[论文笔记]自监督sketch-to-image生成:Self-Supervised Sketch-to-Image Synthesis

这篇博客介绍了自监督学习在Sketch-to-Image生成任务中的应用,提出了一种新的域转换模型TOM,无需配对草图数据。文章详述了模型的主要贡献、工作原理,包括风格和内容编码器,以及整体流程。此外,还讨论了模型在风格混合和转移方面的性能,并分享了作者的复现经验与个人感悟。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言:2020年顶会同时出现了两篇很有意思的论文《Self-Supervised Sketch-to-Image Synthesis》和《Unsupervised Sketch-to-Photo Synthesis》,分别用自监督和无监督的方法做sketch-to-image生成,可以说是GANs在这一任务中表现的巅峰。

目录

主要贡献

主要工作

域转换模型TOM

PS:边缘图、铅笔画图、草图sketch之间的区别

整体流程

​编辑

风格编码器​编辑

内容编码器​编辑

总loss

论文复现

在线体验

代码地址

数据集下载

TOM运行结果

论文地址和代码

个人感悟

参考


主要贡献

 1、以一种自我监督学习的方式研究了基于范例的草图到图像(s2i)综合任务,消除了配对草图数据的必要性。

2、利用合成的配对数据,提出了一个自我监督的自动编码器(AE),从草图和RGB图像中解耦内容/风格特征,合成出既符合草图内容又符合rgb图像风格的图像。

3、为了进一步提高高分辨率的合成质量,我们还利用对抗网络来细化合成图像的细节。

4、利用所提出的草图生成器,该模型在风格混合和风格转移方面表现出良好的性能,这要求合成的图像既具有风格一致性,又具有语义意义。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沉迷单车的追风少年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值