描述
传说很遥远的藏宝楼顶层藏着诱人的宝藏。小明历尽千辛万苦终于找到传说中的这个藏 宝楼,藏宝楼的门口竖着一个木板,上面写有几个大字:寻宝说明书。说明书的内容如下:
藏宝楼共有 N+1 层,最上面一层是顶层,顶层有一个房间里面藏着宝藏。除了顶层外,藏宝楼另有 N 层,每层 M 个房间,这 M 个房间围成一圈并按逆时针方向依次编号为 0,…, M-1。其中一些房间有通往上一层的楼梯,每层楼的楼梯设计可能不同。每个房间里有一个指示牌,指示牌上有一个数字 x,表示从这个房间开始按逆时针方向选择第 x 个有楼梯的房间(假定该房间的编号为 k),从该房间上楼,上楼后到达上一层的 k 号房间。比如当前房间的指示牌上写着 2,则按逆时针方向开始尝试,找到第 2 个有楼梯的房间,从该房间上楼。如果当前房间本身就有楼梯通向上层,该房间作为第一个有楼梯的房间。
寻宝说明书的最后用红色大号字体写着:“寻宝须知:帮助你找到每层上楼房间的指示牌上的数字(即每层第一个进入的房间内指示牌上的数字)总和为打开宝箱的密钥”。
请帮助小明算出这个打开宝箱的密钥。
输入
第一行 2 个整数 N 和 M,之间用一个空格隔开。N 表示除了顶层外藏宝楼共 N 层楼, M 表示除顶层外每层楼有 M 个房间。
接下来 N*M 行,每行两个整数,之间用一个空格隔开,每行描述一个房间内的情况,其中第(i-1)*M+j 行表示第 i 层 j-1 号房间的情况(i=1, 2, …, N;j=1, 2, … ,M)。第一个整数表示该房间是否有楼梯通往上一层(0 表示没有,1 表示有),第二个整数表示指示牌上的数字。注意,从 j 号房间的楼梯爬到上一层到达的房间一定也是 j 号房间。
最后一行,一个整数,表示小明从藏宝楼底层的几号房间进入开始寻宝(注:房间编号从 0 开始)。
对于50%数据,有 0< N ≤ 1000,0 < x ≤ 10000;
对于100%数据,有 0 < N ≤ 10000,0 < M ≤ 100,0 < x ≤ 1,000,000。
输出
输出只有一行,一个整数,表示打开宝箱的密钥,这个数可能会很大,请输出对 20123 取模的结果即可。
样例输入
2 3
1 2
0 3
1 4
0 1
1 5
1 2
1
样例输出
5
提示
输入输出样例说明:
第一层:
0 号房间,有楼梯通往上层,指示牌上的数字是 2;
1 号房间,无楼梯通往上层,指示牌上的数字是 3;
2 号房间,有楼梯通往上层,指示牌上的数字是 4;
第二层:
0 号房间,无楼梯通往上层,指示牌上的数字是 1;
1 号房间,有楼梯通往上层,指示牌上的数字是 5;
2 号房间,有楼梯通往上层,指示牌上的数字是 2;
小明首先进入第一层(底层)的 1 号房间,记下指示牌上的数字为 3,然后从这个房间 开始,沿逆时针方向选择第 3 个有楼梯的房间 2 号房间进入,上楼后到达第二层的 2 号房间, 记下指示牌上的数字为 2,由于当前房间本身有楼梯通向上层,该房间作为第一个有楼梯的房间。因此,此时沿逆时针方向选择第 2 个有楼梯的房间即为 1 号房间,进入后上楼梯到达 顶层。这时把上述记下的指示牌上的数字加起来,即 3+2=5,所以打开宝箱的密钥就是 5。
我的解题
一开始是用的whele循环,没想到一直是 Time Limit Exceeded
之后看别人的才发现要减少循环,比如指示牌上的数特别大时,根本不用每一个都遍历。取模就好
注意
- 要判断好现在位置是否有楼梯
- scanf和printf输入输出
- 逆时针方向就是数字增加的方向
代码
#include <iostream>
using namespace std;
int isHave[10001][101],flag[10001][101],all[10001];
//三个分别是是否有楼梯,门牌上的数,一层上总的楼梯数
int main(){
int N,M;
cin>>N>>M;
for (int i = 0; i < N; ++i) {
for (int j = 0; j < M; ++j) {
scanf("%d %d",&isHave[i][j],&flag[i][j]);
if(isHave[i][j]){
all[i]++;
}
}
}
int first;
long long num=0;
cin>>first;
for (int i = 0; i < N; ++i) {
int temp=(flag[i][first]-1)%all[i]+1;
//temp即是本楼层上需要循环的数
num+=flag[i][first];
int aaa=(isHave[i][first])?1:0;
while (aaa<temp){
if(first==M-1) {
first=0;
}else{
first++;
}
if(isHave[i][first]){
aaa++;
}
}
// cout<<first<<endl;
}
printf("%d",num%20123);
}