【Diffusion 视频生成】Tune-A-Video: One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation

Tune-A-Video提出了一种新的文本到视频生成方法,仅需一个文本-视频样本进行训练。它利用稀疏时空注意力机制和结构引导的反向过程,提高时间一致性。代码解读包括Transformer3DModel、BasicTransformerBlock和UNet3DConditionModel的改进。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Diffusion Models专栏文章汇总:入门与实战

前言:Tune-A-Video提出了一个新的文本-视频任务:One-Shot视频生成,能够在视频对象编辑、背景编辑、风格转换、可控生成等领域取得了非常好的效果。这篇博客详细解读Tune-A-Video的论文和代码,希望能对做扩散模型视频生成的读者们有所帮助。

目录

贡献概述

方法详解

稀疏时空注意机制

反向过程的结构引导

论文和代码

代码解读

Transformer3DModel

注意力机制 BasicTransformerBlock

改进后的Unet结构UNet3DConditionModel

个人感悟


贡献概述

Tune-A-Video提出了一个新的文本-视频任务:One-Shot视频生成,即只有一个单一的文本-视频样本对用于训练文本-视频生成器。

博主认为这篇论文的两个主要创新点:

### 微调Stable Diffusion 2.1模型 微调Stable Diffusion 2.1模型通常涉及准备数据集、设置环境以及调整超参数的过程。以下是关于如何实现这一目标的具体说明: #### 数据集准备 为了成功微调Stable Diffusion 2.1,需要创建一个高质量的数据集来训练模型。该数据集应包含图像及其对应的标签或描述性文本[^1]。这些文本将用于指导扩散过程中的条件生成。 ```bash mkdir dataset cp /path/to/images/*.jpg ./dataset/ ``` 对于每张图片,还需要提供相应的caption文件或者通过预训练模型自动生成captions。例如,可以利用Waifu Diffusion 1.4来进行自动化标注工作[^2]。 #### 安装依赖项 确保安装所有必要的软件包以支持稳定扩散框架的操作。这包括但不限于PyTorch、Transformers以及其他辅助工具链。 ```bash pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 pip install diffusers transformers accelerate safetensors bitsandbytes xformers gradio ``` 如果计划采用GPU加速,则需确认CUDA驱动程序已正确配置并测试其兼容性。 #### 配置训练脚本 编写Python脚本来定义具体的训练流程逻辑。下面是一个简单的例子展示如何加载基础权重并启动finetuning阶段: ```python from diffusers import UNet2DConditionModel, AutoencoderKL, DDPMScheduler, PNDMScheduler, StableDiffusionPipeline import torch from datasets import load_dataset from torch.utils.data import DataLoader from tqdm.auto import tqdm from transformers import CLIPTextModel, CLIPTokenizer def main(): tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", subfolder="tokenizer") text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", subfolder="text_encoder").to("cuda") vae = AutoencoderKL.from_pretrained("stabilityai/stable-diffusion-2-1-base", subfolder="vae").to("cuda") unet = UNet2DConditionModel.from_pretrained("stabilityai/stable-diffusion-2-1-base", subfolder="unet").to("cuda") noise_scheduler = DDPMScheduler(beta_start=0.00085, beta_end=0.012, num_train_timesteps=1000) train_dataset = load_dataset('my_custom_dataset', split='train') dataloader = DataLoader(train_dataset, batch_size=1, shuffle=True) optimizer = torch.optim.AdamW(unet.parameters(), lr=5e-6) epochs = 2 for epoch in range(epochs): progress_bar = tqdm(total=len(dataloader)) progress_bar.set_description(f"Epoch {epoch}") for step, batch in enumerate(dataloader): with torch.no_grad(): captions = [item['caption'] for item in batch] tokenized_inputs = tokenizer(captions, padding="max_length", truncation=True, max_length=77, return_tensors="pt").input_ids.to("cuda") encoder_hidden_states = text_encoder(tokenized_inputs)[0] noisy_latents = ... loss = ... optimizer.zero_grad() loss.backward() optimizer.step() progress_bar.update(1) if __name__ == "__main__": main() ``` 上述代码片段展示了基本的pipeline结构,其中省略了一些细节部分以便于理解整体架构设计思路。 #### 调整超参与评估性能 在实际操作过程中,可能需要多次迭代尝试不同的学习率、批次大小及其他关键因素组合方案直至达到满意效果为止。此外还可以考虑引入早停机制防止过拟合现象发生。 ---
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沉迷单车的追风少年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值