Negative Prompt in Stable Diffusion

文章介绍了如何使用反向提示词在StableDiffusion2.1版本中改善图像生成效果,特别是对于修复手部细节、去除低质量和模糊等问题。反向提示允许用户告诉模型避免生成某些特征,如额外的手指或模糊的图像,从而增强生成图像的质量和精细度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

漫画中修复手的终极提示词:

正向提示词:

 masterpiece, best quality

best quality, masterpiece, realistic, 16k, ultra detailed, ultra high res, 1girl, full body, skirt

正面提示词:1girl, face_prompt , Pure white background, professional photograph

负面提示词:EasyNegativeV2,(badhandv4:1.2),

ng_deepnegative_v1_75t, bad_prompt_version2-neg, EasyNegative

负向提示词:

EasyNegativeV2

lowres,bad anatomy,bad hands,text,error,missing fingers,extra digit,fewer digits,cropped,worst quality,low quality,normal quality,jpeg artifacts,signature,watermark,username,blurry
disfigured, lowres, bad anatomy, bad hands, text, error, more fingers, extra digit, fewer digits, cropped, worst quality, low quality, jpeg artifacts, signature, watermark,  blurry, bad feet,  bad eye

imgtoimg参数配置:

 修复前后对比效果:

 

必读链接:https://www.reddit.com/r/StableDiffusion/comments/z7salo/with_the_right_prompt_stable_diffusion_20_can_do/

A lot of people have noticed that Negative Prompt works wonders in 2.0, and works even better in 2.1.

Negative hints are the opposite of hints; they allow the user to tell the model what not to generate. Negative cues often remove unwanted details such as injured hands or too many fingers or out-of-focus and blurry images.

You can now easily give negative hints by appending "|" in DreamStudio. <Negative hint>:-1.0" hint. For example, appending "|disfigured, ugly: -1.0, too many fingers: -1.0" occasionally fixes spawning too many fingers.

disfigured, ugly ,too many fingers,too many hands
 


lowres, bad anatomy, bad hands, text,error, missing fngers,extra digt ,fewer digits,cropped, wort quality ,low quality,normal quality, jpeg artifacts,signature,watermark, username, blurry, bad feet
 


NSFW, lowres,bad anatomy,bad hands, text, error, missing fingers,extra digit, fewer digits, cropped, worstquality, low quality, normal quality,jpegartifacts,signature, watermark, username,blurry,bad feet,

加强反向提示词,图像更精致

反向提示词(negative prompt)与提示相反,它允许用户告诉模型不生成什么。

该版本加强了反向提示词的应用,用于消除不需要的细节,进行图像微调,例如手部损坏、手指过多或失焦和图像模煳。

提示:一个美丽的金发女人的肖像,美术摄影、柔和人像拍摄8K、长度中等、超逼真的超高清面部、Unsplash、柯达Ultra Max 800、85毫米胶片、复杂、休闲姿势、中心对称构图、令人惊叹的照片、杰作、颗粒状、居中构图;反向提示:裁剪、低分辨率、画得不好的脸、框架外、画得不好的手、模煳、糟糕的艺术、模煳、文本、水印、毁容、变形、闭眼

用户可以使用加权提示提示模型,对组合中的特定元素进行微调,例如某些颜色、对象或属性。

使用提示加权优化整体图像,以增加或减少合成元素,使用户能够更好地控制图像合成。

根据没有反向提示词(左)和有反向提示词(右)生成图片的比较,可以发现后者在细节方面更加完美。

该图中,反向提示用于告诉模型限制树木、灌木丛、树叶和绿色植物的突出程度,同时保持相同的初始输入提示。

提示:宇航员在一个巨大的未来派金属机甲仓库内的超现实主义绘画,电影、科幻、镜头光晕、光线、史诗、哑光绘画、概念艺术、天体、软渲染、辛烷值渲染、artstation趋势,4k,8k;反向提示:裁剪、低分辨率、帧外、模煳、糟糕的艺术、模煳、文本、毁容、变形

虽然此次版本更新未能完全开放NSFW内容,但并不影响用户使用的热情。毕竟在AIGC领域,Stable Diffusion是当之无愧的顶流。

参考资料:

https://stability.ai/blog/stablediffusion2-1-release7-dec-2022

https://www.reddit.com/r/MachineLearning/comments/zff0bh/p_stable_diffusion_21_release/

### Stable Diffusion v1.4 负向提示(negative prompt)的方法和效果 在Stable Diffusion v1.4版本中,负向提示(negative prompt)用于排除不希望出现在生成图像中的特征或元素。通过设置负面提示词,可以更精确地控制生成图像的质量和风格。 #### 编写技巧 为了实现更好的效果,在编写negative prompt时应遵循一些特定的原则: - **具体化描述**:越具体的描述能够帮助算法更好地理解哪些元素应该避免。例如,“模糊的脸部”,而不是简单的“不好看”。[^1] - **合理长度**:虽然理论上较长的negative prompt可能提供更多指导信息,但实际上过长可能导致模型难以处理。建议保持简洁明了。[^3] #### Prompt格式 当使用API接口调用Stable Diffusion服务时,通常会有一个专门参数来接收negative prompt字符串。以下是Python代码示例展示如何配置此功能: ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4') pipeline.to("cuda") positive_prompt = "A beautiful landscape with mountains and rivers" negative_prompts = ["low quality", "bad anatomy"] image = pipeline(prompt=positive_prompt, negative_prompt=negative_prompts).images[0] ``` 这段代码展示了如何指定正向与反向两个方向上的文本指令给定至`pipeline()`函数内,并最终获得一张图片作为输出结果。[^2] #### Guidance Scale的影响 调整guidance scale参数也会影响negative prompt的效果。较高的数值可以使模型更加严格地遵循给出的正面及负面指示;而较低值则允许更多随机性和创造性发挥空间。一般推荐从7开始尝试不同的设定找到最适合当前需求的结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

子燕若水

吹个大气球

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值