Jordan矩阵、可逆矩阵、最小多项式的求法,对角化的判断

本文介绍了如何求解Jordan矩阵及可逆矩阵的方法,包括求特征值、特征向量,并讨论了如何根据特征向量的数量确定Jordan块的形式。此外,还探讨了最小多项式的求法以及如何判断矩阵是否可以对角化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Jordan矩阵的求法:
求一个矩阵的Jordan矩阵,先要求其特征值,一般情况下该矩阵会有重根,否则Jordan矩阵就太容易求了,直接把所有的特征值写在主对角元上,其余位置补零即可。
在遇到重根时就要解得该重根对应的特征向量,根据特征向量的个数判断该重根对应的Jordan块是哪种形式。比如一个二重根对应的特征向量只有一个,则该重根对应的Jordan块就是一个二阶矩阵;若该二重根对应的特征向量有两个,则该重根对应的Jordan块就是两个一阶的矩阵。
可逆矩阵的求法:
在求可逆矩阵时,同样要先求得特征值,再对每一个特征值求其对应的特征向量,若特征值无重根,则将所有特征值对应的特征向量组成一个矩阵即可。如果有重根,且该重根对应的特征向量个数少于根的重数,就要在已求得的特征向量的基础上求所需的广义特征向量。(下面的例子中会有体现)
最小多项式的求法:
最小多项式是由特征值和其对应的Jordan块的阶数共同决定的。
对角化的判断:
对角化的判断是在最小多项式的基础上进行判断的,即方阵相似于对角阵的充要条件是该方阵的最小多项式无重根。
以上这些问题的求解是密切相关的,下面通过一个例子来帮助理解。
请添加图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

西岸贤

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值