多模态视觉模型:CLIP与ALIGN如何连接图文?
多模态视觉模型:CLIP与ALIGN如何连接图文?
在人工智能领域,实现图像和文本两种模态信息的有效关联与交互,一直是研究的热点和难点。模态视觉模型旨在打破图像与文本之间的 “语义鸿沟”,让计算机能够理解图像与文本背后的语义联系。CLIP(Contrastive Language-Image Pretraining)和 ALIGN(A Large-scale In-domain Generalized Representations from Transformers)作为其中的代表性模型,通过创新的训练方式和架构设计,在图文连接任务上取得了显著成果,为多模态研究开辟了新的道路。本文将深入剖析 CLIP 与 ALIGN 的工作原理,结合详细的代码示例,揭示它们是如何实现图文连接的,并对两者进行对比分析。