背景意义
研究背景与意义
随着全球经济的发展和人们生活水平的提高,水果消费需求日益增长。然而,水果在生产、运输和储存过程中,常常会受到各种缺陷的影响,如腐烂、裂纹和霉变等。这些缺陷不仅影响了水果的外观和口感,还可能对消费者的健康造成威胁。因此,开发高效的水果缺陷检测系统显得尤为重要。传统的人工检测方法不仅耗时耗力,而且容易受到主观因素的影响,难以保证检测的准确性和一致性。
近年来,计算机视觉技术的快速发展为水果缺陷检测提供了新的解决方案。尤其是基于深度学习的目标检测算法,如YOLO(You Only Look Once),因其高效性和准确性,逐渐成为水果缺陷检测的主流方法。YOLOv11作为YOLO系列的最新版本,结合了更先进的网络结构和训练策略,能够在复杂环境中实现实时的目标检测。然而,针对水果缺陷的特定需求,YOLOv11仍需进行改进和优化,以提高其在实际应用中的表现。
本研究旨在基于改进的YOLOv11模型,构建一个高效的水果缺陷检测系统。我们将使用包含1200张图像的多类别数据集,涵盖新鲜和有缺陷的水果,如新鲜的石榴、裂纹和霉变的水果等。这一数据集不仅提供了丰富的样本,还涵盖了多种水果的不同缺陷类型,为模型的训练和评估提供了良好的基础。通过对YOLOv11的改进,我们期望能够提高模型对水果缺陷的检测精度和速度,从而为水果的质量控制和市场监管提供有力支持。最终,该系统的成功应用将有助于提升水果产业的整体效率,保障消费者的健康,推动农业现代化的发展。
图片效果
数据集信息
本项目数据集信息介绍
本项目旨在开发一个改进的YOLOv11水果缺陷检测系统,专注于对水果的质量评估与缺陷识别。为实现这一目标,我们构建了一个专门的数据集,名为“fmaaa”,该数据集包含四个主要类别,分别是“Pomegranate__bad”(坏石榴)、“Pomegranate__fresh”(新鲜石榴)、“crack”(裂纹)和“moled”(霉变)。这些类别的选择基于市场需求和水果质量控制的实际应用,旨在帮助农民、供应链管理者以及消费者更好地识别和处理水果的缺陷。
数据集中包含大量高质量的图像,这些图像涵盖了不同生长阶段、光照条件和背景环境下的石榴。每个类别的样本均经过精心挑选,确保数据的多样性和代表性,从而提高模型的泛化能力。坏石榴的图像展示了腐烂、变色等特征,而新鲜石榴则展现了其自然的色泽和完整的外观。裂纹和霉变类别则通过特写镜头清晰地捕捉到水果表面的细微缺陷,为模型训练提供了丰富的样本。
在数据集的构建过程中,我们注重数据的标注精度,确保每一张图像都经过专业人员的仔细审核,以减少误标和漏标的情况。这种高质量的标注为后续的模型训练提供了坚实的基础,使得YOLOv11能够在检测水果缺陷时表现出更高的准确性和效率。通过使用“fmaaa”数据集,我们期望能够提升水果缺陷检测系统的性能,为水果行业的智能化发展贡献力量。
核心代码
以下是代码中最核心的部分,并附上详细的中文注释:
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
class Mask(nn.Module):
def init(self, size):
super().init()
# 初始化一个可学习的参数weight,大小为size,值在-1到1之间均匀分布
self.weight = torch.nn.Parameter(data=torch.Tensor(*size), requires_grad=True)
self.weight.data.uniform_(-1, 1)
def forward(self, x):
# 使用sigmoid函数将weight值限制在0到1之间
w = torch.sigmoid(self.weight)
# 将输入x与mask相乘,得到加权后的输出
masked_wt = w.mul(x)
return masked_wt
class LoRAConvsByWeight(nn.Module):
def init(self, in_channels: int, out_channels: int, big_kernel, small_kernel, stride=1, group=1, bn=True, use_small_conv=True):
super().init()
self.kernels = (small_kernel, big_kernel) # 存储小卷积核和大卷积核的大小
self.stride = stride
self.small_conv = use_small_conv
# 计算填充和索引
padding, after_padding_index, index = self.shift(self.kernels)
self.pad = padding, after_padding_index, index
self.nk = math.ceil(big_kernel / small_kernel) # 计算需要的卷积核数量
out_n = out_channels * self.nk # 输出通道数
# 创建小卷积层
self.split_convs = nn.Conv2d(in_channels, out_n, kernel_size=small_kernel, stride=stride, padding=padding, groups=group, bias=False)
# 创建两个Mask层
self.lora1 = Mask((1, out_n, 1, 1))
self.lora2 = Mask((1, out_n, 1, 1))
self.use_bn = bn
# 如果需要,创建BatchNorm层
if bn:
self.bn_lora1 = nn.BatchNorm2d(out_channels)
self.bn_lora2 = nn.BatchNorm2d(out_channels)
else:
self.bn_lora1 = None
self.bn_lora2 = None
def forward(self, inputs):
