双顶堆算法求中位数——从LeetCode题海中总结常见套路

前言:双顶堆算法求是非常经典的一种求中位数算法,是堆必知必会的经典知识点。具体来说,就是如何求出数据流中的中位数。数据流的特点是高速插入,数据会不断涌入结构中,那么也就面临着需要多次动态调整以获得中位数。我们需要保证最大效率的情况下求出中位数,当然不能全部记录下来排序后求出中位数,这样每次插入都要排序一遍,非常消耗资源,当然最理想是用一个二叉搜索树来实现,但是面试的时候手撕二叉搜索树,难度颇大。本文介绍如何用一个大顶堆和一个小顶堆,实现求出数据流的中位数。

方法简介

我们用一个大顶堆+小顶堆的形式来求出中位数,控制所有小于等于中位数的数字放到一个堆中,控制所有比中位数大的数字放到另一个堆中,并且保证两个堆的数目相差小于等于1。这样就可以保证每一次查询中位数的时候,答案一定出于两个堆的堆顶元素之一。

LeetCode 295. 数据流的中位数

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沉迷单车的追风少年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值