数据结构_根据先序和中序构建二叉树(C语言)

本文介绍如何利用先序遍历和中序遍历序列构建一棵二叉树,并通过图解和源代码详细说明了构建过程。文章还提供了一个C语言实现的示例,展示了递归构建二叉树的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据结构总目录

根据先序和中序构建二叉树

1. 建立过程图解

假设我们已知先序序列《ABCDEFG》和中序序列《CDBAEFG》,则我们可以构建出如下一颗二叉树
在这里插入图片描述
构建规则分析
(1)已知先序序列(根、左、右)和中序序列(左、根、右)的遍历顺序
(2)由先序序列的第一个数据是根节点,可得中序序列中的根节点位置
(3)由中序根节点位置,可确定左右两边的子序列分别为左子树和右子树序列
在这里插入图片描述
在这里插入图片描述

2. 区间计算

具体左子树和右子树的划分计算如下:
第一步:由先序序列可知

  • 第一个结点必定为根结点,而后可以在中序序列中查找出根结点的位置root

在这里插入图片描述

第二步:根据中序结点的根节点位置root,可得

  1. 中序左子树的区间范围为【L2,root - 1】,中序右子树的区间范围为【root + 1,R2】
  2. 中序左子树区间长度 :X= root - L2,中序右子树区间长度:Y = R2 - root

在这里插入图片描述

第三步:根据中序序列的左子树和右子树区间可得

  1. X = 先序左子树区间长度 = 中序左子树区间长度 = root - L2
  2. Y = 先序右子树区间长度 = 中序右子树区间长度 = R2 - root
  3. 先序左子树区间为【L1 + 1,L1 + 左子树区间长度】 = 【L1 + 1,L1 + (root - L2)】
  4. 先序右子树区间为【R1 - 左子树区间长度 + 1,R1】 = 【R1 - (R2 - root) + 1,R1】

在这里插入图片描述

3. 源代码

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

typedef char DataType;
typedef struct BiTNode
{
    DataType data;
    struct BiTNode *lchild, *rchild;
}LinkBiTree;


// 根据先序、中序序列构建二叉树 
void CreateBiTree(LinkBiTree **T, char *PreStr, char *InStr, int L1, int R1, int L2, int R2)
{
    /* int i;
    printf("先序序列:");
    for (i = L1; i <= R1; i++){printf("%c ", PreStr[i]);}
    printf("\n中序序列:");
    for (i = L2; i <= R2; i++){printf("%c ", InStr[i]);}
    printf("\n"); */

    // 创建新的结点
    (*T) = (LinkBiTree *)malloc(sizeof(LinkBiTree));
    // 新结点数据为设置 先序序列 的第一个数据,即根节点数据
    (*T)->data = PreStr[L1];

    // 根据先序第一个元素为根结点元素,寻找中序序列中的根结点位置
    int root;
    for (root = 0; root <= R2; root++)
    {
        if (PreStr[L1] == InStr[root])
        {
            printf("先序序列根节点(%c)在中序的位置 = %d\n", PreStr[L1], root);
            break;
        }
    }

    
    
    // 判断中序序列中<root>的左边是否存在左子序列
    if (root - L2 != 0)
    {
        // 划分两个区间,先序序列左子树区间 和 中序序列左子树区间,递归构建左子树
        
        /* printf("\t划分先序序列的左子树区间:[%d, %d] = > ", L1 + 1, L1 + (root - L2));
        for (i = L1 + 1; i <= L1 + (root - L2); i++){printf("%c ", PreStr[i]);}
        printf("\n");
        
        printf("\t划分中序序列的左子树区间:[%d, %d] = > ", L2, root - 1);
        for (i = L2; i <= root - 1; i++){printf("%c ", InStr[i]);}
        printf("\n"); */

        CreateBiTree(&(*T)->lchild, PreStr, InStr, L1 + 1, L1 + (root - L2), L2, root - 1);
    }
    else
    {
        (*T)->lchild = NULL;
    }
    
    // 判断中序序列中<root>的右边是否存在右子序列
    if (R2 - root != 0)
    {
        // 划分两个区间,先序序列右子树区间 和 中序序列右子树区间,递归构建右子树

        /* printf("\t划分先序序列的右子树区间:[%d, %d] = > ", L1 + 1, L1 + (root - L2));
        for (i = R1 - (R2 - root) + 1; i <= R1; i++){printf("%c ", PreStr[i]);}
        printf("\n");
        
        printf("\t划分中序序列的右子树区间:[%d, %d] = > ", L2, root - 1);
        for (i = root + 1; i <=  R2; i++){printf("%c ", InStr[i]);}
        printf("\n"); */
        
        CreateBiTree(&(*T)->rchild, PreStr, InStr, R1 - (R2 - root) + 1, R1, root + 1, R2);
    }
    else
    {
        (*T)->rchild = NULL;
    }
}

// 后序遍历二叉树
void PostOrderTraverse(LinkBiTree *T)
{
    if (T)
    {
        PostOrderTraverse(T->lchild);
        PostOrderTraverse(T->rchild);
        printf("%c ", T->data);
    }
}


int main()
{
    char PreStr[30], InStr[30];

    // 参考用例:ABCDEFG
    printf("请输入先序序列:");	//测试用例:ABDEHJKLMNCFGI
    scanf("%s", PreStr);
    //参考用例:CBDAEFG
    printf("请输入中序序列:");	//测试用例:DBJHLKMNEAFCGI
    scanf("%s", InStr);

    int len1 = strlen(PreStr);
    int len2 = strlen(InStr);

    LinkBiTree *T;
    CreateBiTree(&T, PreStr, InStr, 0, len1 - 1, 0, len2 - 1);


    printf("后序遍历二叉树:");
    PostOrderTraverse(T);
    printf("\n");

    return 0;
}

4. 测试结果

在这里插入图片描述

评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小-黯

免费的,尽力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值