# 通过小卷积层得到输出
out = self.split_convs(inputs)
# 获取输入的高度和宽度
*_, ori_h, ori_w = inputs.shape
# 通过lora1和lora2进行前向传播
lora1_x = self.forward_lora(self.lora1(out), ori_h, ori_w, VH='H', bn=self.bn_lora1)
lora2_x = self.forward_lora(self.lora2(out), ori_h, ori_w, VH='W', bn=self.bn_lora2)
# 将两个lora的输出相加
x = lora1_x + lora2_x
return x
def forward_lora(self, out, ori_h, ori_w, VH='H', bn=None):
# 将输出按组分割
b, c, h, w = out.shape
out = torch.split(out.reshape(b, -1, self.nk, h, w), 1, 2) # 将输出重塑并分割
x = 0
for i in range(self.nk):
# 重新排列数据
outi = self.rearrange_data(out[i], i, ori_h, ori_w, VH)
x = x + outi # 累加结果
if self.use_bn:
x = bn(x) # 如果使用BatchNorm,进行归一化
return x
def rearrange_data(self, x, idx, ori_h, ori_w, VH):
# 根据索引重新排列数据
padding, _, index = self.pad
x = x.squeeze(2) # 去掉维度为1的维度
*_, h, w = x.shape
k = min(self.kernels)
ori_k = max(self.kernels)
ori_p = ori_k // 2
stride = self.stride
# 计算填充和开始点
if (idx + 1) >= index:
pad_l = 0
s = (idx + 1 - index) * (k // stride)
else:
pad_l = (index - 1 - idx) * (k // stride)
s = 0
if VH == 'H':
# 水平方向的处理
suppose_len = (ori_w + 2 * ori_p - ori_k) // stride + 1
pad_r = 0 if (s + suppose_len) <= (w + pad_l) else s + suppose_len - w - pad_l
new_pad = (pad_l, pad_r, 0, 0)
dim = 3
else:
# 垂直方向的处理
suppose_len = (ori_h + 2 * ori_p - ori_k) // stride + 1
pad_r = 0 if (s + suppose_len) <= (h + pad_l) else s + suppose_len - h - pad_l
new_pad = (0, 0, pad_l, pad_r)
dim = 2
# 根据需要进行填充
if len(set(new_pad)) > 1:
x = F.pad(x, new_pad)
# 处理填充
if padding * 2 + 1 != k:
pad = padding - k // 2
if VH == 'H':
x = torch.narrow(x, 2, pad, h - 2 * pad)
else:
x = torch.narrow(x, 3, pad, w - 2 * pad)
xs = torch.narrow(x, dim, s, suppose_len) # 按照计算的开始点和长度进行切片
return xs
def shift(self, kernels):
# 计算填充和索引
mink, maxk = min(kernels), max(kernels)
mid_p = maxk // 2
offset_idx_left = mid_p % mink
offset_idx_right = (math.ceil(maxk / mink) * mink - mid_p - 1) % mink
padding = offset_idx_left % mink
while padding < offset_idx_right:
padding += mink
while padding < (mink - 1):
padding += mink
after_padding_index = padding - offset_idx_left
index = math.ceil((mid_p + 1) / mink)
real_start_idx = index - after_padding_index // mink
return padding, after_padding_index, real_start_idx
class ReparamLargeKernelConv(nn.Module):
def init(self, in_channels, out_channels, kernel_size, small_kernel=5, stride=1, groups=1, small_kernel_merged=False, Decom=True, bn=True):
super(ReparamLargeKernelConv, self).init()
self.kernel_size = kernel_size
self.small_kernel = small_kernel
self.Decom = Decom
padding = kernel_size // 2 # 计算填充
if small_kernel_merged:
