Post'

LENGTH

The LENGTH(string) function returns the number of characters in a string. For instance: SELECT LENGTH('PostgreSQL');  -- Returns: 10

LPAD

The LPAD(string, length, fill_text) function pads a string on the left with a specified fill text. For example: SELECT LPAD('SQL', 10, '*');  -- Returns: '*******SQL'

MD5

The MD5(text) function calculates the MD5 hash of a string. For instance: SELECT MD5('PostgreSQL');  -- Returns: MD5 hash of 'PostgreSQL'

POSITION

The POSITION(substring IN string) function returns the position of the first occurrence of a substring in a string. For example: SELECT POSITION('gre' IN 'PostgreSQL');  -- Returns: 5

REGEXP_MATCHES

The REGEXP_MATCHES(string, pattern) function searches for a regular expression pattern in a string and returns the matched substrings. For instance: SELECT REGEXP_MATCHES('100-200', '\d+');  -- Returns: {'100'}

REGEXP_REPLACE

The REGEXP_REPLACE(source, pattern, replacement) function replaces substrings that match a regular expression pattern with a replacement string. For example: SELECT REGEXP_REPLACE('PostgreSQL', 'Post', 'Pre');  -- Returns: 'PregreSQL'

RIGHT

The RIGHT(string, count) function extracts a substring from a string (from the right). For instance: SELECT RIGHT('PostgreSQL', 3);  -- Returns: 'SQL'

REPLACE

The REPLACE(string, target, replacement) function replaces all occurrences of a target substring with a replacement string. For example: SELECT REPLACE('PostgreSQL', 'Post', 'Pre');  -- Returns: 'PregreSQL'

SPLIT_PART

The SPLIT_PART(string, delimiter, field_number) function splits a string at each occurrence of a specified delimiter and returns the part at a given field number. For instance: SELECT SPLIT_PART('PostgreSQL', 't', 2);  -- Returns: 'greSQL'

SUBSTRING

The SUBSTRING(string, start, count) function extracts a substring from a string starting at a specified position for a certain count of characters. For example: SELECT SUBSTRING('PostgreSQL', 5, 3);  -- Returns: 'gre'

TRANSLATE

The TRANSLATE(string, from_text, to_text) function replaces each character in a string that matches a character in the from text with the corresponding character in the to text. For instance:

SELECT TRANSLATE('12345', '123', 'abc');  -- Returns: 'abc45'

TRIM

The TRIM([leading | trailing | both] [characters FROM] string) function removes the longest string containing only the characters (or spaces by default) from the beginning/end/both ends of a string. For example:

SELECT TRIM('   PostgreSQL ');  -- Returns: 'PostgreSQL'

TO_CHAR

The TO_CHAR(value, format) function converts a number or date to a string according to a specific format. For instance:

SELECT TO_CHAR(12345, '99999');  -- Returns: '12345'

TO_NUMBER

The TO_NUMBER(text, format) function converts a string to a number according to a specific format. For example:

SELECT TO_NUMBER('12,345.67', '99G999D99');  -- Returns: 12345.67

Further Reading

Mastering PostgreSQL string functions is a worthwhile investment for any developer working with data. The benefits—faster query performance, better data validation, and improved data analysis capabilities—have a direct impact on the efficiency and effectiveness of your applications. 

By leveraging these functions, you can harness the full power of PostgreSQL and take your database skills to the next level. Want to learn more about PostgreSQL functions? Visit the official PostgreSQL documentation.

Use Timescale Functions for Hyper Speed and Ease 

Now that you’ve learned the basics of PostgreSQL functions, it’s time for a better alternative. Hyperfunctions are a series of SQL functions within TimescaleDB that make it easier to manipulate and analyze time-series data in PostgreSQL with fewer lines of code. 

You can use hyperfunctions to calculate percentile approximations of data, compute time-weighted averages, downsample and smooth data, and perform faster COUNT DISTINCT queries using approximations. Moreover, hyperfunctions are simple to use: you call a hyperfunction using the same SQL syntax you know and love. 

Learn more about hyperfunctions on our Docs page, or keep reading to learn about PostgreSQL mathematical functions.

On this page