背景意义
研究背景与意义
桃树作为一种重要的经济作物,广泛种植于全球多个地区,其果实不仅富含营养,而且在市场上具有较高的经济价值。然而,桃树在生长过程中容易受到多种病害的侵袭,严重影响其产量和果实质量。根据研究,主要的桃树病害包括细菌性斑点病(ManchaBaterial)、红锈病(Roya)和桃树腐烂病(Taphrina),这些病害不仅会导致果实腐烂、树体枯萎,还可能造成严重的经济损失。因此,及时、准确地检测和识别这些病害,对于提高桃树的产量和质量具有重要的现实意义。
近年来,随着计算机视觉技术的迅猛发展,基于深度学习的图像识别方法逐渐成为农业病害检测的重要工具。YOLO(You Only Look Once)系列模型因其高效的实时检测能力,已被广泛应用于各种物体检测任务。特别是YOLOv11的改进版本,结合了更先进的特征提取和处理技术,能够在复杂的环境中实现更高的检测精度和速度。因此,基于改进YOLOv11的桃树病害检测系统的构建,能够有效提升病害识别的准确性和效率,为果农提供及时的决策支持。
本研究将利用包含4000张标注图像的数据集,涵盖了三种主要的桃树病害类别。通过对数据集的深入分析与处理,结合改进的YOLOv11模型,旨在开发出一套高效的桃树病害检测系统。该系统不仅能够实时监测桃树的健康状况,还能为农业管理提供科学依据,促进可持续农业的发展。通过本项目的实施,期望能够为桃树种植者提供更为精准的病害检测工具,降低病害损失,提高经济效益,从而推动桃树产业的健康发展。
图片效果
数据集信息
本项目数据集信息介绍
本项目旨在开发一个改进版的YOLOv11桃树病害检测系统,所使用的数据集名为“peach-diseasesUSFX-”。该数据集专注于桃树病害的识别与分类,涵盖了三种主要的病害类型,分别为“ManchaBaterial”(细菌斑点病)、“Roya”(桃树锈病)和“Taphrina”(桃树腐烂病)。这些病害在桃树的生长过程中常常造成严重的经济损失,因此,准确的病害检测对于提高桃树的产量和质量至关重要。
数据集中包含了大量的标注图像,这些图像均经过精细的标注,以确保在训练过程中模型能够学习到有效的特征。每一类病害的样本数量均衡,旨在提高模型对不同病害的识别能力。数据集中的图像来源于不同的生长环境和气候条件,确保了模型的泛化能力,使其能够在多样化的实际应用场景中表现良好。
在数据预处理阶段,我们对图像进行了标准化处理,包括尺寸调整、颜色增强和噪声去除等,以提升模型的训练效果。此外,数据集还包含了一些图像的增强版本,以增加样本的多样性,进一步提高模型的鲁棒性。通过使用该数据集进行训练,我们期望能够构建一个高效、准确的桃树病害检测系统,从而为果农提供及时的病害预警,帮助他们采取有效的防治措施,最终实现农业生产的可持续发展。
核心代码
以下是提取出的核心代码部分,并附上详细的中文注释:
import torch
import torch.nn as nn
import numpy as np
from torch.nn import Dropout, Softmax, Conv2d, LayerNorm
class Channel_Embeddings(nn.Module):
“”“构建来自图像块和位置的嵌入。”“”
def init(self, patchsize, img_size, in_channels):
super().init()
img_size = (img_size, img_size) # 将图像大小转换为元组
patch_size = (patchsize, patchsize) # 将补丁大小转换为元组
n_patches = (img_size[0] // patch_size[0]) * (img_size[1] // patch_size[1]) # 计算补丁数量
# 使用最大池化和卷积层构建补丁嵌入
self.patch_embeddings = nn.Sequential(
nn.MaxPool2d(kernel_size=5, stride=5),
Conv2d(in_channels=in_channels,
out_channels=in_channels,
kernel_size=patchsize // 5,
stride=patchsize // 5)
)
# 初始化位置嵌入
self.position_embeddings = nn.Parameter(torch.zeros(1, n_patches, in_channels))
self.dropout = Dropout(0.1) # dropout层,防止过拟合
def forward(self, x):
"""前向传播函数,计算嵌入。"""
if x is None:
return None
x = self.patch_embeddings(x) # 计算补丁嵌入
x = x.flatten(2) # 将张量展平
x = x.transpose(-1, -2) # 转置张量
embeddings = x + self.position_embeddings # 加上位置嵌入
embeddings = self.dropout(embeddings) # 应用dropout
return embeddings
class Attention_org(nn.Module):
“”“实现多头注意力机制。”“”
def init(self, vis, channel_num):
super(Attention_org, self).init()
self.vis = vis # 可视化标志
self.KV_size = sum(channel_num) # 键值对的大小
self.channel_num = channel_num # 通道数
self.num_attention_heads = 4 # 注意力头的数量