# 如果合并小卷积核,直接创建卷积层
self.lkb_reparam = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=1, groups=groups, bias=True)
else:
if self.Decom:
# 使用LoRA结构
self.LoRA = LoRAConvsByWeight(in_channels=in_channels, out_channels=out_channels, big_kernel=kernel_size, small_kernel=small_kernel, stride=stride, bn=bn)
else:
# 创建原始大卷积层
self.lkb_origin = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=1, groups=groups, bias=bn)
if (small_kernel is not None) and small_kernel < kernel_size:
# 创建小卷积层
self.small_conv = nn.Conv2d(in_channels, out_channels, kernel_size=small_kernel, stride=stride, padding=small_kernel // 2, groups=groups, dilation=1, bias=bn)
self.bn = nn.BatchNorm2d(out_channels) # 创建BatchNorm层
self.act = nn.SiLU() # 激活函数
def forward(self, inputs):
# 前向传播
if hasattr(self, "lkb_reparam"):
out = self.lkb_reparam(inputs)
elif self.Decom:
out = self.LoRA(inputs)
if hasattr(self, "small_conv"):
out += self.small_conv(inputs)
else:
out = self.lkb_origin(inputs)
if hasattr(self, "small_conv"):
out += self.small_conv(inputs)
return self.act(self.bn(out)) # 返回经过BatchNorm和激活函数的输出
def get_equivalent_kernel_bias(self):
# 融合卷积和BatchNorm的权重和偏置
eq_k, eq_b = fuse_bn(self.lkb_origin, self.bn)
if hasattr(self, "small_conv"):
small_k, small_b = fuse_bn(self.small_conv, self.bn)
eq_b += small_b
eq_k += nn.functional.pad(small_k, [(self.kernel_size - self.small_kernel) // 2] * 4)
return eq_k, eq_b
def switch_to_deploy(self):
# 切换到部署模式,融合卷积和BatchNorm
if hasattr(self, 'lkb_origin'):
eq_k, eq_b = self.get_equivalent_kernel_bias()
self.lkb_reparam = nn.Conv2d(in_channels=self.lkb_origin.in_channels, out_channels=self.lkb_origin.out_channels, kernel_size=self.lkb_origin.kernel_size, stride=self.lkb_origin.stride, padding=self.lkb_origin.padding, dilation=self.lkb_origin.dilation, groups=self.lkb_origin.groups, bias=True)
self.lkb_reparam.weight.data = eq_k
self.lkb_reparam.bias.data = eq_b
self.__delattr__("lkb_origin")
if hasattr(self, "small_conv"):
self.__delattr__("small_conv")
代码核心部分说明:
Mask类:实现了一个可学习的mask,用于对输入进行加权。
LoRAConvsByWeight类:实现了基于权重的LoRA卷积结构,能够处理不同大小的卷积核并进行特征重组。
ReparamLargeKernelConv类:实现了一个大卷积核的重参数化卷积,支持小卷积核的合并与分解,能够在前向传播中灵活使用不同的卷积结构,并且支持BatchNorm的融合。
注释说明:
代码中的注释详细解释了每个类和方法的功能、输入输出以及关键计算步骤,帮助理解代码的逻辑和实现细节。
这个程序文件 shiftwise_conv.py 实现了一个自定义的卷积层,主要用于处理大核卷积的重参数化和低秩适应(LoRA)卷积。代码中定义了多个类和函数,以便于创建和使用这些卷积层。
首先,文件导入了必要的库,包括 torch 和 torch.nn,这些是构建深度学习模型的基础库。all 变量指定了在使用 from module import * 时要导出的公共对象,这里是 ReparamLargeKernelConv 类。
get_conv2d 函数用于创建一个标准的 2D 卷积层,接收多个参数来配置卷积的输入输出通道、核大小、步幅、填充、扩张、分组和偏置。它还处理了填充的计算,确保卷积操作不会改变特征图的大小。
get_bn 函数用于创建一个批归一化层,接收通道数作为参数。
