机器学习框架及评估指标详解

本文详细介绍了机器学习中的评估指标,包括分类模型的混淆矩阵、ROC曲线、AUC、错误率、精度、查准率、查全率、P-R曲线、F1度量,以及回归模型的均方误差、MAE、MAPE、RMSE、R Square等。此外,还讨论了交叉验证的重要性和模型保存,以及解决过拟合的方法,如L1正则化和特征选择算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评论 43
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王小王-123

您觉得舒心就点一点吧~~~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值