# 初始化查询、键、值的线性变换
self.query = nn.ModuleList([nn.Linear(c, c, bias=False) for c in channel_num])
self.key = nn.Linear(self.KV_size, self.KV_size, bias=False)
self.value = nn.Linear(self.KV_size, self.KV_size, bias=False)
self.softmax = Softmax(dim=3) # softmax层
self.attn_dropout = Dropout(0.1) # 注意力dropout
self.proj_dropout = Dropout(0.1) # 投影dropout
def forward(self, *embeddings):
"""前向传播函数,计算注意力输出。"""
multi_head_Q = [query(emb) for query, emb in zip(self.query, embeddings) if emb is not None]
multi_head_K = self.key(torch.cat(embeddings, dim=2)) # 将所有嵌入拼接并计算键
multi_head_V = self.value(torch.cat(embeddings, dim=2)) # 将所有嵌入拼接并计算值
# 计算注意力分数
attention_scores = [torch.matmul(Q, multi_head_K) / np.sqrt(self.KV_size) for Q in multi_head_Q]
attention_probs = [self.softmax(score) for score in attention_scores] # 计算注意力概率
# 应用dropout
attention_probs = [self.attn_dropout(prob) for prob in attention_probs]
context_layers = [torch.matmul(prob, multi_head_V) for prob in attention_probs] # 计算上下文层
# 线性变换和dropout
outputs = [self.proj_dropout(layer) for layer in context_layers]
return outputs
class Mlp(nn.Module):
“”“多层感知机。”“”
def init(self, in_channel, mlp_channel):
super(Mlp, self).init()
self.fc1 = nn.Linear(in_channel, mlp_channel) # 第一层线性变换
self.fc2 = nn.Linear(mlp_channel, in_channel) # 第二层线性变换
self.act_fn = nn.GELU() # 激活函数
self.dropout = Dropout(0.0) # dropout层
def forward(self, x):
"""前向传播函数。"""
x = self.fc1(x) # 线性变换
x = self.act_fn(x) # 激活
x = self.dropout(x) # 应用dropout
x = self.fc2(x) # 线性变换
return x
class ChannelTransformer(nn.Module):
“”“通道变换器。”“”
def init(self, channel_num=[64, 128, 256, 512], img_size=640, vis=False, patchSize=[40, 20, 10, 5]):
super().init()
self.embeddings = nn.ModuleList([Channel_Embeddings(patchSize[i], img_size // (2 ** (i + 2)), channel_num[i]) for i in range(len(channel_num))])
self.encoder = Encoder(vis, channel_num) # 编码器
self.reconstruct = nn.ModuleList([Reconstruct(channel_num[i], channel_num[i], kernel_size=1, scale_factor=(patchSize[i], patchSize[i])) for i in range(len(channel_num))]) # 重构层
def forward(self, en):
"""前向传播函数。"""
embeddings = [emb(en[i]) for i, emb in enumerate(self.embeddings) if en[i] is not None] # 计算嵌入
encoded = self.encoder(*embeddings) # 编码
reconstructed = [recon(enc) + en[i] for i, (recon, enc) in enumerate(zip(self.reconstruct, encoded)) if en[i] is not None] # 重构
return reconstructed # 返回重构结果
代码说明
Channel_Embeddings: 该类用于将输入图像分割成多个补丁,并为每个补丁添加位置嵌入。它使用卷积和最大池化来提取特征。
Attention_org: 实现了多头注意力机制,能够处理多个输入嵌入,计算注意力分数并生成上下文层。
Mlp: 定义了一个简单的多层感知机,包含两个线性层和一个激活函数。
ChannelTransformer: 该类整合了嵌入、编码和重构的过程,负责整个模型的前向传播。它将输入图像通过嵌入层、编码器和重构层处理,最终返回重构后的结果。