Mask 类定义了一个掩码模块,包含一个可训练的权重参数,并在前向传播中对输入进行掩码操作,使用 sigmoid 函数将权重限制在 (0, 1) 之间。
conv_bn_ori 函数创建一个包含卷积层和可选的批归一化层的序列模块。根据输入参数决定是否添加批归一化。
LoRAConvsByWeight 类实现了低秩适应卷积。它通过两个掩码模块(lora1 和 lora2)对卷积输出进行处理,允许通过权重而非索引来打乱通道。该类的前向传播方法会对输入进行卷积,分离输出,并根据方向(水平或垂直)进行数据重排,最后将处理后的结果相加。
conv_bn 函数根据输入的核大小决定使用标准卷积还是低秩适应卷积。
fuse_bn 函数用于将卷积层和批归一化层融合,计算出等效的卷积核和偏置,以便在推理时减少计算量。
ReparamLargeKernelConv 类是主要的卷积模块,支持大核卷积的重参数化。构造函数中根据输入参数配置卷积层,支持小核卷积的合并和分解。前向传播方法根据不同的配置执行相应的卷积操作,并通过激活函数和批归一化层处理输出。
此外,该类还提供了 get_equivalent_kernel_bias 方法用于获取等效的卷积核和偏置,以及 switch_to_deploy 方法用于在推理阶段将模型转换为更高效的形式。
整体而言,这个文件实现了一个灵活且高效的卷积模块,能够处理不同大小的卷积核,并通过低秩适应技术提高模型的表现。
10.4 hcfnet.py
以下是代码中最核心的部分,并附上详细的中文注释:
import torch
import torch.nn as nn
import torch.nn.functional as F
class SpatialAttentionModule(nn.Module):
def init(self):
super(SpatialAttentionModule, self).init()
# 定义一个2D卷积层,用于生成空间注意力图
self.conv2d = nn.Conv2d(in_channels=2, out_channels=1, kernel_size=7, stride=1, padding=3)
self.sigmoid = nn.Sigmoid() # 使用Sigmoid激活函数将输出归一化到[0, 1]
def forward(self, x):
# 计算输入特征图的平均值和最大值
avgout = torch.mean(x, dim=1, keepdim=True) # 沿通道维度计算平均值
maxout, _ = torch.max(x, dim=1, keepdim=True) # 沿通道维度计算最大值
out = torch.cat([avgout, maxout], dim=1) # 将平均值和最大值拼接
out = self.sigmoid(self.conv2d(out)) # 通过卷积和Sigmoid生成注意力图
return out * x # 将注意力图与输入特征图相乘,得到加权后的特征图
class LocalGlobalAttention(nn.Module):
def init(self, output_dim, patch_size):
super().init()
self.output_dim = output_dim
self.patch_size = patch_size
# 定义多层感知机(MLP)和层归一化
self.mlp1 = nn.Linear(patch_size * patch_size, output_dim // 2)
self.norm = nn.LayerNorm(output_dim // 2)
self.mlp2 = nn.Linear(output_dim // 2, output_dim)
self.conv = nn.Conv2d(output_dim, output_dim, kernel_size=1) # 1x1卷积用于输出特征图
self.prompt = torch.nn.parameter.Parameter(torch.randn(output_dim, requires_grad=True)) # 可学习的提示向量
self.top_down_transform = torch.nn.parameter.Parameter(torch.eye(output_dim), requires_grad=True) # 可学习的变换矩阵
def forward(self, x):
x = x.permute(0, 2, 3, 1) # 调整维度顺序为(B, H, W, C)
B, H, W, C = x.shape
P = self.patch_size
# 提取局部特征
local_patches = x.unfold(1, P, P).unfold(2, P, P) # (B, H/P, W/P, P, P, C)
local_patches = local_patches.reshape(B, -1, P * P, C) # (B, H/P*W/P, P*P, C)
local_patches = local_patches.mean(dim=-1) # (B, H/P*W/P, P*P)
# 通过MLP处理局部特征
local_patches = self.mlp1(local_patches) # (B, H/P*W/P, output_dim // 2)
local_patches = self.norm(local_patches) # 归一化
local_patches = self.mlp2(local_patches) # (B, H/P*W/P, output_dim)
local_attention = F.softmax(local_patches, dim=-1) # 计算局部注意力
local_out = local_patches * local_attention # 加权局部特征
