前言:2020年顶会同时出现了两篇很有意思的论文《Self-Supervised Sketch-to-Image Synthesis》和《Unsupervised Sketch-to-Photo Synthesis》,分别用自监督和无监督的方法做sketch-to-image生成,可以说是GANs在这一任务中表现的巅峰。
目录
主要贡献
1、以一种自我监督学习的方式研究了基于范例的草图到图像(s2i)综合任务,消除了配对草图数据的必要性。
2、利用合成的配对数据,提出了一个自我监督的自动编码器(AE),从草图和RGB图像中解耦内容/风格特征,合成出既符合草图内容又符合rgb图像风格的图像。
3、为了进一步提高高分辨率的合成质量,我们还利用对抗网络来细化合成图像的细节。
4、利用所提出的草图生成器,该模型在风格混合和风格转移方面表现出良好的性能,这要求合成的图像既具有风格一致性,又具有语义意义。