这个程序文件 CTrans.py 实现了一个基于通道变换器(Channel Transformer)的深度学习模型,主要用于图像处理任务。该模型的结构包括多个模块,以下是对各个部分的详细说明。
首先,文件导入了一些必要的库,包括 torch 和 torch.nn,这些库提供了构建神经网络所需的基础组件。接着,定义了一个名为 Channel_Embeddings 的类,该类用于构建图像的嵌入表示。它通过最大池化和卷积操作将输入图像划分为多个补丁,并为每个补丁生成位置嵌入,最后将补丁嵌入与位置嵌入相加,并应用 dropout 以防止过拟合。
接下来是 Reconstruct 类,它的作用是重建图像。该类接收经过变换的嵌入,利用卷积层和上采样操作将嵌入转换回图像空间,并通过批归一化和激活函数进行处理。
Attention_org 类实现了一个多头注意力机制。它通过查询(query)、键(key)和值(value)矩阵来计算注意力分数,并使用 softmax 函数生成注意力权重。这个类支持多个通道的输入,并通过 dropout 来提高模型的鲁棒性。
Mlp 类定义了一个多层感知机(MLP),用于在嵌入空间中进行非线性变换。它包含两个全连接层和一个激活函数(GELU),并在每个层后应用 dropout。
Block_ViT 类是一个包含注意力机制和前馈网络的模块。它首先对输入的嵌入进行层归一化,然后通过注意力层和前馈网络进行处理,最后将结果与原始输入相加,形成残差连接。
Encoder 类则由多个 Block_ViT 组成,负责对输入的嵌入进行编码。它在每个块之后应用层归一化,并在需要时记录注意力权重。
ChannelTransformer 类是整个模型的核心,初始化时接收通道数、图像大小、可视化标志和补丁大小等参数。它包含多个嵌入层、编码器和重建层。模型的前向传播过程包括生成嵌入、编码、重建和加上原始输入,以实现图像的变换。
最后,GetIndexOutput 类用于从模型的输出中提取特定索引的结果,便于后续处理。
总体而言,这个程序文件实现了一个复杂的深度学习模型,结合了通道注意力机制和多层感知机,旨在提高图像处理任务的性能。
10.4 RFAConv.py
以下是代码中最核心的部分,并附上详细的中文注释:
import torch
import torch.nn as nn
from einops import rearrange
class h_sigmoid(nn.Module):
“”“实现h-sigmoid激活函数”“”
def init(self, inplace=True):
super(h_sigmoid, self).init()
self.relu = nn.ReLU6(inplace=inplace) # 使用ReLU6作为基础
def forward(self, x):
return self.relu(x + 3) / 6 # h-sigmoid的公式
class h_swish(nn.Module):
“”“实现h-swish激活函数”“”
def init(self, inplace=True):
super(h_swish, self).init()
self.sigmoid = h_sigmoid(inplace=inplace) # 使用h-sigmoid作为基础
def forward(self, x):
return x * self.sigmoid(x) # h-swish的公式
class RFAConv(nn.Module):
“”“实现RFAConv模块”“”
def init(self, in_channel, out_channel, kernel_size, stride=1):
super().init()
self.kernel_size = kernel_size
# 权重生成模块
self.get_weight = nn.Sequential(
nn.AvgPool2d(kernel_size=kernel_size, padding=kernel_size // 2, stride=stride),
nn.Conv2d(in_channel, in_channel * (kernel_size ** 2), kernel_size=1, groups=in_channel, bias=False)
)
# 特征生成模块
self.generate_feature = nn.Sequential(
nn.Conv2d(in_channel, in_channel * (kernel_size ** 2), kernel_size=kernel_size, padding=kernel_size // 2, stride=stride, groups=in_channel, bias=False),
nn.BatchNorm2d(in_channel * (kernel_size ** 2)),
nn.ReLU()
)
# 最终卷积层
self.conv = nn.Conv2d(in_channel, out_channel, kernel_size=kernel_size, stride=kernel_size)
def forward(self, x):
b, c = x.shape[0:2] # 获取输入的批量大小和通道数
weight = self.get_weight(x) # 生成权重
h, w = weight.shape[2:] # 获取特征图的高和宽
weighted = weight.view(b, c, self.kernel_size ** 2, h, w).softmax(2) # 对权重进行softmax处理
feature = self.generate_feature(x).view(b, c, self.kernel_size ** 2, h, w) # 生成特征
