LeetCode_回溯_中等_1774.最接近目标价格的甜点成本

本文介绍了一种通过回溯算法来解决甜点成本最接近目标值的问题。在给定的冰激凌基料和配料成本中,寻找组合使得总成本最接近目标值,若有多个解则返回成本较低者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.题目

你打算做甜点,现在需要购买配料。目前共有 n 种冰激凌基料和 m 种配料可供选购。而制作甜点需要遵循以下几条规则:

  • 必须选择 一种 冰激凌基料。
  • 可以添加 一种或多种 配料,也可以不添加任何配料。
  • 每种类型的配料 最多两份 。

给你以下三个输入:

  • baseCosts ,一个长度为 n 的整数数组,其中每个 baseCosts[i] 表示第 i 种冰激凌基料的价格。
  • toppingCosts,一个长度为 m 的整数数组,其中每个 toppingCosts[i] 表示 一份 第 i 种冰激凌配料的价格。
  • target ,一个整数,表示你制作甜点的目标价格。

你希望自己做的甜点总成本尽可能接近目标价格 target 。返回最接近 target 的甜点成本。如果有多种方案,返回成本相对较低的一种

示例 1:
输入:baseCosts = [1,7], toppingCosts = [3,4], target = 10
输出:10
解释:考虑下面的方案组合(所有下标均从 0 开始):

  • 选择 1 号基料:成本 7
  • 选择 1 份 0 号配料:成本 1 x 3 = 3
  • 选择 0 份 1 号配料:成本 0 x 4 = 0
    总成本:7 + 3 + 0 = 10。

示例 2:
输入:baseCosts = [2,3], toppingCosts = [4,5,100], target = 18
输出:17
解释:考虑下面的方案组合(所有下标均从 0 开始):

  • 选择 1 号基料:成本 3
  • 选择 1 份 0 号配料:成本 1 x 4 = 4
  • 选择 2 份 1 号配料:成本 2 x 5 = 10
  • 选择 0 份 2 号配料:成本 0 x 100 = 0
    总成本:3 + 4 + 10 + 0 = 17。不存在总成本为 18 的甜点制作方案。

示例 3:
输入:baseCosts = [3,10], toppingCosts = [2,5], target = 9
输出:8
解释:可以制作总成本为 8 和 10 的甜点。返回 8 ,因为这是成本更低的方案。

示例 4:
输入:baseCosts = [10], toppingCosts = [1], target = 1
输出:10
解释:注意,你可以选择不添加任何配料,但你必须选择一种基料。

提示:
n == baseCosts.length
m == toppingCosts.length
1 <= n, m <= 10
1 <= baseCosts[i], toppingCosts[i] <= 104
1 <= target <= 104

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/closest-dessert-cost

2.思路

(1)回溯
思路参考本题官方题解

3.代码实现(Java)

//思路1————回溯
class Solution {

    int res;

    public int closestCost(int[] baseCosts, int[] toppingCosts, int target) {
        // 初始化 res,其值为数组 baseCosts 中的最小值
        res = Arrays.stream(baseCosts).min().getAsInt();
        for (int baseCost : baseCosts) {
            backtrack(toppingCosts, 0, baseCost, target);
        }
        return res;
    }

    public void backtrack(int[] toppingCosts, int index, int curCost, int target) {
        if (curCost - target > Math.abs(res - target)) {
            return;
        } else if (Math.abs(curCost - target) <= Math.abs(res - target)) {
            //更新 res
            if (Math.abs(curCost - target) < Math.abs(res - target)) {
                res = curCost;
            } else {
                res = Math.min(res, curCost);
            }
        }
        if (index == toppingCosts.length) {
            return;
        }
        //添加 0、1、2 种配料
        backtrack(toppingCosts, index + 1, curCost, target);
        backtrack(toppingCosts, index + 1, curCost + toppingCosts[index], target);
        backtrack(toppingCosts, index + 1, curCost + toppingCosts[index] * 2, target);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

代码星辰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值