# 计算与提示向量的余弦相似度
cos_sim = F.normalize(local_out, dim=-1) @ F.normalize(self.prompt[None, ..., None], dim=1) # (B, N, 1)
mask = cos_sim.clamp(0, 1) # 限制在[0, 1]范围内
local_out = local_out * mask # 应用掩码
local_out = local_out @ self.top_down_transform # 应用变换矩阵
# 恢复形状并进行上采样
local_out = local_out.reshape(B, H // P, W // P, self.output_dim) # (B, H/P, W/P, output_dim)
local_out = local_out.permute(0, 3, 1, 2) # (B, output_dim, H/P, W/P)
local_out = F.interpolate(local_out, size=(H, W), mode='bilinear', align_corners=False) # 上采样到原始大小
output = self.conv(local_out) # 通过1x1卷积生成最终输出
return output
class PPA(nn.Module):
def init(self, in_features, filters) -> None:
super().init()
# 定义各个卷积层和注意力模块
self.skip = nn.Conv2d(in_features, filters, kernel_size=1) # 跳跃连接
self.c1 = nn.Conv2d(filters, filters, kernel_size=3, padding=1)
self.c2 = nn.Conv2d(filters, filters, kernel_size=3, padding=1)
self.c3 = nn.Conv2d(filters, filters, kernel_size=3, padding=1)
self.sa = SpatialAttentionModule() # 空间注意力模块
self.lga2 = LocalGlobalAttention(filters, 2) # 局部全局注意力模块
self.lga4 = LocalGlobalAttention(filters, 4) # 局部全局注意力模块
self.drop = nn.Dropout2d(0.1) # Dropout层
self.bn1 = nn.BatchNorm2d(filters) # 批归一化
self.silu = nn.SiLU() # SiLU激活函数
def forward(self, x):
# 通过各个层进行前向传播
x_skip = self.skip(x) # 跳跃连接
x_lga2 = self.lga2(x_skip) # 局部全局注意力
x_lga4 = self.lga4(x_skip) # 局部全局注意力
x1 = self.c1(x) # 第一层卷积
x2 = self.c2(x1) # 第二层卷积
x3 = self.c3(x2) # 第三层卷积
# 将所有特征图相加
x = x1 + x2 + x3 + x_skip + x_lga2 + x_lga4
x = self.sa(x) # 应用空间注意力
x = self.drop(x) # 应用Dropout
x = self.bn1(x) # 批归一化
x = self.silu(x) # 激活函数
return x
以上代码展示了一个深度学习模型的核心部分,包括空间注意力模块、局部全局注意力模块和一个主网络PPA的实现。每个模块的功能和前向传播过程都进行了详细的注释,以便于理解其工作原理。
这个程序文件 hcfnet.py 实现了一个深度学习模型,主要用于图像处理任务,包含多个模块,具体功能如下:
首先,导入了必要的库,包括 math、torch 及其子模块 nn 和 functional,以及自定义的 Conv 模块。接着,定义了几个重要的类,分别实现不同的功能。
SpatialAttentionModule 类实现了空间注意力机制。它通过对输入特征图进行平均池化和最大池化,生成两个特征图,然后将这两个特征图拼接后通过卷积层和 Sigmoid 激活函数得到一个注意力权重图,最后将该权重图与输入特征图相乘,以增强重要特征。
LocalGlobalAttention 类实现了局部和全局注意力机制。它首先将输入特征图分割成多个局部块,然后通过多层感知机(MLP)对这些局部块进行处理,计算出局部注意力。接着,使用余弦相似度计算与可学习的提示向量之间的相似度,并根据相似度生成掩码,最后将处理后的局部特征图恢复到原始大小并通过卷积层输出。
ECA 类实现了有效通道注意力机制。它通过自适应平均池化将输入特征图压缩为一个通道向量,然后使用一维卷积计算通道注意力,最后将注意力权重应用于输入特征图。
PPA 类是一个主干网络模块,结合了之前定义的注意力机制和卷积层。它首先通过跳跃连接将输入特征图传递到后续层,然后通过多个卷积层和注意力模块进行特征提取和增强,最后通过批归一化和激活函数进行处理。
Bag 类实现了一个简单的加权融合机制,输入为三个特征图,输出为加权后的特征图。它通过 Sigmoid 函数计算边缘注意力,并根据注意力权重对输入特征图进行加权融合。
DASI 类是一个解码器模块,负责将多个不同尺度的特征图进行融合。它首先通过卷积层对不同尺度的特征图进行处理,然后使用 Bag 类进行加权融合,最后通过尾部卷积层和激活函数输出结果。
整个文件的结构清晰,各个模块之间通过 PyTorch 的 nn.Module 进行组合,体现了深度学习模型的模块化设计。每个模块的设计都旨在提升特征提取和融合的能力,以便更好地处理图像数据。
源码文件
源码获取
欢迎大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式