weighted_data = feature * weighted # 加权特征
conv_data = rearrange(weighted_data, 'b c (n1 n2) h w -> b c (h n1) (w n2)', n1=self.kernel_size, n2=self.kernel_size) # 重排数据
return self.conv(conv_data) # 返回卷积结果
class SE(nn.Module):
“”“实现Squeeze-and-Excitation模块”“”
def init(self, in_channel, ratio=16):
super(SE, self).init()
self.gap = nn.AdaptiveAvgPool2d((1, 1)) # 全局平均池化
self.fc = nn.Sequential(
nn.Linear(in_channel, ratio, bias=False), # 压缩通道
nn.ReLU(),
nn.Linear(ratio, in_channel, bias=False), # 恢复通道
nn.Sigmoid() # 使用sigmoid激活
)
def forward(self, x):
b, c = x.shape[0:2] # 获取输入的批量大小和通道数
y = self.gap(x).view(b, c) # 进行全局平均池化并调整形状
y = self.fc(y).view(b, c, 1, 1) # 通过全连接层
return y # 返回通道注意力
class RFCBAMConv(nn.Module):
“”“实现RFCBAMConv模块”“”
def init(self, in_channel, out_channel, kernel_size=3, stride=1):
super().init()
self.kernel_size = kernel_size
self.generate = nn.Sequential(
nn.Conv2d(in_channel, in_channel * (kernel_size ** 2), kernel_size, padding=kernel_size // 2, stride=stride, groups=in_channel, bias=False),
nn.BatchNorm2d(in_channel * (kernel_size ** 2)),
nn.ReLU()
)
self.get_weight = nn.Sequential(nn.Conv2d(2, 1, kernel_size=3, padding=1, bias=False), nn.Sigmoid()) # 权重生成
self.se = SE(in_channel) # Squeeze-and-Excitation模块
self.conv = nn.Conv2d(in_channel, out_channel, kernel_size=kernel_size, stride=kernel_size) # 最终卷积层
def forward(self, x):
b, c = x.shape[0:2] # 获取输入的批量大小和通道数
channel_attention = self.se(x) # 计算通道注意力
generate_feature = self.generate(x) # 生成特征
h, w = generate_feature.shape[2:] # 获取特征图的高和宽
generate_feature = generate_feature.view(b, c, self.kernel_size ** 2, h, w) # 调整形状
generate_feature = rearrange(generate_feature, 'b c (n1 n2) h w -> b c (h n1) (w n2)', n1=self.kernel_size, n2=self.kernel_size) # 重排数据
unfold_feature = generate_feature * channel_attention # 加权特征
max_feature, _ = torch.max(generate_feature, dim=1, keepdim=True) # 最大特征
mean_feature = torch.mean(generate_feature, dim=1, keepdim=True) # 平均特征
receptive_field_attention = self.get_weight(torch.cat((max_feature, mean_feature), dim=1)) # 感受野注意力
conv_data = unfold_feature * receptive_field_attention # 加权后的特征
return self.conv(conv_data) # 返回卷积结果
class RFCAConv(nn.Module):
“”“实现RFCAConv模块”“”
def init(self, inp, oup, kernel_size, stride=1, reduction=32):
super(RFCAConv, self).init()
self.kernel_size = kernel_size
self.generate = nn.Sequential(
nn.Conv2d(inp, inp * (kernel_size ** 2), kernel_size, padding=kernel_size // 2, stride=stride, groups=inp, bias=False),
nn.BatchNorm2d(inp * (kernel_size ** 2)),
nn.ReLU()
)
