Jordan矩阵的求法:
求一个矩阵的Jordan矩阵,先要求其特征值,一般情况下该矩阵会有重根,否则Jordan矩阵就太容易求了,直接把所有的特征值写在主对角元上,其余位置补零即可。
在遇到重根时就要解得该重根对应的特征向量,根据特征向量的个数判断该重根对应的Jordan块是哪种形式。比如一个二重根对应的特征向量只有一个,则该重根对应的Jordan块就是一个二阶矩阵;若该二重根对应的特征向量有两个,则该重根对应的Jordan块就是两个一阶的矩阵。
可逆矩阵的求法:
在求可逆矩阵时,同样要先求得特征值,再对每一个特征值求其对应的特征向量,若特征值无重根,则将所有特征值对应的特征向量组成一个矩阵即可。如果有重根,且该重根对应的特征向量个数少于根的重数,就要在已求得的特征向量的基础上求所需的广义特征向量。(下面的例子中会有体现)
最小多项式的求法:
最小多项式是由特征值和其对应的Jordan块的阶数共同决定的。
对角化的判断:
对角化的判断是在最小多项式的基础上进行判断的,即方阵相似于对角阵的充要条件是该方阵的最小多项式无重根。
以上这些问题的求解是密切相关的,下面通过一个例子来帮助理解。
Jordan矩阵、可逆矩阵、最小多项式的求法,对角化的判断
最新推荐文章于 2023-12-10 23:00:41 发布