大纲 |
---|
随机森林思想的提出 |
随机森林的基本概念 |
随机森林的结构 |
随机森林的优缺点 |
随机森林学习过程 |
1. 随机森林思想的提出
由于决策树(DT)会产生过拟合现象,导致泛化能力变弱,美国贝尔实验室大牛采用随机森林(RF)投票机制来改善决策树
2. 随机森林的基本概念
随机森林(Random Forests):是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。(将投票次数最多的类别指定为最终的输出)
3. 随机森林的结构
1)随机森林是集成学习的一个子类。
它是基于Bagging的集成学习方法,可以用来做分类、回归等问题。
2)集成学习通过建立几个模型组合的来解决单一预测问题
随机森林的优点:
具有极高的准确率
两个随机性的引入,使得随机森林不容易过拟合
两个随机性的引入,使得随机森林有很好的抗噪声能力
能处理很高维度的数据,并且不用