T5 模型 VS CLIP 模型

CLIP模型包含文本和视觉Transformer,通过预训练使相似的图像和文本在向量空间中接近。它使用大量从互联网抓取的400M图像-文本对进行训练,区别于传统分类模型。同时提及了T5模型和其训练方法,如Transformer结构、破坏策略等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CLIP consists of two models, as discussed in more depth in the previous chapter. The version of CLIP we use here consists of a text transformer for encoding text embeddings and a vision transformer (ViT) for encoding image embeddings.

Both CLIP models are optimized during pretraining to align similar text and images in vector space. It does this by taking image-text pairs and pushing their output vectors nearer in vector space while separating the vectors of non-pairs.

It distinguishes itself from typical classification models for several reasons. First, OpenAI trained it on a huge dataset of 400M text-image pairs that were scraped from across the internet.

T5 模型:NLP Text-to-Text 预训练模型超大规模探索 - Andy Yang的文章 - 知乎 https://zhuanlan.zhihu.com/p/88438851

T5 模型,还有它的训练方法。

  • Transformer Encoder-Decoder 模型;
  • BERT-style 式的破坏方法;
  • Replace Span 的破坏策略;
  • 15 %的破坏比;
  • 3 的破坏时小段长度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

子燕若水

吹个大气球

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值