随机森林

随机森林是一种集成学习方法,通过构建多个决策树并取多数投票或平均值来提高分类和回归的准确性。它引入了随机性以降低过拟合风险,能够处理高维数据且无需特征选择。随机森林具有训练速度快、准确率高、可并行化等优点,但也存在模型解释性差和资源消耗大的问题。在构建过程中,采用自助法采样、OOB数据评估,以及通过调整样本数量、最大深度、类别比例等参数来优化模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大纲
随机森林思想的提出
随机森林的基本概念
随机森林的结构
随机森林的优缺点
随机森林学习过程

1. 随机森林思想的提出
由于决策树(DT)会产生过拟合现象,导致泛化能力变弱,美国贝尔实验室大牛采用随机森林(RF)投票机制来改善决策树

2. 随机森林的基本概念
随机森林(Random Forests):是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。(将投票次数最多的类别指定为最终的输出)

在这里插入图片描述
3. 随机森林的结构
在这里插入图片描述
1)随机森林是集成学习的一个子类。
它是基于Bagging的集成学习方法,可以用来做分类、回归等问题。
2)集成学习通过建立几个模型组合的来解决单一预测问题

随机森林的优点:

具有极高的准确率
两个随机性的引入,使得随机森林不容易过拟合
两个随机性的引入,使得随机森林有很好的抗噪声能力
能处理很高维度的数据,并且不用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值