self.pool_h = nn.AdaptiveAvgPool2d((None, 1)) # 自适应平均池化(高度)
self.pool_w = nn.AdaptiveAvgPool2d((1, None)) # 自适应平均池化(宽度)
mip = max(8, inp // reduction) # 中间通道数
self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0) # 1x1卷积
self.bn1 = nn.BatchNorm2d(mip) # 批归一化
self.act = h_swish() # h-swish激活函数
self.conv_h = nn.Conv2d(mip, inp, kernel_size=1, stride=1, padding=0) # 高度卷积
self.conv_w = nn.Conv2d(mip, inp, kernel_size=1, stride=1, padding=0) # 宽度卷积
self.conv = nn.Conv2d(inp, oup, kernel_size, stride=kernel_size) # 最终卷积层
def forward(self, x):
b, c = x.shape[0:2] # 获取输入的批量大小和通道数
generate_feature = self.generate(x) # 生成特征
h, w = generate_feature.shape[2:] # 获取特征图的高和宽
generate_feature = generate_feature.view(b, c, self.kernel_size ** 2, h, w) # 调整形状
generate_feature = rearrange(generate_feature, 'b c (n1 n2) h w -> b c (h n1) (w n2)', n1=self.kernel_size, n2=self.kernel_size) # 重排数据
x_h = self.pool_h(generate_feature) # 高度池化
x_w = self.pool_w(generate_feature).permute(0, 1, 3, 2) # 宽度池化并调整维度
y = torch.cat([x_h, x_w], dim=2) # 合并池化结果
y = self.conv1(y) # 通过1x1卷积
y = self.bn1(y) # 批归一化
y = self.act(y) # 激活
h, w = generate_feature.shape[2:] # 获取特征图的高和宽
x_h, x_w = torch.split(y, [h, w], dim=2) # 分割池化结果
x_w = x_w.permute(0, 1, 3, 2) # 调整维度
a_h = self.conv_h(x_h).sigmoid() # 高度注意力
a_w = self.conv_w(x_w).sigmoid() # 宽度注意力
return self.conv(generate_feature * a_w * a_h) # 返回加权后的卷积结果
代码说明
激活函数:
h_sigmoid 和 h_swish 是自定义的激活函数,分别实现了 h-sigmoid 和 h-swish。
RFAConv:
该模块通过生成特征和权重来实现加权卷积,利用了自适应的权重生成机制。
SE (Squeeze-and-Excitation):
该模块通过全局平均池化和全连接层实现通道注意力机制,增强了网络对重要特征的关注。
RFCBAMConv:
该模块结合了通道注意力和感受野注意力,进一步提升了特征提取的能力。
RFCAConv:
该模块通过高度和宽度的自适应池化来生成特征,并结合注意力机制来优化卷积结果。
这些模块可以在深度学习模型中用作特征提取和增强的组件,提升模型的性能。
这个程序文件 RFAConv.py 定义了一些用于卷积神经网络的模块,主要包括 RFAConv、RFCBAMConv 和 RFCAConv。这些模块通过不同的方式实现了特征提取和通道注意力机制,以增强网络的表达能力。
首先,文件中引入了必要的库,包括 PyTorch 和一些自定义的卷积模块。接着,定义了两个激活函数类 h_sigmoid 和 h_swish,它们分别实现了硬 sigmoid 和硬 swish 激活函数。这些激活函数在深度学习中用于引入非线性特性。
接下来是 RFAConv 类的定义。这个类的构造函数接收输入通道数、输出通道数、卷积核大小和步幅。它内部定义了两个主要的操作:get_weight 和 generate_feature。get_weight 通过平均池化和卷积操作生成权重,而 generate_feature 则用于生成特征图。forward 方法中,输入数据经过这两个操作后,生成的特征图与权重相乘,最后通过卷积层输出结果。
SE 类实现了 Squeeze-and-Excitation 模块,用于增强通道间的关系。它通过全局平均池化和全连接层来计算通道注意力,并将其应用于输入特征图。
RFCBAMConv 类是一个结合了 RFAConv 和 SE 模块的复合模块。它在构造函数中定义了特征生成和权重获取的过程,并在 forward 方法中将通道注意力与生成的特征结合,最终通过卷积层输出结果。
最后,RFCAConv 类实现了一个更复杂的卷积模块,结合了空间和通道注意力机制。它通过生成特征图、池化操作和卷积层来计算注意力,并将结果应用于输入特征图。该模块的设计旨在提高网络对不同空间和通道特征的敏感性。
总体来说,这个文件中的模块通过不同的卷积和注意力机制,旨在提升卷积神经网络在图像处理任务中的性能,特别是在特征提取和通道关系建模方面。
源码文件
源码获取
欢迎大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